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The free electron laser (FEL) amplifier is implemented in x-ray FEL facilities to generate short
wavelength radiation. The problem of an efficiency increase of an FEL amplifier is now of great practical
importance. The technique of undulator tapering in the postsaturation regime is used at the existing x-ray
FELs LCLS, SACLA and FERMI, and is planned for use at FLASH, European XFEL, Swiss FEL, and
PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and
industrial applications. In this paper we perform a detailed analysis of the tapering strategies for high power
seeded FEL amplifiers. Analysis of the radiation properties from the modulated electron beam and
application of similarity techniques allows us to derive the universal law of the undulator tapering.
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I. INTRODUCTION

Effective energy exchange between the electron beam
moving in an undulator and electromagnetic wave happens
when the resonance condition takes place. In this case
electromagnetic wave advances electron beam by one
radiation wavelength while electron beam passes one
undulator period. When the amplification process enters
the nonlinear stage, the energy losses by electrons become
pronounced which leads to the violation of the resonance
condition and to the saturation of the amplification process.
Application of the undulator tapering [1] allows a further
increase of the conversion efficiency. An idea is to adjust
undulator parameters (field or period) according to the
electron energy loss such that the resonance condition is
preserved.
It is generally accepted that in the framework of the one-

dimensional theory an optimum law of the undulator
tapering should be quadratic [2–9]. A similar physical
situation occurs in the FEL amplifier with a waveguide [2].
In this case radiation is confined within the waveguide.
Parameters of FEL amplifiers operating in the infrared,
visible, and x-ray wavelength ranges are such that these
devices are described in the framework of three-dimensional
theory with an “open” electron beam, i.e., physical case of
diffraction in a free space. In this case the diffraction of
radiation is an essential physical effect influencing optimi-
zation of the tapering process. Discussions and studies on
the optimum law of the undulator tapering in the three-
dimensional case have been in progress for more than
20 years. Our previous studies were mainly driven by

occasional calculations of perspective FEL systems for high
power scientific (for instance, FEL based γγ collider) and
industrial applications (for instance, for isotope separation,
and lithography [10–12]). Their parameter range corre-
sponded to the limit of a thin electron beam (small value
of the diffraction parameter). In this case linear undulator
tapering works well from almost the very beginning [6].
A comprehensive study devoted to the global optimization
of a tapered FEL amplifier with open electron beam has
been presented in [4]. It has been shown that: (i) the tapering
law should be linear for the case of thin electron beam,
(ii) optimum tapering at the initial stage should follow
quadratic dependence, and (iii) tapering should start approx-
imately two field gain lengths before saturation. A new wave
of interest in the undulator tapering came with the develop-
ment of x-ray free electron lasers [13–20]. Undulator
tapering has been successfully demonstrated at long wave-
length FEL amplifiers [2,21], and is routinely used at x-ray
FEL facilities LCLS and SACLA [16,17]. Practical calcu-
lations of specific systems yielded in several empirical laws
using different polynomial dependencies (see [22,23] and
references therein).
In this paper we perform a comprehensive analysis of

the problem of the undulator tapering in the presence of
diffraction effects. We found that the key element for under-
standing the physics of the undulator tapering is given by the
model of modulated electron beam. Then we perform global
analysis of the parameter space of a seeded FEL amplifier
and derive the universal law of the undulator tapering.

II. BASIC RELATIONS

We consider an axisymmetric model of the electron
beam. It is assumed that the transverse distribution function
of the electron beam is Gaussian, so rms transverse size of
matched beam is σ ¼ ffiffiffiffiffi

ϵβ
p

, where ϵ is rms beam emittance
and β is focusing beta function. An important feature of the
parameter space of short wavelength FELs is that the space
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charge field does not influence significantly the amplifica-
tion process, and in the framework of the three-dimensional
theory the operation of the FEL amplifier is described by the
following parameters: the diffraction parameterB, the energy
spread parameter Λ̂2

T, the betatron motion parameter k̂β and
detuning parameter Ĉ [9,24]:

B ¼ 2Γσ2ω=c; Ĉ ¼ C=Γ;

k̂β ¼ 1=ðβΓÞ; Λ̂2
T ¼ ðσE=EÞ2=ρ2; ð1Þ

where Γ ¼ ½Iω2θ2sA2
JJ=ðIAc2γ2zγÞ�1=2 is the gain parameter,

ρ ¼ cγ2zΓ=ω is the efficiency parameter, and C ¼ 2π=λw −
ω=ð2cγ2zÞ is the detuning of the electron with the nominal
energy E0. Note that the efficiency parameter ρ entering
equations of three-dimensional theory relates to the one-
dimensional parameter ρ1D as ρ1D ¼ ρ=B1=3 [9,25]. The
following notations are used here: I is the beam current,
ω ¼ 2πc=λ is the frequency of the electromagnetic wave,
θs ¼ K=γ, K is the rms undulator parameter, γ−2z ¼
γ−2 þ θ2s , kw ¼ 2π=λw is the undulator wave number,
IA ¼ 17 kA is the Alfven current, AJJ ¼ 1 for helical
undulator and AJJ¼J0½K2=2ð1þK2Þ�−J1½K2=2ð1þK2Þ�
for planar undulator. J0 and J1 are the Bessel functions of the
first kind. The energy spread is assumed to be Gaussian with
rms deviation σE.
In the following we consider the case of negligibly small

values of the betatron motion parameter k̂β and the energy
spread parameter Λ̂2

T (i.e., the case of “cold” electron
beam). Under these assumptions the operation of the
FEL amplifier is described by the diffraction parameter
B and the detuning parameter Ĉ.
Equations describing the motion of the particles in the

ponderomotive potential well of the electromagnetic wave
and the undulator become simple when written down in
the normalized form (see, e.g., [9]):

dΨ
dẑ

¼ Ĉþ P̂;
dP̂
dẑ

¼ U cosðϕU þΨÞ; ð2Þ

where P̂ ¼ ðE − E0Þ=ðρE0Þ, ẑ ¼ Γz, and U and ϕU are the
amplitude and the phase of the effective potential.
Deviation of the electron energy is small in the exponential
stage of amplification, P̂ ≪ 1, and the process of the beam
bunching in phase Ψ lasts for a long distance, ẑ ≫ 1. The
situation changes drastically when the amplification proc-
ess enters the nonlinear stage and deviation of the electron
energy P̂ approaches to the unity. The phase change on a
scale of Δẑ≃ 1 becomes fast, particles start to slip fast in
phase Ψ which leads to the reduction of the electron beam
modulation, and the growth of the radiation power is
saturated.
Field gain length ReΛ=Γ and reduced saturation effi-

ciency η̂sat ¼ Wsat=ðρWbeamÞ of the FEL amplifier tuned to
exact resonance Ĉ ¼ 0 are the functions of the diffraction
parameter B and are plotted in Fig. 1. HereWbeam ¼ E0I=e
is the electron beam power. These quantities scale asymp-
totically as B−1=3 [9] which gives us a hint for derivation of
one more general dependence. Indeed, we normalize the
radiation power to the saturation power, and undulator
length to the field gain length. Then we find that the
radiation power before saturation exhibits similar behavior
for all values of the diffraction parameter B > 1 (see the
right plot in Fig. 1).
Undulator tapering [1], i.e., adjustment of the detuning

according to the energy loss of electrons, ĈðẑÞ ¼ −P̂ðẑÞ,
allows to keep synchronism of trapped electrons with
electromagnetic wave. Energy losses of trapped electrons
grow proportionally to the detuning. Energy of the particles
which are not trapped in the regime of coherent deceleration
remains approximately the same as that at the moment when
particles leave the stability region. Finally, two fractions of
electrons are formed which are well separated in energy,
and the average energy loss is hP̂ðẑÞi≃ hP̂trapðẑÞiNtrap=Ntot.

FIG. 1. Operation of the FEL amplifier with untapered undulator. Left plot: FEL field gain ReΛ=Γ (black curve) and FEL efficiency at
the saturation ηsat ¼ Wsat=ðρWbeamÞ (blue curve) versus the diffraction parameter B. Right plot: Evolution of the radiation power along
the undulator. Black, red, green curves correspond to the value of the diffraction parameter B ¼ 1, 10, and 40.
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Thus, for large values of jhP̂ðẑÞij ≫ 1, the ratio of jhP̂ðẑÞij=
ĈðẑÞ ¼ η̂=ĈðẑÞ approaches asymptotically the value of the
trapping factor of the particles captured in the regime of
coherent deceleration ktrap ¼ Ntrap=Ntot.

A. Radiation of modulated electron beam

During the amplification process the electron beam is
modulated periodically at the resonance wavelength. This
modulation grows exponentially in the high gain linear
regime, reaching a value about the unity near the saturation
point. Application of undulator tapering allows to preserve
beam bunching at a long distance. Thus, it is useful to
remember the properties of the radiation of the modulated
electron beam. Electron beam current Iðz; tÞ ¼ I0½1þ
ain cosωðz=vz − tÞ� is modulated with amplitude ain.
Radiation power of the modulated beam is given by [26]

W ¼ 2π2I20a
2
inσ

2

cλλu

K2A2
JJ

1þ K2
fð~zÞ~z;

fð~zÞ ¼ arctan ð~z=2Þ þ ~z−1 ln

�
4

~z2 þ 4

�
: ð3Þ

In the right-hand side of expression (3) we explicitly
isolated z dependence of the radiation power with function
fð~zÞ of argument ~z ¼ 1=N, where N ¼ kσ2=z is Fresnel
number, and k ¼ 2π=λ is wave number. A plot of the
function fð~zÞ is shown in Fig. 2. Asymptotes of the
function fð~zÞ are

fð~zÞ → π=2 for ~z ≫ 1 ðN ≪ 1Þ;
fð~zÞ ¼ ~z=4 for ~z ≪ 1 ðN ≫ 1Þ ð4Þ

for thin and wide electron beam asymptote, respectively.
Expression (3) is a crucial element for understanding the
optimum law of the undulator tapering. Indeed, in the deep
tapering regime some fraction of the particles is trapped

in the regime of coherent deceleration. Thus, the beam
modulation is fixed, and the radiation power W should
follow the expression (3), and the detuning (undulator
tapering) should follow the energy loss by particles,
C ∝ W. One can easily find that both asymptotes (of wide
and thin electron beam) discussed in the introductory
section are well described by this expression. The asymp-
tote of a wide electron beam corresponds to large values of
Fresnel number N, and it follows from (3) that the radiation
power scales quadratically with the undulator length,
W ∝ z2. The asymptote of a thin electron beam corresponds
to small values of the Fresnel number N, and the radiation
power grows linearly with the undulator length, W ∝ z.
Undulator tapering should adjust detuning according to the
energy loss by electrons, and we find that the tapering law
should be quadratic for the case of wide electron beam,
C ∝ W ∝ z2, and linear for the case of thin electron
beam, C ∝ W ∝ z.
The asymptote of the wide electron beam works rea-

sonably well for the values of the Fresnel number N ≳ 1.
The asymptote of the thin electron beam converges pretty
slowly, and reasonable accuracy is achieved for very small
values of the Fresnel number, N ≲ 0.01. To get the feeling
about practical numbers, let us consider two working points
of LCLS x-ray FEL operating at the radiation wavelength
of 0.15 and 1.5 nm [16,27]. The transverse size of the
electron beam is about 25 μm in both cases. The wide beam
asymptote is applicable up to z≃ zwb ≃ 26 m for wave-
length 0.15 nm, and z≃ zwb ≃ 2.6 m for operation at
1.5 nm wavelength. Here we see general feature illustrating
shortening with the radiation wavelength of the applicabil-
ity region of the wide beam asymptote. The thin beam
asymptote becomes applicable at LCLS for z≳ 2500 m
(for wavelength 0.15 nm) and 260 m (for wavelength
1.5 nm). Note, that for both practical examples the limit of
thin electron beam is achieved only for very long undulator,
and exact formula (3) should be used for calculation of the
radiation power for undulator length z > zwb.

III. GLOBAL OPTIMIZATION OF THE
UNDULATOR TAPERING

Now we turn to the problem of finding a general law of
the optimum undulator tapering. First, we solve this
problem using the approach of straightforward global
optimization with three-dimensional, time-dependent
FEL simulation code FAST [28]. The target of the
optimization is to find the maximum of the output power
at the undulator length after ten field gain lengths. We
divide the undulator into many pieces and change detuning
of all pieces independently. We apply adiabatic (smooth)
tapering, i.e., we prevent jumps of the detuning on the
boundary of the sections. The number of sections is
controlled to be large enough to provide the result which
is independent on the number of sections. Then we choose
the tapering law CðB; zÞ corresponding to the maximum

FIG. 2. Function fðzÞ entering Eq. (3). The dashed line shows
the asymptote (4) for small values of z, fð~zÞ ¼ ~z=4.
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power at the exit of the whole undulator. This global
optimization procedure has been performed in the practi-
cally important range of diffraction parameters from B ¼ 1
to B ¼ 40. Results of this global optimization are summa-
rized in Fig. 3. Solid curves show the profiles of
the optimized radiation power, and dashed curves show
the profiles of the optimum detuning. It has been shown
in the previous section that the ratio of the normalized
radiation power to the normalized detuning gives us the
value of the trapping efficiency of the electrons in the
regime of coherent deceleration, Ktrap ¼ η̂=Ĉ. The trapping
efficiency is the function of the diffraction parameter B and
is plotted in Fig. 4. We find that the optimum trapping
factor approaches values of 0.8 for B ¼ 1, and falls down to
0.45 for B ¼ 40. It is worth noticing that for B≳ 5 it scales
roughly as B−1=3, similar to other FEL characteristics like
field gain length and saturation efficiency.

IV. UNIVERSAL TAPERING LAW

It follows from the global optimization that in the whole
parameter range the undulator tapering starts from the value
of Δz≃ 2Lg before saturation. This result is in good
qualitative agreement with intuitive analysis of the evolu-
tion of the radiation power in the beginning of the nonlinear
regime (see Fig. 1). The losses of the electron energy follow
identical parametric dependence on the gain Lg for all
values of the diffraction parameter B. Visible losses of the
electron energy start to occur approximately about two field
gain lengths before saturation. The next observations come
from the analysis of the beam modulation. The first
observation is that the beam modulation at the initial stage
of the nonlinear regime follows similar behavior for all
diffraction parameters (see Fig. 5). This gives a hint that
initial capture of the particles is performed in a similar way
in the whole parameter range. The second observation is
that the beam modulation after trapping of the electrons in
the coherent deceleration process remains approximately
constant along the undulator. This gives us the main hint
which we discussed in the previous section. That is,
excluding the transition stage of the trapping process,
we deal with the radiation of the modulated electron beam
(3). The main essence of our study is to apply parametrical
dependence like (3) to fit an optimum detuning pattern in
Fig. 3 such that the condition of the optimum tapering is
preserved:

Ĉ ¼ αtapðẑ − ẑ0Þ
�
arctan

�
1

2N

�
þ N ln

�
4N2

4N2 þ 1

��
; ð5Þ

with Fresnel number N fitted by N ¼ βtap=ðẑ − ẑ0Þ. Thus,
we try to fit optimum detuning with three parameters: z0,
αtap and βtap. Here undulator length is normalized to the
gain parameter, ẑ ¼ Γz. One parameter of this fit, start of

FIG. 5. Evolution along the undulator of the squared value of
the bunching factor for the FEL amplifier with global undulator
tapering. Color codes: black, red, green curves correspond to the
value of the diffraction parameter B ¼ 1, 10, and 40.

FIG. 3. Evolution along the undulator of the reduced radiation
power η̂ ¼ W=ðρWbeamÞ (solid curves) and of the detuning
parameter Ĉ ¼ C=Γ (dashed curves) for the FEL amplifier with
global optimization of the undulator tapering. Color codes: black,
red, green curves correspond to the value of diffraction parameter
B ¼ 1, 10, and 40.

FIG. 4. The trapping efficiency Ktrap for the globally optimized
undulator (black curve) and the fitting coefficient α−1tap of the
global optimization entering Eq. (5) (red curve).
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the undulator tapering z0 is fixed by the global optimization
procedure, z0 ¼ zsat − 2Lg. Another parameter of the prob-
lem, βtap, is rather well approximated with the linear
dependency on diffraction parameter, βtap ¼ 8.5 × B. The
remaining parameter, αtap, is plotted in Fig. 4. It is a slow
varying function of the diffraction parameter B, and scales
approximately to B1=3 as all other important FEL param-
eters discussed above. Thus, application of similarity
techniques gives us an elegant way for the general para-
metrical fit. The accuracy of this fit is pretty good giving the
results for optimum detuning which are close to the global
optimum. We illustrate with Fig. 6 tapering law (5) for the
specific value of the diffraction parameter B ¼ 10. Curves
in black color are the normalized power and the detuning
parameter derived from the global optimization. The red
dashed curve is detuning Ĉ given by (5) with αtap ¼ 3.6
(see Fig. 4), and βtap ¼ 85 (according to relation βtap ¼
8.5 × B). The solid curve in red color is the normalized
FEL efficiency simulated with the detuning pattern (5). We
see a good agreement of the fit with the global optimiza-
tion. The same situation occurs in the whole range of the
traced values of the diffraction parameter B. Such a good
agreement is not surprising since fitting is based on very
clean parametric dependencies, and numerical simulations
just provided relevant numerical factors.

A. Rational fit

Analysis of the expression (5) shows that it has quadratic
dependence in z for small values of z (limit of the wide
electron beam), and linear dependence in z for large values
of z (limit of the thin electron beam). It is natural to try a fit
with a rational function which satisfies both asymptotes.
The simplest rational fit is

Ĉ ¼ aðẑ − ẑ0Þ2
1þ bðẑ − ẑ0Þ

: ð6Þ

The coefficients a and b are the functions of the diffraction
parameter B, and are plotted in Fig. 7. The start of the
undulator tapering is set to the value z0 ¼ zsat − 2Lg
suggested by the global optimization procedure. Analysis
of the plots presented in Fig. 6 shows that the fit of the
tapering law with the rational function also works well.

B. Trapping process

We finish our paper with the illustration of the trapping
process. The trapping efficiency Ktrap ¼ P̂=Ĉ falls down
with the diffraction parameter B (see Fig. 4). This is a
natural consequence of the diffraction effects discussed in
earlier publications (see, e.g., Ref. [9], Chapter 4). Indeed,
FEL radiation is not a plane wave. The transverse distri-
bution of the radiation field (FEL radiation mode [9,29])
depends on the value of the diffraction parameter B, and the

FIG. 6. Evolution along the undulator of the reduced radiation
power η̂ ¼ W=ðρWbeamÞ (solid curves) and of the detuning
parameter Ĉ ¼ C=Γ (dashed curves). Color codes: black—FEL
with global optimization of undulator tapering; red—fit with the
formula (5); green—fit with the rational function (6). Here the
value of the diffraction parameter is B ¼ 10.

FIG. 7. Coefficients a (black line) and b (red line) of the
rational fit of the tapering law (6).

FIG. 8. Field amplitude of the FEL radiation mode in the high
gain linear regime. Black, red, and green colors correspond to the
value of the diffraction parameter B ¼ 1, 10, and 40, respectively.
The dashed line shows the profile of the beam current density
exp½−r2=ð2σ2Þ�.
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field gradient (or, amplitude of ponderomotive well) across
the electron beam is more pronounced for larger values of
the diffraction parameter B (see Fig. 8). In the latter case we
obtain a situation when electrons located in the core of the
electron beam are already fully bunched while electrons at
the edge of the beam are not bunched yet [see phase space
plot (a) in Fig. 9]. As a result, the number of electrons with
similar positions on the energy-phase plane falls down with
the growth of the diffraction parameter, as well as the
trapping efficiency in the regime of coherent deceleration.

The trapping process is illustrated with the phase space
plots presented in Fig. 9 for the value of the diffraction
parameter B ¼ 10. Different color codes (black to blue)
correspond to different locations of the particles across the
beam (from the beam core to the edge). We see that the
particles in the core of the beam (black points) are trapped
most effectively. Nearly all particles located at the edge of
the electron beam (blue points) leave the stability region
very soon. The trapping process lasts for a several field gain
lengths when the trapped particles become isolated in the

FIG. 9. Phase space distribution of electrons (left column) and population of electrons in energy (right column) at different stages of
the trapping process. Color codes correspond to different locations of the particles in the beam (black—core of the beam; blue—edge of
the beam). Here diffraction parameter is B ¼ 10. Plots labeled by (a), (b), (c), and (d) correspond to ðz − zsatÞ=Lg ¼ −1.2, 2.5, 3.9 and
5.3, respectively (see Fig. 6).
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trapped energy band for which the undulator tapering is
optimized further. For the specific value of the diffraction
parameter B ¼ 10 the trapping process is not finished even
at three field gain lengths after saturation, and nontrapped
particles continue to populate the low energy tail of the
energy distribution (see the right column of Fig. 9). There
was an interesting experimental observation at LCLS that
energy distribution of nontrapped particles is not uniform,
but represent a kind of energy bands [30–32]. Graphs
presented in Fig. 9 give a hint on the origin of energy bands
which are formed by nontrapped particles. This is the
consequence of nonlinear dynamics of electrons leaving the
region of stability. Note that a similar effect can be seen in
the early one-dimensional studies [7,8].

V. DISCUSSION

In this paper we derived the general law (5) for the
optimum undulator tapering in the presence of diffraction
effects. The case of the cold electron has been considered.
This allowed us to isolate diffraction effects in the most
clear form. It has been found that the optimum tapering law
is the function of the only diffraction parameter B. Fit of the
tapering law with the rational function (6) requires fulfill-
ment of two asymptotes of the tapering law: quadratic at the
initial stage (wide beam asymptote), and linear for very
long tapering section (thin beam asymptote). It is essen-
tially simple, and can be very convenient for optimization
of practical systems. The tapering law is described by
simple analytical expressions with two fitting coefficients.
Extension of this approach to a more complicated model
(including energy spread and emittance) is pretty much
straightforward and will result in corrections to the fitting
coefficients without changing the general law given by (5).
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