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The minimum obtainable transverse emittance (thermal emittance) of electron beams generated and
trapped in plasma-based accelerators using laser ionization injection is examined. The initial transverse
phase space distribution following ionization and passage through the laser is derived, and expressions
for the normalized transverse beam emittance, both along and orthogonal to the laser polarization, are
presented. Results are compared to particle-in-cell simulations. Ultralow emittance beams can be generated
using laser ionization injection into plasma accelerators, and examples are presented showing normalized
emittances on the order of tens of nm.
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I. INTRODUCTION

Plasma-based accelerators [1] can produce extremely
large accelerating gradients, enabling compact sources
of high energy particle beams. The characteristic accel-
erating field in a plasma accelerator is on the order of
E0ðV=mÞ≃ 96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðcm−3Þ

p
, with n0 the plasma electron

density, and E0 can be several orders of magnitude larger
than that obtainable in conventional accelerators. In addi-
tion, plasma accelerators produce ultrashort electron beams
with durations < λp=c [2], where λpðμmÞ≃ 3.3 × 1010=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðcm−3Þ

p
is the plasma wavelength. High-quality GeV

electron beams were first demonstrated using an intense
laser driving a plasma wave in a cm-scale plasma, relying
on self-injection for electron beam generation [3]. In the
nonlinear laser-driven bubble regime [4], where the par-
ticles are self-trapped [5], experiments show that an
electron beam with normalized transverse emittance of
ϵn ∼ 0.1 mmmrad can be achieved [6]. High-quality,
laser-plasma-accelerated electron beams could be good
candidates to drive free-electron lasers [7,8] or Thomson
photon sources [9], enabling a new generation of low-cost,
compact light sources. Improved beam phase space char-
acteristics, and, in particular, reduced transverse emittance,
is highly desired for light sources and other applications.
In order to improve the quality and stability of laser-

plasma-accelerated electron beams, controlled injection
methods are actively being pursued, including colliding
pulse injection [10,11], plasma density transitions [12,13],

and ionization injection [14–23]. In conventional ionization
injection into laser-plasma accelerators [16–18], a single
laser pulse is used both for wake generation and ionization
of a high-Z gas. Typically large laser intensities a0 > 1,
with w0 ∼ 10 μm, are needed to excite a sufficiently large
wake so that an electron ionized near the peak intensity
of the laser pulse can be trapped. Here w0 is the laser spot
size and a0 is the peak normalized amplitude of the
laser vector potential. For linear polarization, a20 ¼ 7.3 ×
10−19½λðμmÞ�2I0ðW=cm2Þ with I0 the peak laser intensity
and λ the laser wavelength. Ionization at these large laser
intensities typically results in large transverse momentum
[18], and, hence, large transverse emittance of the injected
particle beam.
The trapped electron beam quality may be improved by

considering independently controlled ionization injection
into a preestablished plasma wake. For example, one may
consider a charged particle beam driving a plasma wake in
the blow-out regime [24], followed by a laser pulse that
ionizes and traps electrons in the wake of the beam [20,21].
Since field ionization by the beam driver can be small, this
reduces the intensity required for the ionization laser, and
simulations of this method indicate that ultralow emittance
beams can be generated [20,21]. An all-optical method of
reducing the ionization laser intensity has also been
proposed that relies on using two lasers of different colors
[22]. In the two-color ionization injection method, a long-
wavelength pump pulse, with large ponderomotive force
and small peak electric field, excites a wake without fully
ionizing a high-Z gas. A short-wavelength injection pulse,
with small ponderomotive force and large peak electric
field, copropagating and delayed with respect to the pump
laser, ionizes a fraction of the remaining bound electrons at
a trapping phase of the plasma wave, generating an electron
beam that is accelerated by the wake. Numerical modeling
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indicates that two-color ionization injection can produce
electron beams with normalized emittances of the order
∼10 nm [22]. An illustration of the basic geometry of the
two-color ionization injection method is shown in Fig. 1.
In this work we address the fundamental limit of the

obtainable beam emittance, the thermal emittance, from
laser ionization injection methods in plasma-based accel-
erators. These results are independent of the driver of the
plasma accelerator (e.g., laser or particle beam). In par-
ticular, it is shown that the thermal emittance of the beam at
injection, in the plane of laser polarization, is approxi-
mately ϵx ≃ ð3π= ffiffiffi

2
p Þðre=α4ÞðUI=UHÞ−3=2wia2i =λi, where

re is the classical electron radius, α is the fine structure
constant, UI is the ionization potential (normalized to
UH ≃ 13.6 eV), and a2i , wi, and λi are the normalized
intensity, spot size, and wavelength of the ionization
injection laser pulse, respectively.
This paper is organized as follows. In Sec. II we

describe and calculate the spatial distribution of electrons
created by laser tunneling ionization. The initial distri-
bution in longitudinal position determines the initial
transverse momentum of the electrons obtained from
the laser quiver motion in the plane of laser polarization.
The initial phase space distribution of the ionized electron
beam is compared to particle-in-cell (PIC) simulations.
Section III describes the effect of the ponderomotive
force of the ionization laser. It is shown that, since the
momentum gain via the ponderomotive force is correlated
to the transverse position of the electron at ionization, the
ponderomotive force does not contribute to the initial
thermal emittance of the beam. However, the laser ponder-
omotive force can contribute to the saturated emittance

after phase mixing. In Sec. IV, the thermal emittance from
ionization injection is derived. Interaction with the plasma
wave will typically lead to phase mixing and emittance
growth. Expressions for the transverse emittance, after
phase mixing, along and orthogonal to the laser polari-
zation direction are derived. These results are compared to
3D PIC simulations of the ionization injected electron
beam using two-color ionization injection. Conclusions
are presented in Sec. V.

II. ELECTRON PHASE SPACE DISTRIBUTION
FROM LASER TUNNELING IONIZATION

The laser ionization process determines the initial
electron phase space distribution. For a linearly polarized
laser field, the ionization rate in the tunneling limit,
assuming the static electric field approximation, is [25]

W ¼ 4ωaC
ðUI=UHÞð6n�−3jmj−1Þ=2

jE=Eaj2n�−jmj−1 exp

�
−
2ðUI=UHÞ3=2

3jE=Eaj
�

ð1Þ
where ωa ¼ α3c=re, UI is the ionization potential with
UH ¼ mec2α2=2 ¼ 13.6 eV the ionization potential of
hydrogen, E is the laser field, and Ea¼e=r2B≃
0.5TV=m the atomic field, with rB ¼ re=α2 the Bohr
radius, re ¼ e2=mec2 the classical electron radius, and
α ¼ e2=ℏc the fine structure constant. Here m is the
projection of the angular momentum quantum number l
on the electric wave field and n� ¼ ZðUH=UIÞ1=2 is the
effective principal quantum number, where Z is the ion
charge number after ionization. The constant C is a
function of the atomic quantum numbers (determined by
the atomic wave function),

C¼ 24n
�−4−2jmj

n�Γðn�þ l�þ1ÞΓðn�− l�Þ
ð2lþ1ÞðlþjmjÞ!
jmj!ðl− jmjÞ! ; ð2Þ

where l� ¼ n�0 − 1 is the effective orbital quantum
number, with n�0 the effective principal quantum number
of the ground state. For a hydrogen-like atom, C ¼ 1.
Equation (1) will be valid for small Keldysh parameter,
γK ¼ ðUI=2UpÞ1=2 < 1, where Up ¼ mec2a2i =4 is the
electron oscillation energy, with ai ¼ eAi=mec2 the peak
normalized laser vector potential of the linear-polarized
ionization laser. For γK > 1 multiphoton ionization will
be dominant. Ionization injection into a plasma wakefield
can be achieved using multiphoton ionization. However, for
typical laser-plasma parameters γK < 1, and in the follow-
ing we consider laser tunneling ionization to be the
dominant ionization mechanism with γK < 1.
The distribution of ionized electrons can be calculated

from the laser field using the ionization rate Eq. (1).
Consider the laser field used for ionization injection to
have the form

FIG. 1. Illustration of (two-color) laser-ionization injection
from a 3D PIC simulation: a drive beam (a circular-polarized,
5 μm-wavelength laser pulse with a0 ¼ 1.17, 92 fs FWHM
duration, and spot size w0 ¼ 36 μm) is propagating in the ẑ
direction in a plasma of density n0 ¼ 2 × 1017 cm−3 doped with a
high-Z gas (Krypton), and generates a plasma wave (wake), Ez.
An injection laser pulse (linear-polarized with λi ¼ 0.4 μm,
ai ¼ 0.135, 16 fs FWHM duration, and spot size wi ¼ 5 μm)
is copropagating and delayed with respect to the beam driving the
plasma wave such that ionized electrons (Kr8þ to Kr9þ) are
trapped in the wake forming a trailing accelerated electron bunch.
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Ei ¼ Ep expð−r2=w2
i Þ cosðkiξÞ; ð3Þ

where ξ ¼ z − ct is the comoving variable, wi is the laser
spot size, ki ¼ 2π=λi, with λi the laser wavelength, and
Ep is the peak electric field of the laser Ep½TV=m�≃
3.21ai=λi½μm�. From Eq. (1), the ionization probability is
largest near the peaks of the laser field where r ≪ wi and
jkiξ − jπj ≪ 1, with j an integer. Here we assume that
ionization occurs near the peak of the laser envelope (laser
envelope effects will be discussed in Sec. II B). Assuming
the charge state of the gas/ions is not fully ionized (a fully
ionized gas will be discussed in Sec. II D), near the peak of
the laser electric field,

EL ≃ Ep½1 − ðr=wiÞ2 − ðkiξ − jπÞ2=2�; ð4Þ

and, using Eq. (1), the ionization rate is

W ≈Wp exp
�
−
ðr=wiÞ2
σ2ψ

�
exp

�
−
ðkiξ − jπÞ2

2σ2ψ

�
: ð5Þ

In Eq. (5), Wp is approximately the tunneling ionization
rate at the peak of the laser field and the rms spread in
injection laser phase is

σψ ¼ Δ½1 − ð2n� − jmj − 1ÞΔ2�−1=2; ð6Þ

with

Δ ¼
�
3

2

Ep

Ea

�
1=2

�
UH

UI

�
3=4

¼
�
3πreai
α4λi

�
1=2

�
UH

UI

�
3=4

:

ð7Þ

The rms spread in laser phase position of the ionized
electrons about the field peak, σψ , will result in a finite
transverse momentum spread of the electrons after exiting
the laser, as discussed in Sec. II A.
The parameterΔ2 is the normalized laser field amplitude.

Ionization injection is optimized for field amplitudes
near the threshold for ionization. For short-pulse lasers,
the field amplitude required to ionize an atomic state can
be estimated by considering the laser field amplitude
where the ionization rate (probability) over a laser period
is of order unity: ðλi=cÞWp ∼ 1. For typical parameters
of interest ðλi=cÞWp ∼ 1 for Δ2 ≪ 1. For example,
ðλi=cÞWp¼1 requires Δ2≃0.07 for Heþ (UI ¼24.6 eV)
with λi ¼ 0.8 μm, ðλi=cÞWp ¼ 1 requires Δ2 ≃ 0.1 for
N6þ (UI ¼ 522 eV) with λi¼0.8 μm, and ðλi=cÞWp ¼ 1

requires Δ2 ≃ 0.04 for Kr9þ (UI ¼ 230 eV) with λi ¼
0.4 μm. Hence, the limit Δ2 ≪ 1 is satisfied at the ioniza-
tion threshold and σψ ≃ Δ < 1 (i.e., ionization occurs near
the field maxima).

A. Intrinsic transverse momentum spread

We make the semiclassical assumption that the initial
transverse momentum of the electrons is zero, with respect
to the atom, at the moment of their ionization. Assuming an
underdense plasma and kiwi ≫ 1, transverse canonical
momentum conservation [1] implies ux − ax ≃ −axðtiÞ,
where ux is the electron momentum normalized to mec,
ti is the ionization time, and the x direction is in the plane
of laser polarization. After exiting the ionization laser, the
transverse momentum of the electron is given by the laser
vector potential at ionization

ux ¼ −axðtiÞ≃−ai sin ½kiξðtiÞ�e−rðtiÞ2=w2
i ; ð8Þ

where jkiξðtiÞ − jπj ≪ 1 is near the peak of the laser
electric field at the time of ionization ti. Ionization away
from the peak of the laser electric field results in transverse
momentum along the direction of laser polarization after
the electron exits the laser. The rms spread in transverse
momentum σpx

¼hu2xi1=2¼aihsin2ðkiξÞexpð−2r2=w2
i Þi1=2

(in the laser polarization plane) is

σpx
¼ ai

�
e−σ

2
ψ sinhðσ2ψÞ
1þ 2σ2ψ

�1=2

≃ σψ ð1 − 3σ2ψ=2Þai; ð9Þ

where σψ is the rms spread in laser phase position of the
ionized electrons about the field peak Eq. (6). Equation (9)
includes the effects of the nonlinear laser phase dependence
on momentum and off-axis ionization of electrons. For
σψ ≪ 1,

σpx
≃ aiΔ≃

�
3πre
α4λi

�
1=2

�
UH

UI

�
3=4

a3=2i : ð10Þ

The rms momentum spread, in the laser polarization plane,
has a nonlinear dependence on the ionization laser intensity
σpx

∝ a3=2i . Note that the derivation of the differential
ionization rate with respect to the initial photoelectron
momentum (see Ref. [25]) yields the rms momentum spread
along the direction of the field (to lowest order in γK ≪ 1 for
a plane electromagnetic wave) of ½3ℏω=ð2mec2Þ�1=2γ−3=2K ¼
aiΔ, in agreement with Eq. (10).
Equation (8) assumes the electrons are ionized from

atoms at rest. The ion temperature may be neglected
provided the ion velocity βi ¼ vi=c is small compared to
σpx, where βi ≃ ð2kBTi=Mic2Þ1=2, withMi the ion mass, Ti
the ion temperature, and kB the Boltzmann constant. The
condition βi ≪ σpx is typically well satisfied for parameters
of interest.

B. Laser envelope effects

Since the rate of laser ionization grows exponentially
about the laser electric field peak [cf. Eq. (1)], laser
envelope effects manifest as small corrections to the
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distribution of ionized electrons. Consider a Gaussian laser
envelope along the propagation direction such that

Ei ¼ Epe−ξ
2=2L2

i cos ðkiξÞ; ð11Þ

where Li is the rms length of the laser field envelope.
Assuming the ionization occurs near the peak of the laser
envelope ξ2 ≪ L2

i (and the peaks of the laser electric field),
such that Ei ≃ Epð1 − ξ2=2L2

i Þ, the rate of ionization at the
field peak located at ξ in the laser envelope is

W ¼ Wp exp ½−ξ2=ð2Δ2L2
i Þ�: ð12Þ

The rate of ionization away from the laser envelope peak
decreases, and the distribution has rms length LiΔ. Figure 2
shows the normalized ionization rate (solid black line),
the laser envelope (dotted blue line), and Eq. (12) describ-
ing the reduced rate of ionization owing to the laser
envelope (dashed red line), for a Gaussian envelope with
the parameters kiLi ¼ 64 and Δ ¼ 0.2. As illustrated in
Fig. 2 the ionization rate decreases exponentially over a
fraction of the laser envelope.
Ionization that occurs at a field peak away from the peak

of the laser envelope will be at a smaller laser field aðξÞ,
resulting in a correspondingly smaller injection laser phase
region σψ ∝ ½aðξÞ�1=2. Assuming kiLiΔ ≫ 1, and perform-
ing an average over the field peaks weighted by the local
ionization rate, the rms spread in the laser phase region of
the ionized electrons is

σψ ¼ Δ½1þ ð2n� − jmj − 1ÞΔ2=2 − Δ2=4�; ð13Þ

where the last term of the right-hand side of Eq. (13) is due
to laser envelope effects (reducing the injection phase

region). Notice that the correction due to the laser envelope
is independent of the laser envelope length Li, since the
rms length of the ionization region is proportional to the
envelope length LiΔ, and Eq. (13) is valid for any Gaussian
envelope length, provided kiLiΔ ≫ 1.
Including envelope effects the rms spread in trans-

verse momentum after exiting the laser is σpx
¼

⟪aσψð1 − 3σ2ψ=2Þ⟫, where the average, denoted by ⟪ · ⟫,
is over the field peaks weighted by the local ionization rate.
The Gaussian laser envelope reduces the rms transverse
momentum of the ionized electrons because laser phase
fronts away from the peak have lower field amplitude and,
hence, the electrons are ionized over a narrower range of
laser phases. Performing the weighting yields,

σpx
¼ aiΔ

�
1 −

3

4
Δ2 −

3

2
Δ2 þ ½n� − ðjmj þ 1Þ=2�Δ2

�
;

ð14Þ

where the second, third, and fourth terms in the brackets are
the effects of the laser envelope, the nonlinear dependence
of momentum on phase position and off-axis ionization
[cf. Eq. (9)], and the nonexponential dependence on the
ionization rate [cf. Eq. (6)], respectively.
Figure 3 shows the rms transverse momentum distri-

bution versus ionization laser intensity for two cases:
(a) conventional single-pulse ionization injection using a
high intensity laser pulse (cf. parameters used in
Ref. [18]), and (b) two-color ionization injection using
a low intensity laser pulse (cf. parameters used in
Ref. [22]). Figure 3(a) is for an ionization laser with λi ¼
0.8 μm and FWHM duration 40 fs, ionizing a nitrogen
gas, N5þ → N6þ (UI ¼ 552 eV), in a background plasma
of density 1.7 × 1018 cm−3 (for this case Δ ≈ 0.3), and
Fig. 3(b) is for an ionization laser with λi ¼ 0.4 μm and
FWHM duration 16 fs, ionizing a krypton gas, Kr8þ →
Kr9þ (UI ¼ 230 eV), in a background plasma of density
2 × 1017 cm−3 (for this case Δ ≈ 0.2). The points in
Fig. 3 were obtained from two-dimensional (2D) PIC
simulations with the laser polarization out of the simu-
lation plane: Figure 3(a) used the PIC code VLPL [26]
(implementing the ionization algorithm Ref. [27]), and
the Fig. 3(b) used the PIC code WARP [28] (implementing
the ionization algorithm Ref. [27]). For large laser
intensities a ∼ 1 [as in Fig. 3(a)], the 2D PIC simulation
with the laser polarization out of the plane allows
separation of the effects of the quiver motion and the
ponderomotive force (the effect of the ionization laser
ponderomotive force is discussed in Sec. III). The dashed
curves show Eq. (14) for each case. Excellent agreement
between the PIC modeling and the analytic expression
Eq. (14) is achieved for a range of laser intensities,
different laser wavelengths, and for different gases.

-0.4 -0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

ξ/L
i

FIG. 2. Solid black curve is the normalized ionization rate
for a laser field having a Gaussian envelope with the para-
meters kiLi ¼ 64 and Δ ¼ 0.2. The rms width of each peak is
σξ ¼ σψ=ki ≃ Δ=ki. Dashed red curve shows the longitudinal
region of ionization due to the laser envelope, with rms width
σξ ¼ LiΔ. Dotted blue line is the normalized laser field envelope
with rms length σξ ¼ Li.
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C. Transverse electron distribution after ionization

Equation (5) predicts that the rms spread in transverse
position of ionized electrons is

σx ¼ σy ¼ wiσψ=
ffiffiffi
2

p
; ð15Þ

where σψ , including laser envelope effects, is given by
Eq. (13). In the limit Δ2 ≪ 1, σx ¼ σy ≃ wiΔ=

ffiffiffi
2

p
. As

expected, the transverse size of the distribution of ionized
electrons is proportional to the laser spot size, σy ∝ wia

1=2
i .

Figure 4 shows an example of the rms transverse size of the
distribution of electrons ionized versus the laser spot size.
The points in Fig. 4 are simulations performed using the
PIC code WARP, and the dashed line is Eq. (15). For this
example we are considering the two-color ionization injec-
tion geometry [22] with an ionization laser ai¼0.135,
and all other parameters as in Fig. 3(b). For these parameters
Δ≃ 0.2. There is excellent agreement between the

expression Eq. (15) and the numerical modeling of the
ionization.

D. Fully ionized gas

As the ionization laser propagates it generates plasma
electrons at the rate

∂tðn=ngÞ ¼ ½1 − ðn=ngÞ�W; ð16Þ

where ng is the atomic gas density (of the ions in the
charge state used for ionization trapping). The initial
distribution of electrons will be given by the ionization
rate distribution Eq. (5), provided that the ion charge state
is not fully ionized before reaching the peak field of the
laser envelope. Figure 5 shows the solution to Eq. (16) for
the fractional ionization n=ng for (a) ai ¼ 0.14, where the
peak field of the laser is below that required to fully ionize
on axis, and (b) ai ¼ 0.2, where the peak field of the
laser is sufficiently high to fully ionize before reaching the
laser envelope peak. Here we are considering ionization
of krypton gas, Kr8þ → Kr9þ (UI ¼ 230 eV), using a
0.4 μm laser with length kiLi ¼ 32. As Fig. 5 illustrates,
the distribution of ionized electrons is altered from a
Gaussian form if the charge state is fully ionized before
reaching the peak of the laser.
If the atomic state is fully ionized (n=ng ≃ 1) after the

laser envelope reaches some threshold field before the
laser envelope peak af < ai, then we expect the transverse
momentum of the ionized electrons to saturate at, using
Eq. (10),

σpx
≃

�
3πre
α4λi

�
1=2

�
UH

UI

�
3=4

a3=2f ; ð17Þ

for af < ai. For the parameters of Fig. 5 [and Fig. 3(b)], the
gas is fully ionized for the state Kr8þ → Kr9þ at af ≃ 0.15,

a
i

a
i

σ px
σ px

(b)

1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.12 0.13 0.14 0.15
0.00

0.01

0.02

0.03

0.04

0.05

FIG. 3. The rms transverse momentum distribution versus
ionization laser intensity for laser ionization injection using
(a) a high intensity laser pulse, with λi ¼ 0.8 μm and FWHM
duration 40 fs, ionizing a nitrogen gas, N5þ→N6þ (UI ¼552 eV),
in a background plasma of density 1.7 × 1018 cm−3, and (b) a low
intensity laser pulse, with λi ¼ 0.4 μm and FWHM duration 16 fs,
ionizing a krypton gas, Kr8þ → Kr9þ (UI ¼ 230 eV), in a back-
ground plasma of density 2 × 1017 cm−3. The points are obtained
from PIC simulations, and the dashed curves are Eq. (14).

5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

σ y 
(μ

m
)

w
i
 (μm)

FIG. 4. The rms width of the transverse distribution of ionized
electrons versus laser spot size wi using a laser with ai ¼ 0.135
and λi ¼ 0.4 μm ionizing a krypton gas, Kr8þ → Kr9þ
(UI ¼ 230 eV). The points are PIC simulations using WARP,
and the dashed line is the analytic expression Eq. (15).
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and Eq. (17) yields σpx
≃ 0.34. Figure 6 shows the rms

transverse momentum σpx
(blue points) versus normalized

laser field amplitude ai, after interaction with the ionization
laser pulse calculated using the PIC code WARP in 2D with
the laser polarization out of the simulation plane. Figure 6
considers an ionization laser with λi ¼ 0.4 μm, and FWHM
duration 16 fs, ionizing a krypton gas in a background
plasma of density 2 × 1017 cm−3. The blue dashed curve
(for ai < af) is Eq. (14), and the blue dotted line (for
ai > af) is the saturated value Eq. (17).
As Fig. 5(b) illustrates, the transverse distribution of

ionized electrons will be approximately uniform, out to
the threshold field amplitude for fully ionizing the gas:
af ¼ ai expð−x2f=w2

i Þ. Therefore we expect the initial rms
transverse size of the distribution to be approximately

σx ≃ xf=
ffiffiffi
3

p
¼ wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðai=afÞ=3

q
: ð18Þ

Figure 6 shows the rms width of the transverse distribution
of ionized electrons (red circles) normalized to the laser
spot size, σx=wi, versus normalized laser field amplitude
ai calculated using the PIC code WARP. The dashed red
curve (for ai < af) is Eq. (15), and the dotted red curve
(for ai > af) is Eq. (18). There is good agreement between
the simple model and the PIC simulation results.
To minimize the emittance of the injected beam, it is

advantageous to operate below or at the threshold for fully

ionizing the charge state, ai ≲ af, such that the transverse
momentum and beam size are reduced. Further increasing
the ionization laser intensity will increase the beam
emittance without significantly increasing the trapped
charge.

E. Trapped charge

For a sufficiently large plasma wave amplitude, an
electron ionized at rest at the proper wake phase will be
trapped in the plasma wave. This condition may be
expressed as [18]

1þ ϕmin − ϕðψ iÞ ≤ γ−1p ½1þ axðψ iÞ2�1=2; ð19Þ

where ψ i ¼ kpξ is the phase position in the plasma wake-
field of the ionized electron, with k2p ¼ 4πnere and ne the
electron plasma density, γp is the phase velocity of the
plasma wave, and ϕ is the potential of the wakefield
(normalized to mec2=e), with ϕmin the minimum amplitude
of the potential. In the limits γ2p ≫ 1 and peak accelerating
wakefield Em ≫ mec2kp=e ¼ E0, ϕmin ≃ −1þ ðE0=EmÞ2
[1], and the wake phase region where trapping occurs is
given by ϕðψ iÞ ≥ ðE0=EmÞ2.
For an ionization laser pulse ax located at the proper

phase ψ i of a plasma wave of sufficient amplitude
ϕmin, given by Eq. (19), electrons ionized at rest will be
on trapped orbits, and the amount of trapped charge
will be determined by the number of ionized electrons:
Nt ¼ 2πσxσylifing, where fi ¼ n=ng is the ionization
fraction (cf. Sec. II D) and li is the length of the high-Z
gas region. Here we assume the length of the high-Z gas

FIG. 5. Fractional ionization n=ng for (a) ai ¼ 0.14 and
(b) ai ¼ 0.2. The laser field has a wavelength of 0.4 μm and a
Gaussian longitudinal envelope with length kiLi ¼ 32.
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FIG. 6. The rms transverse momentum of the ionized electron
distribution, after the ionization laser pulse, σpx

(blue points, left
vertical axis) and the rms size of the transverse spatial distribution of
ionized electrons normalized to the laser spot sizeσy=wi (red circles,
right vertical axis) obtained from PIC simulations. The ionization
laser has λi ¼ 0.4 μm, and FWHM duration 16 fs, ionizing a
krypton gas, Kr8þ → Kr9þ (UI ¼ 230 eV), in a background
plasma of density 2 × 1017 cm−3. The blue dashed curve is
Eq. (14), and the blue dotted line is the saturated value Eq. (17).
The dashed red line is Eq. (15), and the red dotted line is Eq. (18).
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region is shorter than the ionization-laser Rayleigh range,
li < ZRi ¼ πw2

i =λi. If li ≳ ZRi, then the total charge will
be limited by the diffraction of the ionization laser.
Assuming the high-Z gas is not fully ionized by a laser

pulse with a Gaussian transverse profile, σx and σy are
given by Eq. (15), and

Nt ≃ πw2
ilifingΔ2; ð20Þ

for li < ZRi andΔ2 ≪ 1. For example, forΔ ¼ 0.2, fi ≈ 1,
and a Gaussian laser with spot size wi ¼ 5 μm propagating
in a gas density of ng ¼ 2 × 1017 cm−3, the trapped charge
per distance propagated is eNt=li ≃ 57 pC=mm. A higher
charge can be obtained by extending the interaction
distance li; however, this will result in a spread in injection
times li=c for the head and tail of the beam and, hence, a
larger energy spread is produced. Equation (20) assumes all
the ionized electrons are trapped, and is valid when the
ionization laser pulse duration is contained in the wake
phase region where electrons ionized at rest are trapped
[defined by Eq. (19)] and when the trapped charge is
sufficiently small such that beam loading effects may be
neglected.

III. TRANSVERSE MOMENTUM FROM
PONDEROMOTIVE FORCE
OF IONIZATION LASER

Section II A described the intrinsic momentum spread
in the plane of the laser owing to the quiver motion. In
addition to this momentum originating from ionization
off-peak of the laser electric field, an electron ionized off
axis, with respect to the laser propagation discretion, will
experience the transverse ponderomotive force of the
ionization laser [1]: F⊥=mec2 ¼ −∇⊥γ⊥, where γ2⊥ ¼ 1þ
a2i =2 and linear polarization is assumed. For a Gaussian
transverse laser profile, the ponderomotive force is

F⊥
mec2

¼ a2i
γ⊥

x⊥
w2
i
e−2r

2=w2
i : ð21Þ

If the electron is ionized near the peak of the laser, r ≪ wi,
the normalized momentum gained from the laser ponder-
omotive force is approximately

u⊥PMF ≈ ð ffiffiffi
π

p
Li=2Þ

a2i
w2
i γ⊥

x⊥: ð22Þ

Equation (22) assumes wi=Li ≫ u⊥ PMF, i.e., the ionized
electron slips through the laser before being ponderomo-
tively expelled transversely.
In the transverse plane orthogonal to the laser polari-

zation, electrons are ionized off axis with an rms width
in initial transverse position given by Eq. (15), σy ¼
σψwi=

ffiffiffi
2

p ≃ wiΔ=
ffiffiffi
2

p
. Hence the rms momentum gained

from the ponderomotive force of the laser is

σpy
≈
� ffiffiffi

π

8

r
Li

wi

�
a2i
γ⊥

Δ; ð23Þ

for Δ2 ≪ 1.
The transverse momentum gained from the quiver

motion in the plane of laser polarization (proportional
to the longitudinal laser phase position at ionization) and
the transverse position at ionization are uncorrelated
huxxi ¼ 0. Therefore, using Eq. (14), the rms momentum
gained in the plane of laser polarization, including the
ponderomotive kick from the ionization laser σpx

¼
hðux þ ux PMFÞ2i1=2, is

σpx
¼ aiΔ

�
1þ

�
2n� − jmj − 11

2

�
Δ2 þ π

8

�
Li

wi

ai
γ⊥

�
2
�
1=2

;

ð24Þ

for Δ2 ≪ 1. The momentum gained from the transverse
ponderomotive force in the plane of polarization will be an
important contribution to the rms momentum spread for
parameters such that ðLi=wiÞai=γ⊥ ∼ 1.

IV. EMITTANCE

The nature of the laser tunneling ionization mechanism
sets a minimum (intrinsic) initial injected normalized beam
emittance after exiting the ionization laser. In the following
we assume that the ionization laser is located in the plasma
wave such that ionized electrons reside on trapped and
focused orbits. The momentum gained from the ponder-
omotive force of the ionization laser will not contribute to
the initial transverse rms emittance (i.e., the thermal
emittance) since the momentum gained from the ponder-
omotive force is correlated to the transverse position: from
Eq. (22),

hu⊥ PMFx⊥i ¼
� ffiffiffi

π
p
2

Li

w2
i

a2i
γ⊥

�
hx2⊥i: ð25Þ

In the transverse plane orthogonal to the laser polarization,
the initial rms emittance after passage through the ioniza-
tion laser is ϵ2y ¼ σ2py

σ2y − hyuy PMFi2 ¼ 0.
In the plane of laser polarization, the initial rms transverse

normalized emittance ϵx¼½σ2xσ2px
−hxðuxþuxPMFÞi2�1=2 is

ϵx ≃ aiwiΔ2=
ffiffiffi
2

p
¼

�
3πreffiffiffi
2

p
α4

��
UH

UI

�
3=2 wia2i

λi
; ð26Þ

for Δ2 ≪ 1. Equation (26) is the thermal emittance of the
beam after ionization and passage through the ionization
laser pulse, in the laser polarization plane, and is a function of
the ionization potential of the gas, the laser wavelength,
amplitude, and spot size. Note that, for Δ≲ 1, higher-order
corrections to the emittance to order OðΔ3Þ may be included
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by retaining the corrections owing to laser envelope, the
nonlinear dependence of momentum on phase position
[cf. Eq. (9)], and the nonexponential dependence on the
ionization rate [cf. Eq. (6)], as discussed in Sec. II.
As the trapped electrons exit the ionization laser,

they begin to rotate in phase space determined by the
plasma wakefield. A detailed discussion of the dynamics of
electrons in a plasma wakefield is presented in Ref. [23]. In
the following we will consider a linear focusing force
provided by the plasma wakefield, with the betatron wave
number kβ related to the focusing force of the plasma
wakefield: γk2βr≃ kpðEr − BθÞ=E0. In the bubble or blow-
out regime, where an ion cavity is formed by the driver,
kβ ¼ kp=

ffiffiffi
2

p
initially (i.e., for γ ≃ 1).

In the plasma wakefield, the initial rms betatron ampli-
tude of the electron beam is

rβ ¼ ðσ2⊥ þ σ2p⊥=k
2
βÞ1=2: ð27Þ

For a matched beam kβσ⊥ ¼ σp⊥ , and rβ ¼
ffiffiffi
2

p
σ⊥ ≈ wiΔ,

for Δ2 ≪ 1. In general, the ionized injection beam will
be mismatched to the plasma wakefield focusing forces
and phase mixing will result in emittance growth [23]. As
the electrons are accelerated, the betatron wave number
decreases kβ ∝ γ−1=2. Provided the acceleration is adiabatic
with respect to the betatron frequency, the betatron ampli-
tude decreases rβ ∝ γ−1=4, and the normalized emittance
will be preserved during acceleration: ϵ⊥ðγ ∼ 1Þ ≈ ϵ⊥ðγÞ.
The final transverse emittance, saturated after phase mixing
via phase-space rotation, is

ϵ⊥ ¼ kβr2β=2 ¼ ðkβσ2⊥ þ σ2p⊥=kβÞ=2: ð28Þ

Consider a small amplitude ionization injection pulse
a2i ≪ 1 such that the ponderomotive kick may be
neglected. In the limit Δ2 ≪ 1, using Eqs. (10) and (15),
Eq. (28) predicts the emittance in the plane of laser
polarization after saturation via phase mixing is

ϵx ¼ ðk2βw2
i þ 2a2i Þ

Δ2

4kβ
: ð29Þ

For kβ ≈ σpx
=σx, or ai ≈ ðkβwiÞ=

ffiffiffi
2

p
, the beam is injected

approximately matched to the focusing forces of the
wakefield, and the intrinsic thermal emittance after ioniza-
tion injection is preserved, i.e., Eq. (29) reduces to Eq. (26).
Matched injection can be achieved, for example, using
the two-color ionization injection scheme [22], as discussed
in Sec. IVA. The emittance out of the plane of laser
polarization, after saturation via phase mixing, is

ϵy ¼ kβw2
iΔ2=4: ð30Þ

Note that, if the high-Z gas is fully ionized (e.g., as for the
parameters considered in Ref. [23]) the saturated emittance

is Eq. (28) with σp⊥ and σ⊥ given by Eqs. (17) and (18),
respectively.
In the limit of sufficiently small laser amplitude such that

ai ≪ kβwi=2, the emittance is dominated by the transverse
spatial distribution of the ionized electrons and the initial
transverse momentum may be neglected. In this regime
the transverse emittance will be approximately symmetric
ϵy ≃ ϵx. Also in this limit, we expect a linear relation
between the emittance and trapped charge; using Eqs. (20)
and (30), the trapped charge is Nt ¼ ð4πlifing=kβÞϵy.

A. Case: Two-color ionization injection

In the two-color ionization injection method [22], a long-
wavelength pump pulse, with large ponderomotive force
and small peak electric field, excites a wake without fully
ionizing a high-Z gas. A short-wavelength injection pulse,
with small ponderomotive force and large peak electric
field, copropagating and delayed with respect to the pump
laser, ionizes a fraction of the remaining bound electrons at
a trapping phase of the plasma wave, generating an electron
beam that is accelerated by the wake. Figure 1 shows an
illustration of the two-color ionization injection geometry
obtained from a 3D PIC simulation using the code WARP.
Using two-color ionization injection, a matched beam

can be injected in the plane of laser polarization. For
example, consider the two-color ionization case show in
Fig. 1 where a plasma wake excited by a circular-polarized,
5 μm-wavelength laser pulse with a0 ¼ 1.17, 92 fs FWHM
duration, and spot size w0 ¼ 36 μm, propagating in a
plasma of density n0 ¼ 2 × 1017 cm−3 (λp ¼ 75 μm)
doped with krypton gas. The pump pulse ionizes the
krypton to Kr8þ without trapping electrons. A linear-
polarized injection laser pulse with ai ¼ 0.135,
wi ¼ 5 μm, λi ¼ 0.4 μm, and 16 fs FWHM duration, is
delayed with respect to the pulse driving the plasma wave
such that ionized electrons Kr8þ to Kr9þ are trapped in the
wake. For these parameters kβwi=

ffiffiffi
2

p
≈ ai, and Eq. (26)

predicts the (matched) emittance is ϵx ≃ 0.02 μm. Figure 7
shows the transverse phase space in the plane of laser
polarization of the approximately matched beam obtained
from a 3D PIC simulation for these parameters using the
code WARP. The numerically calculated normalized trans-
verse emittance for the simulated beam shown in Fig. 7
is ϵx ≃ 0.021 μm, in good agreement with Eq. (26). The
dashed curve in Fig. 7 is the orbit in transverse phase space
of an electron with initial radial position of

rβ ¼ ½1þ 2a2i =ðkβwiÞ2�1=2wiΔ=
ffiffiffi
2

p
: ð31Þ

The matched injection shown in Fig. 7 is for the beam
transverse phase space in the plane of laser polarization.
Figure 8 shows the transverse phase space for the same
beam in the transverse plane orthogonal to the laser

C. B. SCHROEDER et al. Phys. Rev. ST Accel. Beams 17, 101301 (2014)

101301-8



polarization. In the transverse plane orthogonal to the laser
polarization the injected beam is mismatched to the wake
focusing forces. The phase space distribution is due to the
fact that the high-Z gas region (where ionization injection
occurs) in the simulation is limited to li ¼ 50 μm. As the
laser propagates through the high-Z gas region, electrons
are ionized and trapped, while earlier trapped electrons
rotate in phase space. The total betatron phase advance of
the electrons injected first compared to the final injected
electrons (after li propagation of the laser) is Δψβ ≈ kβli.
For Δψβ < π the transverse phase space ellipse is only
partially filled, as illustrated in the example shown in Fig. 8.
In this case Δψβ < π, the emittance will be reduced by a
factor of ½1 − sin2ðΔψβÞ=ðΔψβÞ2�1=2 [23]. For the param-
eters of Fig. 8, the reduced emittance,

ϵy ≃ ðkβw2
iΔ2=4Þ

�
1 −

sin2ðkβliÞ
ðkβliÞ2

�
1=2

; ð32Þ

is ϵy ≃ 0.01 μm. The rms transverse emittance of the PIC
generated beam shown in Fig. 8 is ϵy ≃ 0.011 μm, in
agreement with Eq. (32) with li ¼ 50 μm. Following the
short injection region kβli < π, the particle orbits will
undergo betatron motion (and acceleration) in the fields of
the wake. Phase mixing will occur, due to energy spread
and pulse length effects, and, after a sufficiently large
number of betatron periods, the projected emittance will
typically saturate to Eq. (30).
Figure 9 shows the normalized emittance evolution in the

laser polarization plane (ϵx, black curve) and orthogonal
to the laser polarization plane (ϵy, red curve). For these
parameters (same as Figs. 1, 7, and 8) the emittance of the
injected beam is matched in the plane of laser polarization
ϵx ≈ constant. The emittance in the plane orthogonal to the
laser polarization ϵy grows until the end of the high-Z gas

region (li ¼ 50 μm), then reduces due to evolution of
the betatron frequency as the electrons are accelerated
(kβ ∝ γ1=2) [23] (betatron phase mixing has not fully
occurred over 1 mm of propagation). The trapped charge
for the beam shown in Figs. 7 and 8 is Nt ≃ 0.35 pC,
in good agreement with the prediction of Eq. (20), with
li ¼ 50 μm and n=ng ≈ 0.5.

B. Case: Laser ionization injection in beam-driven
plasma wakes

Since field ionization by the beam driver can be small,
this reduces the intensity required for the ionization laser.
In this case, the ionization laser amplitude typically satisfies
ai ≪ kβwi=2, and the emittance is dominated by the
transverse spatial distribution of the ionized electrons (with
approximately symmetric transverse emittance, ϵy ≃ ϵx).
For a plasma wakefield in the cavitated (blow-out) regime
(where kβ ¼ kp=

ffiffiffiffiffi
2γ

p
),

FIG. 8. Transverse phase space (out of the plane of laser
polarization) of ionized electrons after ionization region
kβLi ≃ 1.9, with transverse rms emittance ϵy ≃ 0.011 μm.
(Two-color ionization injection parameters are the same as Fig. 1.)

FIG. 7. Transverse phase space (in the plane of laser polari-
zation) of ionized electrons after passage through the laser.
Dashed line shows the orbit of an electron in the plasma wave
with initial transverse position rβ. (Two-color ionization injection
parameters are the same as Fig. 1.)
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FIG. 9. The normalized emittance evolution in the laser
polarization plane ϵx (black curve) and orthogonal to the laser
polarization plane ϵy (red curve). (Two-color ionization injection
parameters are the same as Fig. 1.)
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ϵy ≃ ϵx ¼ kpw2
i ai

�
3πre

4
ffiffiffi
2

p
α4λi

��
UH

UI

�
3=2

: ð33Þ

Equation (33) is typically valid for the parameter regime of
the “trojan horse” scheme, as discussed in Ref. [20], where a
low amplitude ionization laser pulse is delayed with respect
to an electron beam driver for wakefield excitation. Using
the parameters in Ref. [20], ai ¼ 0.018, wi ¼ 4 μm, UI ¼
24.6 eV (He gas), λi ¼ 0.8 μm, and λp ¼ 60 μm, Eq. (33)
predicts ϵx ≃ ϵy ≃ 0.026 μm. Equation (33) has the scaling
ϵy ∝ w2

i ai, in contrast to the estimate given in Ref. [20].
The betatron wave number decreases with increasing

energy as kβ ∝ γ−1=2, and, assuming adiabatic energy gain,
the betatron amplitude decreases as rβ ∝ γ−1=4. The beam
divergence also decreases with energy θ≃ γ−3=4kβrβ. In the
limit of ai ≪ kβwi=2 and in the cavitated regime, the beam
divergence is

θ≃ γ−3=4kpwiΔ=2: ð34Þ

Using the parameters in Ref. [20], ai ¼ 0.018, wi ¼ 4 μm,
UI ¼ 24.6 eV (He gas), λi ¼ 0.8 μm, and λp ¼ 60 μm,
Eq. (34) predicts a divergence of θ ≈ 1.1 mrad at an energy
of 108 MeV (in close agreement with the simulation
in Ref. [20]).

V. SUMMARY AND CONCLUSIONS

In this work we have derived the thermal emittance of
an electron beam obtained from ionization injection in a
plasma-based accelerator. The initial transverse phase space
distribution created from laser tunneling ionization was
calculated and compared to PIC simulations for a range of
laser intensities, spot sizes, wavelengths, and gases. From
the initial beam transverse phase space distribution after
ionization and passage through the laser, the thermal
emittance was calculated. A general expression was pre-
sented for the saturated (after phase mixing) transverse
beam emittance both in and out of the laser polarization
plane. The emittance is shown to be a function of the
plasma density, laser wavelength, field amplitude, spot size,
and ionization potential of the gas. The expressions for the
injected normalized transverse emittance were compared to
simulation results and found to be in good agreement.
The transverse normalized emittance after phase mixing

is ϵ⊥ ¼ kβr2β=2 ∼ kβw2
iΔ2=4 (for a small amplitude ioniza-

tion injection laser, ai < kβwi). For a fixed rate of ioniza-

tion,U3=2
I λi=ai ≈ constant andΔ2 ≈ constant. For example,

a laser, with ai ¼ 0.01 and λi ¼ 0.8 μm, ionizing helium to
Heþ (UI ¼ 24.6 eV), as in the example of ionization
injection in a beam-driven wake (cf. Sec. IV B) and a
laser, with ai ¼ 0.15 and λi ¼ 0.4 μm, ionizing krypton to
Kr9þ (UI ¼ 230 eV), as in the example of ionization
injection in a laser-driven wake (cf. Sec. IVA), both yield
Δ≃ 0.22. Although the quiver momentum ai is an order of

magnitude smaller for the case of helium ionization, we
expect a similar beam emittance can be achieved in the
plasma accelerator for a given injection laser spot size (wi)
and plasma wakefield amplitude (kβ).
To minimize the emittance of the injected beam, it is

advantageous to operate at the threshold for fully ionizing
the charge state, such that the transverse momentum and
beam size are reduced. Further increasing the ionization
laser intensity will increase the beam emittance without
significantly increasing the trapped charge. In this regime the
trapped charge is linearly proportional to the emittance,
ϵ⊥ ¼ kβr2β=2 ∼ kβw2

iΔ2=4 ∝ Nt. For fixed ionization rate
(fixed Δ) and fixed plasma focusing (fixed kβ), the emittance
may be reduced by decreasing the ionization laser spot size,
and further minimization of the emittance will be limited by
the focusability of the laser, wi > λi. The beam charge may
be increased by increasing the length of the high-Z gas
region; however, increasing the ionization region will result
in larger energy spreads and, for sufficiently high beam
charge, beam loading will become important.
The general results presented in this work can be applied

to a variety of ionization injection schemes and geometries
in plasma-based accelerators, independent of the wakefield
driver, and enable the design and optimization of plasma-
based accelerators using ionization injection for the gen-
eration of ultralow emittance beams.
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