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The use of a transverse gradient undulator (TGU) is viewed as an attractive option for free-electron lasers
(FELs) driven by beams with a large energy spread. By suitably dispersing the electron beam and tilting the
undulator poles, the energy spread effect can be substantially mitigated. However, adding the dispersion
typically leads to electron beams with large aspect ratios. As a result, the presence of higher-order modes in
the FEL radiation can become significant. To investigate this effect, we study the eigenmode properties of a
TGU-based, high-gain FEL, using both an analytically-solvable model and a variational technique.
Our analysis, which includes the fundamental and the higher-order FEL eigenmodes, can provide an
estimate of the mode content for the output radiation. This formalism also enables us to study the trade-off
between FEL gain and transverse coherence. Numerical results are presented for a representative soft X-ray,
TGU FEL example.
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I. INTRODUCTION

Using a transverse gradient undulator (TGU) [1–2] in a
free electron laser (FEL) is considered a promising
approach for those concepts which aim to utilize an
electron beam with a relatively large energy spread, such
as the beam from a laser-plasma accelerator (LPA) [3–4].
By dispersing the electron beam and canting the undulator
poles, both the electron energy and the undulator parameter
acquire a linear transverse dependence. A suitable selection
of the dispersion and the field gradient minimizes the
impact of the energy spread upon the FEL resonance
condition, leading to substantially improved gain. On the
other hand, a drawback of the TGU is the increased size of
the electron beam in the direction of dispersion (typically
the horizontal direction). Such an increase in the horizontal
size results in a large aspect ratio and provides sufficient
transverse space for the higher-order modes to couple
efficiently to the beam. Thus, the higher-order growth rates
can become comparable to the fundamental, which reduces
the transverse coherence of the output FEL radiation. The
aim of this paper is to provide a theoretical framework for
understanding this effect, which has also been observed in
simulations of soft X-ray, TGU-based FELs [3].
As is well known, the operation of a a high-gain FEL can

be described in an accurate and self-consistent manner in
the context of the Vlasov-Maxwell formalism [5]. This is
particularly useful in the linear regime of the interaction,

where the solution of the initial value problem can be
expressed in terms of the guided eigenmodes of the FEL
[6]. In a previous publication [7], we presented a Vlasov-
Maxwell theory for a TGU FEL and studied the properties
of the fundamental eigenmode through a variational tech-
nique, being mostly concerned with gain length optimiza-
tion studies. Here, we seek to extend our analysis to the
higher-order FEL modes. In particular, the present paper is
organized as follows: Sec. II contains the main theoretical
results. Starting from the mode equation already derived in
[7], we introduce a convenient scaling which also high-
lights the influence of the various effects (diffraction,
energy spread, detuning, etc.) upon the mode growth rate
and profile. Next, we develop a simplified model which is
valid when the radiation size is smaller than the electron
beam size. This model admits exact analytical solutions,
which allows us to fully determine the mode properties
even for arbitrary mode order. These analytical solutions,
valuable in their own right, are also quite useful in
facilitating the proper choice of variational trial functions
for the fundamental and the first few higher-order modes.
Making use of this combination of exact and variational
solutions, we can obtain the spectrum of the FEL growth
rates, identify the modes that are important for a given
configuration and provide an estimate of the degree of
transverse coherence. Relevant numerical results are given
in Sec. III, using the parameters of an LPA-driven, soft
X-ray TGU FEL as an example. The principal conclusions
and results of this study are summarised in Sec. IV.

II. THEORY

To begin with, we point out that the development
to be presented here relies considerably on many of the
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theoretical results derived in [7]. We shall merely state these
results and use them as the starting point for our treatment,
referring the reader to our earlier paper for more details.
As has already been mentioned, our study is based on an
analysis of the eigenmodes of the FEL, i.e., the solutions of
the form AðxÞeiμz for the amplitude of the radiation field
(where x ¼ ðx; yÞ is the transverse position vector and z is
the position along the undulator). Each FEL eigenmode is
thus characterized by a z-invariant transverse profile AðxÞ
and a constant, complex growth rate μ. As has been shown
in [7] for a TGU FEL driven by a Gaussian beam, when the
emittance and focusing effects in both transverse dimen-
sions are negligible (the so-called parallel beam case), the
equation satisfied by the profile and the growth rate of a
growing mode (i.e., one with ImðμÞ < 0) is

�
μ −

∇2⊥
2kr

�
AðxÞ ¼ Uðx; μÞAðxÞ; ð1Þ

where

Uðx; μÞ ¼ −8ρ3Tk3u exp
�
−

x2

2σ2T
−

y2

2σ2y

�

×
Z

0

−∞
dξξeiðμ−ΔνkuÞξe−2ðσ

ef
δ Þ2k2uξ2

× exp

�
−2ikuCp

x
η
ξ

�
: ð2Þ

Here, ∇2⊥ ¼ ∂2=∂x2 ¼ ∂2=∂x2 þ ∂2=∂y2 is the transverse
Laplacian, kr ¼ 2π=λr and ku ¼ 2π=λu—where λr is the
resonant wavelength and λu is the undulator period-Δν is a
dimensionless detuning variable while σT and σy are the
rms electron beam sizes in the x and y directions. The
former of the last two parameters includes the contribution
of the constant dispersion η and is given by
σT ¼ ðσ2x þ η2σ2δÞ1=2, where σx is the nondispersive hori-
zontal beam size and σδ is the rms energy spread.
Moreover, ρT and σefδ are, respectively, the effective
Pierce parameter and energy spread of the FEL, quantities
that are expressed by ρT ¼ ρð1þ η2σ2δ=σ

2
xÞ−1=6 and

σefδ ¼ σδð1þ η2σ2δ=σ
2
xÞ−1=2, where ρ is the Pierce param-

eter for η ¼ 0. The nondispersive FEL parameter is in turn
given by ρ ¼ ðK2

0½JJ�2Ip=ð16IAγ30σxσyk2uÞÞ1=3, where γ0 is
the average electron energy in units of its rest mass
m0c2, K0 is the on-axis undulator parameter, ½JJ� ¼
J0ðK2

0=ð4þ 2K2
0ÞÞ − J1ðK2

0=ð4þ 2K2
0ÞÞ, IA ≈ 17 kA is

the Alfven current and Ip is the peak current of the electron
beam. On the other hand, Cp ¼ σ2x=σ2T þ ᾱη − 1 ¼ ᾱη −
η2σ2δ=σ

2
T with ᾱ ¼ K2

0α=ð2þ K2
0Þ, α being the transverse

gradient of the undulator field. Finally, we should also note
that the expression for Cp given above is a generalization of
the one contained in [7], which only covered the case with

ᾱ ¼ 1=η. The latter is usually referred to as the TGU
resonance condition.
To proceed further, we introduce the scaled quantities

x̂ ¼ x=σT , ŷ ¼ y=σy, μ̂ ¼ μ=ð2ρTkuÞ, ξ̂ ¼ 2ρTkuξ, ν̂ ¼
Δν=ð2ρTÞ and σ̂efδ ¼ σefδ =ρT , in which case the eigenmode
equation is cast into a fully dimensionless form:

�
μ̂ − pdx

∂2

∂x̂2 − pdy
∂2

∂ŷ2
�
Aðx̂Þ ¼ Ûðx̂; μ̂ÞAðx̂Þ; ð3Þ

where x̂ ¼ ðx̂; ŷÞ, pdx ¼ ð4ρTkukrσ2TÞ−1 and pdy ¼
ð4ρTkukrσ2yÞ−1 are the diffraction parameters (defined in
a way analogous to [8]),

Ûðx̂; μ̂Þ ¼ − exp

�
−
x̂2

2
−
ŷ2

2

�

×
Z

0

−∞
dξ̂ ξ̂ eiðμ̂−ν̂Þξ̂e−ðσ̂

ef
δ Þ2 ξ̂2=2e−2ip̂0 ξ̂ x̂ ð4Þ

and

p̂0 ¼
σT
2ρT

Cp

η
¼ σT

2ρT

�
ᾱ −

ησ2δ
σ2T

�
ð5Þ

is a scaled TGU resonance factor. From a physical
point of view, p̂0 ∼ ðΔλ=λrÞTGU=ρT , where ðΔλ=λrÞTGU ≈
ðᾱη − 1ÞσT=η is the typical wavelength spread due to the
transverse gradient and the dispersion. By inspecting
Eqs. (3)–(4), an interesting property of the FEL modes
can be deduced: if Aðx̂; ŷÞ and μ̂ is the mode profile and the
growth rate for a given value of p̂0, then Að−x̂; ŷÞ and μ̂ are,
respectively, the mode profile and growth rate for −p̂0, all
other parameters being the same. This implies that the
growth rate is an even function of p̂0, i.e., μ̂ð−p̂0Þ ¼ μ̂ðp̂0Þ.
We will return to this important result in the next section.

A. Exactly solvable model

For small values of the beam diffraction parameters
(pdx; pdy ≪ 1), the radiation size in both the x and y
directions is smaller than the corresponding size of the
electron beam (this assertion will be verified later on).
Thus, we have jx̂j; jŷj ≪ 1 and we can expand the Gaussian
term in the right-hand side of Eq. (4) according to

exp

�
−
x̂2

2
−
ŷ2

2

�
≈ 1 −

x̂2

2
−
ŷ2

2
:

Moreover, when jp̂0j ≪ 1, the ξ̂-integral in the definition of
Û can be approximated by Î0 − 2ip̂0Î1x̂ − 2p̂2

0Î2x̂
2, where

În ¼
Z

0

−∞
dξ̂ξ̂nþ1eΨ ð6Þ
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andΨ ¼ iðμ̂ − ν̂Þξ̂ − ðσ̂efδ Þ2ξ̂2=2. Thus, by expanding Û up
to second order in x̂ and ŷ, the mode equation is written in a
simplified form as

�
μ̂ − pdx

∂2

∂x̂2 − pdy
∂2

∂ŷ2
�
Aðx̂Þ

¼ ðF0 þ F1x̂þ F2x̂2 þ G2ŷ2ÞAðx̂Þ; ð7Þ

where F0 ¼ −Î0, F1 ¼ 2ip̂0Î1, F2 ¼ Î0=2þ 2p̂2
0Î2, and

G2 ¼ Î0=2. The above result resembles the mode equation
for an electron beam with a parabolic transverse profile.
However, since we have neglected the transverse cutoff that
makes the parabolic distribution a physically rigorous one,
our simplified model will only be meaningful when the
FEL radiation is contained well within the electron beam.
On the other hand, its main strength lies in the fact that
Eq. (7) admits exact analytical solutions. In order to
determine them, we try an ansatz of the form

Aðx̂Þ ¼ Pðx̂ÞQðŷÞe−âxx̂2þb̂ x̂e−âyŷ
2

; ð8Þ

the separable character of which is justified by the absence
of any coupling between x̂ and ŷ in Eq. (7). Substituting, we
obtain

μ̂ − pdx

�
1

P
d2P
dx̂2

þ 2ðb̂ − 2âxx̂Þ
1

P
dP
dx̂

þ b̂2 − 2âx

− 4âxb̂ x̂þ4â2xx̂2
�

− pdy

�
1

Q
d2Q
dŷ2

− 4âyŷ
1

Q
dQ
dŷ

− 2ây þ 4â2yŷ2
�

¼ F0 þ F1x̂þ F2x̂2 þ G2ŷ2: ð9Þ

If we select −4pdxâ2x ¼ F2, −4pdyâ2y ¼ G2 and
4pdxâxb̂ ¼ F1, the above result reduces to

μ̂ − pdx

�
1

P
d2P
dx̂2

þ 2ðb̂ − 2âxx̂Þ
1

P
dP
dx̂

þ b̂2 − 2âx

�

− pdy

�
1

Q
d2Q
dŷ2

− 4âyŷ
1

Q
dQ
dŷ

− 2ây

�
¼ F0: ð10Þ

Since the quantity inside the first bracket is a function of x̂
only while its counterpart inside the second bracket is a
function of ŷ, both must be equal to constants. Thus, we
could write

1

P
d2P
dx̂2

þ 2ðb̂ − 2âxx̂Þ
1

P
dP
dx̂

¼ −4âxm ð11Þ

and

1

Q
d2Q
dŷ2

− 4âyŷ
1

Q
dQ
dŷ

¼ −4âyn; ð12Þ

where m and n are—at this stage—real numbers. However,
the requirement for Aðx̂Þ to be bounded necessitates that m
and n be positive integers, i.e., m; n ¼ 0; 1; 2; 3;…. In this
case, the solutions for P and Q are given by

Pðx̂Þ ¼ Hmf
ffiffiffiffiffiffiffi
2âx

p
½x̂ − b̂=ð2âxÞ�g ð13Þ

and

QðŷÞ ¼ Hnð
ffiffiffiffiffiffiffi
2ây

q
ŷÞ; ð14Þ

whereHk are the Hermite polynomials, while the dispersion
relation is μ̂−pdx½b̂2− ð4mþ2Þâx�þð4nþ2Þpdyây ¼F0.
Summarizing, it has been established that the solutions for
the mode profiles are given by

Amnðx̂Þ ¼ Hmf
ffiffiffiffiffiffiffi
2âx

p
½x̂ − b̂=ð2âxÞ�ge−âxx̂2þb̂ x̂

×Hnð
ffiffiffiffiffiffiffi
2ây

q
ŷÞe−âyŷ2 ; ð15Þ

wherem and n are positive integers or zero. The growth rate
μ̂ and the mode parameters âx; ây; b̂ satisfy the relations

μ̂þpdx½ð4mþ2Þâx− b̂2�þð4nþ2Þpdyây¼−Î0 ð16Þ

and

â2x ¼ −
Î0 þ 4p̂2

0Î2
8pdx

;

âxb̂ ¼ ip̂0

2pdx
Î1;

â2y ¼ −
Î0

8pdy
; ð17Þ

where we recall that the Îk quantities are functions of μ̂
defined by Eq. (6). In general, the modes described by
Eq. (15) are characterized by an asymmetric intensity profile
(given by jAðx̂Þj2) which is not invariant under the reflection
x → −x, though it is still invariant under y → −y. For
example, the fundamental mode (for which m ¼ 0,
n ¼ 0) has a Gaussian profile centered at x̂ ¼ x̂c ¼
b̂xr=ð2âxrÞ; ŷ ¼ 0 and is characterized by the scaled rms
modes sizes σ̂rx ¼ ð4âxrÞ−1=2 and σ̂ry ¼ ð4âyrÞ−1=2, where
âxr, âyr, b̂xr are, respectively, the real parts of âx, ây and b̂. In

the limit of vanishing effective energy spread (σ̂efδ → 0), we
can readily show that Î0¼1=ŵ2, Î1¼2i=ŵ3 and Î2¼−6=ŵ4,
where ŵ ¼ μ̂ − ν̂. Moreover, Eq. (17) then yields
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âx¼−ið ffiffiffiffiffiffiffiffiffiffi
8pdx

p
ŵÞ−1ð1−24p̂2

0=ŵ
2Þ1=2, ây¼−i=ð ffiffiffiffiffiffiffiffiffiffi

8pdy
p

ŵÞ
and b̂ ¼ −ð8=pdxÞ1=2ðip̂0=ŵ2Þð1 − 24p̂2

0=ŵ
2Þ−1=2 for the

mode parameters. These expressions—when substituted
back into Eq. (16)—result in the dispersion relation

μ̂ −
iffiffiffi
2

p
ŵ

�
ð2mþ 1Þ ffiffiffiffiffiffiffi

pdx
p �

1 −
24p̂2

0

ŵ2

�
1=2

þ ð2nþ 1Þ ffiffiffiffiffiffiffi
pdy

p �
þ 8p̂2

0

ŵ4

�
1 −

24p̂2
0

ŵ2

�
−1

¼ −
1

ŵ2
: ð18Þ

As pdx; pdy; p̂0 → 0, Eq. (18) reduces to μ̂ ¼ −1=ŵ2 ¼
−1=ðμ̂ − ν̂Þ2, which is the familiar cubic dispersion relation
from 1D FEL theory. Furthermore, since the mode para-
meters scale according to âx ∼ p−1=2

dx , ây ∼ p−1=2
dy , and

b̂=âx ∼ p̂0, we also have σ̂rx ∼ p1=4
dx , σ̂ry ∼ p1=4

dy , and
x̂c ∼ p̂0 for the fundamental mode. This supports our earlier
assumption that the radiation lies within the electron beam
for small values of pdx; pdy, and p̂0.
As a final remark, we briefly comment on the depend-

ence of the growth rate upon p̂0. The previously discussed
fact that μ̂ is an even function of p̂0 can be readily verified
by an inspection of Eq. (18)—or its more general counter-
part for σ̂efδ ≠ 0—which is quadratic with respect to p̂0.
This suggests that the power growth rate (given by
−2ImðμÞ) is stationary at p̂0 ¼ 0. In fact, a simple
numerical study verifies that the power growth rate attains
a maximum at that point. Thus, in order to optimize the
gain, one should choose p̂0 ¼ 0 or, equivalently,
ᾱη ¼ 1 − σ2x=σ2T . When this condition is satisfied, the
modes also become fully symmetric i.e., they regain their
invariance under the reflection x → −x. It is essential to
point out that the above conclusions are, in fact, a general
property of the FEL eigenmodes stemming from the
particular structure of Eqs. (3)–(4). Thus, their validity is
not merely a feature of the approximate solution presented
here. On the other hand, even though the condition for
optimum gain is different from the TGU resonance con-
dition ᾱη ¼ 1, the actual increase in the growth rate is
typically very small because the TGU operates in a regime
where σT ≫ σx.

B. Variational calculation

The analytical results of the previous section where
derived as the exact solution to an approximate, simplified
model described by Eq. (7). We now employ a different
approach, which aims to approximately calculate the
growth rates and the profiles of the FEL eigenmodes for
the exact model of Eqs. (1)–(2), without resorting to any
truncated expansion of the Û function. The method under
consideration is based on a well-established variational
technique [8]. In this case, we start by constructing a
so-called variational functional, given by

Z
d2x̂Aðx̂Þ

�
μ̂ − pdx

∂2

∂x̂2 − pdy
∂2

∂ŷ2
�
Aðx̂Þ

¼
Z

d2x̂A2ðx̂ÞÛðx̂; μ̂Þ: ð19Þ

Given a trial function for the mode profile Aðx̂Þ, this
functional yields an estimate of the growth rate μ̂. The basic
feature of this variational approach is that a first order
variation in the mode profile only results in a second order
error in the growth rate, a fact which enhances the accuracy
of the method. Here, we seek to derive variational solutions
for the first few eigenmodes. In order to make a judicious
choice of the trial function for a specific mode, we each
time try a form which has the same functional dependence
on x̂ and ŷ as the exact solution given by Eq. (15).
For example, we select a trial function of the form
Aðx̂Þ ¼ e−âxx̂

2þb̂ x̂e−âyŷ
2

for the fundamental mode while
our choice for the 01 mode (i.e., m ¼ 0 and n ¼ 1) is
Aðx̂Þ ¼ ŷe−âxx̂

2þb̂ x̂e−âyŷ
2

. Substituting these into Eq. (19),
we obtain the result

Fðâx; ây; b̂; μ̂Þ ¼ μ̂þ pdxâx þ pdyây þ â1=2x ðâx þ 1=4Þ−1=2

× â1=2y ðây þ 1=4Þ−1=2

×
Z

0

−∞
dξ̂ ξ̂ eiðμ̂−ν̂Þξ̂e−ðσ̂

ef
δ Þ2ξ̂2=2

× exp

�ðb̂ − ip̂0ξ̂Þ2
2âx þ 1=2

−
b̂2

2âx

�
¼ 0 ð20Þ

for the 00 mode and

Fðâx; ây; b̂; μ̂Þ ¼ μ̂þpdxâx þ 3pdyây þ â1=2x ðâx þ 1=4Þ−1=2

× â3=2y ðây þ 1=4Þ−3=2

×
Z

0

−∞
dξ̂ ξ̂eiðμ̂−ν̂Þξ̂e−ðσ̂

ef
δ Þ2 ξ̂2=2

× exp
�ðb̂− ip̂0ξ̂Þ2
2âx þ 1=2

−
b̂2

2âx

�
¼ 0 ð21Þ

for the 01 mode. Equation (20) is a scaled—and slightly
generalized—version of the variational dispersion relation
included in [7]. Using the stationary condition ∂μ̂=∂âx ¼
∂μ̂=∂ây ¼ ∂μ̂=∂b̂ ¼ 0, we also obtain the additional rela-
tions ∂Fðâx; ây; b̂; μ̂Þ=∂âx ¼ 0, ∂Fðâx; ây; b̂; μ̂Þ=∂ây ¼ 0

and ∂Fðâx; ây; b̂; μ̂Þ=∂b̂ ¼ 0. These three derivative rela-
tions have to be solved simultaneously along with Eq. (20)/
Eq. (21) in order to determine the properties of the 00=01
mode. As far as the 10 mode is concerned (m ¼ 1, n ¼ 0),
we now use a trial function of the form Aðx̂Þ ¼
ðx̂þ λ̂Þe−âxx̂2þb̂ x̂e−âyŷ

2

while, for the 11 mode, we choose
Aðx̂Þ ¼ ðx̂þ λ̂Þŷe−âxx̂2þb̂ x̂e−âyŷ

2

. These manipulations
yield the relations
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Fðâx; ây; b̂; λ̂; μ̂Þ ¼ ðμ̂þ pdyâyÞ
��

λ̂þ b̂
2âx

�
2

þ 1

4âx

�
þ pdxâx

��
λ̂þ b̂

2âx

�
2

þ 3

4âx

�

þ â1=2x ðâx þ 1=4Þ−1=2â1=2y ðây þ 1=4Þ−1=2
Z

0

−∞
dξ̂ ξ̂ eiðμ̂−ν̂Þξ̂e−ðσ̂

ef
δ Þ2 ξ̂2=2

×

��
λ̂þ b̂ − ip̂0ξ̂

2âx þ 1=2

�
2

þ 1

4âx þ 1

�
exp

�ðb̂ − ip̂0ξ̂Þ2
2âx þ 1=2

−
b̂2

2âx

�
¼ 0 ð22Þ

and

Fðâx; ây; b̂; λ̂; μ̂Þ ¼ ðμ̂þ 3pdyâyÞ
��

λ̂þ b̂
2âx

�
2

þ 1

4âx

�
þ pdxâx

��
λ̂þ b̂

2âx

�
2

þ 3

4âx

�

þ â1=2x ðâx þ 1=4Þ−1=2â3=2y ðây þ 1=4Þ−3=2
Z

0

−∞
dξ̂ ξ̂ eiðμ̂−ν̂Þξ̂e−ðσ̂

ef
δ Þ2 ξ̂2=2

×

��
λ̂þ b̂ − ip̂0ξ̂

2âx þ 1=2

�
2

þ 1

4âx þ 1

�
exp

�ðb̂ − ip̂0ξ̂Þ2
2âx þ 1=2

−
b̂2

2âx

�
¼ 0; ð23Þ

respectively. In this last two cases, the variational solution
is completed by the relations ∂F=∂âx ¼ ∂F=∂ây ¼
∂F=∂b̂ ¼ ∂F=∂λ̂ ¼ 0.

III. NUMERICAL RESULTS

The main practical application of the eigenmode analysis
presented in the previous section is to facilitate the
optimization of a given TGU-based FEL configuration
and to provide an estimate of the mode content in the output
radiation. The parallel beam formalism developed in this
paper is particularly suitable for describing FELs driven by
low emittance electron beams, which is often the case for
LPA-based concepts [9–10]. An interesting example of
such a concept was first discussed in [3] (its parameters are
also listed in Table I). It refers to a machine which would
utilize a 1 GeV=10 kA LPA beam with the aim of
producing radiation within the so-called water window
wavelength region (in particular, the resonant wavelength is
3.9 nm). More specifically, this scheme involves a short

period, SC undulator with λu ¼ 1 cm and K0 ¼ 2, while
the normalized emittance of the LPA beam is as low as
0.1 μm. The listed value for the nondispersive rms beam
sizes σx and σy (∼10 μm) is based on a 2.5 m value for the
electron beta functions in the center of the undulator (which
is about half the projected undulator length). This results in
a ρ value of approximately 6 × 10−3, which is smaller than
the beam energy spread σδ ¼ 0.01. This raises the pos-
sibility of using a TGU to improve the FEL gain. This
parameter set was also used in [7] in order to demonstrate
the optimization of the dispersion η using a variational
calculation for the fundamental FEL mode (for the case
with ᾱ ¼ 1=η). The main results are summarized in the
graph of the frequency-optimized gain length vs the
dispersion, which is shown in Fig. 1 (blue curve). In terms
of our present scaling, the power gain length Lg is given by

TABLE I. Undulator and electron beam parameters.

Parameter LPA

Undulator parameter K0 2
Undulator period λu 1 cm
Beam energy γ0m0c2 1 GeV
Resonant wavelength λr 3.9 nm
Peak current Ip 10 kA
Energy spread σδ 10−2

Normalized emittance γ0ϵx 0.1 μm
Normalized emittance γ0ϵy 0.1 μm
Horizontal size σx 11.3 μm
Vertical size σy 11.3 μm
FEL parameter ρ 6 × 10−3

0.005 0.01 0.015 0.02 0.025 0.03
0.15

0.2

0.25

0.3

3D
1D

FIG. 1. Frequency-optimized gain length of the fundamental
mode as a function of the dispersion for the LPA parameters. The
data shown were obtained using the variational solution (blue)
and the 1D fitting formula mentioned in the text (red).
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Lg ¼ −
ffiffiffi
3

p
LT=ð2Imðμ̂ÞÞ, where LT ¼ λu=ð4π

ffiffiffi
3

p
ρTÞ. The

optimization scenario involves varying the dispersion while
keeping the other parameters fixed (except, of course, the
TGU gradient, which satisfies the condition ᾱ ¼ 1=η) and
maximizing the power growth rate with respect to the
detuning for each dispersion value. Also included are
gain length values based on the 1D formula Lg ¼
LT ½1þ ðσ̂efδ =ρTÞ2� (red curve). Introduced in [3], the above
formula can also be rewritten as

Lg ¼ L0½ðσT=σxÞ1=3 þ ðσδ=ρÞ2ðσT=σxÞ−1�; ð24Þ

where L0 ¼ λu=ð4π
ffiffiffi
3

p
ρÞ. Apart from the obvious increase

in the gain length due to the added 3D effects (namely,
diffraction), both curves show that there is some optimum
value of the dispersion which minimizes the gain length. In
the case of the 1D results, this optimum point can be
determined analytically. After some manipulation of the
fitting formula, we find that the (detuning-optimized) gain
length attains a minimum value of

Lg;min ≈ 1.75L0ðσδ=ρÞ1=2 ð25Þ

when σT=σx ≈ 2.28ðσδ=ρÞ3=2, or, equivalently, when

η ≈ 2.28σxσ
1=2
δ =ρ3=2: ð26Þ

These analytical results where first reported in [11], using a
slightly different notation. For our LPA parameters, these
simple formulas yield an optimum gain length of 16 cm for
a 5 mm dispersion. From a physical point of view, the
optimum results from balancing the competing influences
of the effective FEL parameter and energy spread on the
gain length. Specifically, as η—and with it, the horizontal
beam size σT—increases, ρT and σ̂efδ both decrease

(according to σ−1=3T and σ−1T , respectively). We note that
their ratio also decreases, this time like σ−2=3T . Since a
decrease in ρT (σ̂efδ ) causes Lg to increase (decrease), a
stationary point ensues somewhere. For dispersion values
smaller than the optimum, the dominant effect is the energy
spread (σ̂efδ =ρT is still rather large), which results in a
drastic reduction of Lg with increasing η. On the other
hand, for η larger than the optimum, the influence of energy
spread becomes smaller and smaller and the variation of Lg

is dominated by ρT, resulting in a more gradual increase of
the gain length. For the 3D results, one needs to also take
into account the variation of the diffraction parameters pdx

and pdy (they scale like σ
−5=3
T and σ1=3T , respectively) as well

as p̂0, which also varies like σ−5=3T . Thus, pdx and p̂0

decrease while pdy slowly increases as η is increased, which
is why the 3D results do not converge to the 1D values in
the limit of large dispersion. In any case, the optimum gain
length is now about 20 cm, for a 7 mm dispersion.

In practice, it may actually be desirable to select a
dispersion value appreciably larger than the optimum. By
thus moving away from the steep part of the optimization
curve, the sensitivity of the gain length with respect to
variations of η is reduced at a modest cost in terms of FEL
gain. However, operating at or to the right side of the
optimum typically creates an electron beam with a large
ratio of horizontal to vertical size. As has been shown in
simulation studies [3], such a configuration can favor the
growth of multiple FEL modes in the exponential-gain
regime, degrading the transverse coherence of the output
radiation. To study this effect from a theory perspective, we
first select a dispersion η ¼ 1 cm (quite close to the
optimum) and employ the variational solution in order to
ascertain what the ordering of the various FEL modes is
with respect to the power growth rate. For this dispersion
value, pdx ¼ 0.008, pdy ¼ 0.64, p̂0 ¼ 0.02 and the e-beam
aspect ratio σT=σy is about 9. The main results are
presented in Fig. 2, which shows the negative imaginary
part of the scaled growth rate as a function of the detuning
for the 00, 10, 01, and 11 modes. For each mode, the power
growth rate attains a maximum for some negative detuning
value. The corresponding frequency-optimized gain
lengths are, respectively, L00

g ¼ 20.4 cm, L10
g ¼ 21.2 cm,

L01
g ¼ 30.5 cm, and L11

g ¼ 32.3 cm. The other important
observation is that modes with the same n-index (and,
therefore, similar vertical profiles) form groups with
closely spaced growth rates. As expected, most favored
are the modes with n ¼ 0, which are characterized by
Gaussian-like profiles and maximum overlap with the
electron beam.
To check whether or not this pattern holds when more

higher-order modes are included, we use the truncated,
parabolic-like model to obtain equivalent detuning curves
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FIG. 2. Negative imaginary part of the FEL growth rate μ (in
units of 2ρTku) as a function of the detuning Δν (in units of 2ρT)
for various FEL modes (variational data for the η ¼ 1 cm case).
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for the modes already considered plus some additional ones
(namely the 20 and 30 modes, see Fig. 3). We note that the
data from the analytical solution are not identical to the
variational results, as the detuning curves in the former case
are shifted towards the left (i.e., the region of negative ν̂).
This is due to the fact that, even though pdx and p̂0 are
much smaller than unity, pdy is not quite so, with the result
that the present parameters probably near the limit of the
exact model’s applicability. However, we can still verify
that the mode spectrum has the same structure as in the
variational case. Moreover, even though the detuning
curves differ for the two approaches, both the variational
and the exact solution actually give very similar estimates
for the optimized gain lengths. For comparison, we now
obtain L00

g ¼ 20.4 cm, L10
g ¼ 21.2 cm, L20

g ¼ 22.1 cm,
L30
g ¼ 23.1 cm, L01

g ¼ 30.2 cm, and L11
g ¼ 31.8 cm. The

transverse profiles of some of these modes—calculated for
their respective optimized detuning values—are given
in Fig. 4.
Our objective is to arrive at a qualitative estimate of

transverse coherence from the growth rate data presented
above. To begin with, we define the quantities
fmn ¼ expðLsat=Lmn

g Þ= expðLsat=L00
g Þ. These express the

ratio of the gain factor for the mn higher-order mode vs
that of the fundamental at the saturation length Lsat.
Since SASE—which is the operating mode assumed
here—excites a range of frequencies, all the gain lengths
associated with this calculation are optimized with
respect to the detuning ν̂. For an estimate of the saturation
length, we use the relation Lsat ¼ NgL00

g , whereNg ≈ 20 or,
more precisely, Ng ≈ log½Psat=ðPSASE=9Þ�, where Psat ≈
1.6ρTγ0m0c2ðIp=eÞðLT=L00

g Þ2 is the saturation power
and PSASE ≈ ρ2Tγ0m0c3=λr is the SASE power [12]. For
η ¼ 1 cm, this calculation yields Lsat ≈ 4.4 m, which

agrees with the simulated saturation within a 5 m undulator
shown in [3]. Using the values for the mode gain lengths
derived via the analytical solution, we obtain f10 ∼ 0.43,
f20 ∼ 0.19, f30 ∼ 8.5 × 10−2, f01 ∼ 9.7 × 10−4, and
f11 ∼ 4.7 × 10−4. For comparison, the variational values
yield f10 ∼ 0.43, f01 ∼ 8 × 10−4, and f11 ∼ 3.6 × 10−4.
The fmn values—for this as well as subsequent cases—
are summarized in Table II. We clarify that when two values
are listed in an entry, the first one refers to results from the
analytical solution while the second one corresponds to
variational data. When only a single value is listed, it only
refers to results from the exactly-solvable model. Since the
latter approach is the easiest to implement numerically, we
focus on that and use the variational method in order to
validate its results.
The next step is to consider the total power Ptot of the

FEL radiation. This quantity can be expressed as
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FIG. 3. Negative imaginary part of the FEL growth rate μ (in
units of 2ρTku) as a function of the detuning Δν (in units of 2ρT)
for several FEL modes (data from the analytical solution, for the
η ¼ 1 cm case).
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FIG. 4. Mode profiles from the analytical solution (η ¼ 1 cm).
Each profile is calculated for the optimum detuning of the mode.
Since p̂0 ≠ 0, the intensity profiles are asymmetric in the
x-direction.

TABLE II. Saturation and transverse coherence parameters
(single/first entry refers to data from the exact model while
second entry contains variational results).

η ¼ 4 mm η ¼ 1 cm η ¼ 2 cm

σT=σx 3.7 8.9 17.7
L00
g 21.9=21.5 cm 20.4=20.4 cm 23.3=23.3 cm

Lsat 4.5=4.4 m 4.4=4.4 m 5.1=5.1 m
f10 0.04=0.05 0.43=0.43 0.68=0.68
f20 1.4 × 10−3 0.19 0.47
f30 5.6 × 10−5 0.085 0.32
f01 ð2.3=2.6Þ × 10−5 ð9.7=8Þ × 10−4 ð2.0=1.7Þ × 10−3

f11 ð1.1=1.3Þ × 10−6 ð4.7=3.6Þ × 10−4 ð1.5=1.2Þ × 10−3

ζcoh 0.78 0.24 0.13
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Ptot ¼
P

i Pi þ
Pi>j

ij Pij, where Pi ¼ Pð0Þ
i expðz=LiÞ are

terms which give the power due to the individual FEL
modes—temporarily labeled here by the index i—and

Pij ∝ Pð0Þ
ij exp½ðz=2Þð1=Li þ 1=LjÞ� are cross terms.

Moreover, Li is the gain length of the ith mode while

Pð0Þ
i and Pð0Þ

ij are constants. We note that Pð0Þ
ij ≠ 0 unless the

ith and jth mode happen to be power-orthogonal.
As a measure of transverse coherence, we define the
quantity ζcoh ≡ P1=Ptot, which corresponds to the ratio
of the power due to the fundamental mode
(for which i ¼ 1) to the total power. Following [12], we

assume that Pð0Þ
i and Pð0Þ

ij are all of the same order of
magnitude. This is a significant overestimate of the amount
of power associated with the higher-order modes but it
allows us to simplify the analysis by expressing ζcoh solely
in terms of the gain factor ratios introduced previously. In
light of this fact, we expect the resulting estimate of the
degree of transverse coherence to be a rather conservative
one. A more rigorous approach would require the calcu-
lation of the power coefficients through the solution of
the initial value problem [13–16]. Given our approxima-
tions, we can write ζcoh ≈ 1=ð1þ ΔÞ, where Δ ¼P

i>1 ðgi=g1Þ þ
Pi>j

ij

ffiffiffiffiffiffiffiffiffiffiffi
gi=g1

p ffiffiffiffiffiffiffiffiffiffiffi
gj=g1

p
and gi ¼ ez=Li are

the gain factors.
As a specific example, let us assume that we wish

to consider only 3 modes, namely 00, 10, and 20.
Switching to our previous notation, we have
L1 → L00

g , L2 → L10
g , L3 → L20

g , and z → Lsat so Δ ¼
f10 þ f20 þ f1=210 þ f1=220 þ f1=210 f1=220 . Similar expressions
can be derived when more modes need to be retained. In
our case, we only keep modes of the form m0, as it is the
members of this group which predominantly determine the
transverse coherence (this is justified by the much smaller
values of fmn for n > 0). For 5 retained modes
(0 ≤ m ≤ 4), the data from the analytical solution yield
ζcoh ∼ 0.24 (this figure remains practically unchanged
even when more modes are added). These results would
lead us to expect that at least one or two higher-order
modes (10 and 20) would be present in the radiation profile
at saturation. A pattern similar to the one described above
was indeed observed in the TGU simulations of [3] for a
1 cm dispersion.
If we increase the dispersion to 2 cm, the aspect ratio of

the electron beam becomes ∼18. The new detuning curves
are given in Fig. 5. It is evident that the spacing between
modes with the same n-index has decreased. Moreover,
the saturation length increases to 5.1 m (L00

g ¼ 23.3 cm)
and we have f10 ∼ 0.68, f20 ∼ 0.47, f30 ∼ 0.32,
f01 ∼ 2.0 × 10−3, f11 ∼ 1.5 × 10−3 (analytical data, see
Table II), so we expect the transverse coherence to be
further degraded. In fact, we obtain ζcoh ∼ 0.13. To see if
this effect can be mitigated, we next select a dispersion
value smaller than the optimum, in particular η ¼ 4 mm.

The aspect ratio for this reduced dispersion is ∼3.7. This
time, the spacing between the modes is clearly larger than
before, as can be seen in Fig. 6. Furthermore, we have
L00
g ¼ 21.9 cm, Lsat ¼ 4.5 m and the gain factor ratios now

satisfy fmn ≤ f10 ∼ 0.04, yielding ζcoh ∼ 0.78. Thus, it
would appear that the transverse coherence of the output
radiation could be improved with little loss in terms of gain
by choosing a dispersion lower than the optimum value.
The drawback is that this places the operating point at the
steep part of the optimization curve and may increase the
sensitivity of the gain length with respect to η-variations
(not to mention technical issues in realizing the stronger
TGU gradient).
Using the simpler solution from the parabolic-like

model, it is also possible to calculate both the fmn
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FIG. 5. Negative imaginary part of the scaled FEL growth rate μ̂
as a function of the scaled detuning ν̂ for various FEL modes
(data for the η ¼ 2 cm case, derived from the analytical solution).
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FIG. 6. Negative imaginary part of the scaled FEL growth rate μ̂
as a function of the scaled detuning ν̂ for various FELmodes (data
for the η ¼ 4 mm case, derived from the analytical solution).
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quantities and ζcoh as continuous functions of the
dispersion, which allows us to link the three separated
cases discussed above. The results are shown in Fig. 7(a),
where the gain ratios for the first few modes with n ¼ 0 and
the degree of transverse coherence are plotted in terms of η.
Again, the observed tendency is that fmn are significantly
reduced for smaller dispersion (i.e., smaller aspect ratio),
which leads to an improvement in the degree of transverse
coherence, as is evident from the substantial increase
of ζcoh. The corresponding gain loss is relatively modest
(see Fig. 1 or the fundamental gain length values of
Table II) while the saturation length exhibits only a weak
dependence upon the dispersion [Fig. 7(b)]. As a final
remark, we also note that the correlation between radiation
mode content and aspect ratio of the electron beam has also
been observed in simulations of storage ring-based TGU
schemes [17], where making the dispersed beam approx-
imately round caused the output radiation to be dominated
by a single, Gaussian-like mode at saturation, resulting in
good transverse coherence.

IV. CONCLUSIONS

In this paper, we have developed a theoretical formal-
ism that is suitable for investigating the higher-order mode
properties of a TGU-based, high-gain FEL when emit-
tance and focusing effects are negligible (parallel beam
regime). We employ a variational approach along with an
exactly solvable, parabolic-like model in order to obtain
approximate solutions to the eigenmode equation, both for
the fundamental and for the higher-order FEL modes.
These solutions are then used in a study of the transverse
coherence of the radiation from an LPA-based, TGU FEL
example. Specifically, using data about the growth rates of
the various modes, we arrive at a qualitative estimate of
the degree of transverse coherence and study its depend-
ence on the dispersion η. Verifying earlier observations
based on simulation, it is established that a stronger TGU
gradient (i.e., a smaller dispersion and thus a less
excessive horizontal beam size) enhances transverse
coherence. Moreover, it is shown that the dispersion that
yields the minimum gain length typically also results in a
rather degraded transverse coherence. To improve the
latter, dispersion values smaller than the optimum may
have to be considered. This tradeoff between gain and
transverse coherence is likely to be important in determin-
ing the operating parameters of a TGU-based FEL.
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