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An adiabatic matching section is discussed as option to control the divergence and emittance growth of a
beam exiting a plasma channel. Based on a general analytical solution of a focusing channel with varying
focusing strength, a focusing profile is proposed which allows for a fast expansion of the beam size while
keeping the emittance growth minimal. The solution is also applicable to other cases, e.g., the matching
of a positron source to the downstream accelerating section, which are, however, not discussed in this
contribution.
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I. INTRODUCTION

Plasma waves are considered as prime candidates
for novel compact accelerators for their ability to support
extreme accelerating fields in the GeV per centimeter scale.
Compared to conventional rf structure based accelerators
not only the accelerating field strength but also the short
wavelength of some tens to some hundreds of micrometers,
the small transverse dimensions of similar order and the
strong focusing fields inside the plasma channel are
extreme. Besides technical challenges plasma waves are
therefore also challenging from a beam dynamics point
of view.
In a recent paper [1] the matching conditions which need

to be fulfilled in order to avoid emittance growth due to
betatron phase mixing in a plasma channel have been
discussed. This study is extended here to the transition from
the plasma to a “free” beam, i.e., a beam outside of the
plasma channel. Transitions are necessary whenever the
beam shall be used outside of the plasma, e.g., to send it
through an undulator, but also when a beam is injected into
a plasma channel as in staged accelerator concepts. The
beam at the exit of a plasma channel is characterized by a
small beam spot and a large beam divergence, often in
combination with a large energy spread, while for a
conventional beam transport a larger beam size and a small
beam divergence are required. Thus a matching section in
between these quite different optical sections is required.
Equivalent conditions are found, e.g., at the source point

of a positron source where the positron beam exits the
target. Helm [2] has discussed the beam dynamics in a
tapered solenoid field which can be used to match a
positron beam to the downstream accelerating section.

Helm’s solution is approximate and valid for adiabatic
variations of the focusing strength. In this contribution a
new, exact analytic solution is presented which is valid
for a particular functional dependence of the variation of
the focusing strength. The exact solution converges to the
adiabatic solution; a comparison with Helm’s approxima-
tion is presented in the appendix. Numerical simulations
show that the beam divergence and the emittance growth
can be controlled with an adiabatic matching section. The
new field profile of the analytical solution is found to be
superior to the profile proposed by Helm. The discussion
concentrates on the transition from plasma to vacuum but
the results can equally be used to match from the vacuum
into a plasma channel.

II. THE CONDITIONS INSIDE
THE PLASMA CHANNEL

Before discussing the transition section the conditions
inside the plasma channel as presented in [1] shall be
summarized. The plasma wave presents a focusing channel
to particles traveling through the plasma at the speed of the
plasma wave. The transverse force depends on the longi-
tudinal position inside the wave, but to first order not on the
position of the wave inside the plasma. Thus slices of
particles inside the bunch are subject to a constant focusing
force while traversing the plasma channel. (Adiabatic
variations of the force will not change the results as
discussed below.) Matched conditions are reached when
the focusing compensates the expansion of the beam due to
the beam emittance, i.e., when the beam follows a kind of
Brillouin flow. With the usual definitions of the Courant
Snyder parameters:

β ¼ hx2i
ε ; α ¼ − hxx0i

ε ; γ ¼ hx02i
ε ; βγ ¼ 1þ α2;

(1)

where ε represents the transverse rms trace-space emittance
and hi denotes the central average value of the variable
in the brackets, the matching condition yields α ¼ 0 and
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thus γ ¼ 1=β. Furthermore, the beta function in a focusing
channel with constant focusing strength K writes for
α0 ¼ 0 (index zero indicates initial conditions) as:

β ¼ β0cos2
ffiffiffiffi
K

p
zþ 1

β0K
sin2

ffiffiffiffi
K

p
z; (2)

which is constant if the relation K ¼ 1=β20 is fulfilled. If a
beam is not matched, the beta function oscillates. Since the
focusing strength in a wave depends in a sinelike manner
on the relative longitudinal position within the wave,
different longitudinal slices oscillate with different frequen-
cies, so that the projected emittance increases until the
matching condition is reached for the projected phase-
space. In case of a pure mismatch of the beta function (i.e.,
α0 ¼ 0 holds) the ratio of the final emittance εf to the initial
emittance εi is given as [1]:

εf
εi

¼ 1

2

βm
2 þ β0

2

βmβ0
; (3)

where βm stands for the matched beta function.
Equation (3) is equally valid for a beam which is injected
into a plasma channel as for a beam which is generated
inside the channel. Especially in case of self-injection the
captured electrons form a beam with large energy spread.
Since the focusing strength is inversely proportional to the
particle momentum, the matched beta function differs for
the different energies in the bunch which leads to an
additional contribution to the emittance in accordance to
Eq. (3). The phase-space mixing is a fast process; we can
thus assume that a beam obeys the matching conditions
when it reaches the end of the plasma channel.
A particular problem encountered in the case of self-

injected beams is related to the fact that the canonical
phase-space emittance grows strongly in a drift in all cases
where a large beam divergence is combined with a large
energy spread. This fundamental process is described in
general form in [3] and applied to the case of a plasma
based electron source in [4]. The relevance of the phase-
space emittance lies in the fact that the trace-space
emittance rapidly growths up to the value of the phase-
space emittance as soon as the divergence of the beam is
reduced, i.e., in the next focusing element [3].
A reduction of the divergence of a plasma accelerated

beam by an appropriately designed transition region from
plasma to vacuum in which the beam size is increased is
considered in [5]. The emittance measurements presented
therein show the trace-space emittance. A conclusion on
the phase-space emittance can, despite the somewhat
reduced divergence, not be drawn since the divergence is
still high. A reliable emittance measurement can in the case

of self-injected beams only be performed behind a focusing
element.
The analytical treatment of a matching section presented

below concentrates on the optical functions and thus on
the trace-space emittance. Distortions of the phase-space
emittance are addressed by numerical simulations.

III. THE MATCHING SECTION

In the matching section the focusing strength KðzÞ
provided by the plasma wave shall be decreased in such
a way that the beam size expands in a controlled way and
the beam divergence in the following drift is reduced.
Noting that the equation of motion of individual particles
needs to converge to the known case of a constant focusing
channel if the focusing strength converges to a constant, the
following ansatz is formulated:

x ¼ AðzÞ cos
Z ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p

dzþ BðzÞffiffiffiffiffiffiffiffiffiffi
KðzÞp sin

Z ffiffiffiffiffiffiffiffiffiffi
KðzÞ

p
dz:

(4)

AðzÞ and BðzÞ are arbitrary functions.
The single particle differential equation x00 þ Kx ¼ 0

can be solved for this case (see Appendix A.1 for details)
and yields:

x ¼ x0ð1þ gzÞ cosφþ ðx00 − x0gÞð1þ gzÞffiffiffiffiffiffi
K0

p sinφ; (5)

where the following functional dependence of the focusing
strength is assumed:

KðzÞ ¼ K0

ð1þ gzÞ4 g ¼ −
K0

0

4K0

: (6)

g is a taper parameter introduced to describe the decay of
the focusing field and K0 and K0

0 are the initial focusing
strength and the first derivative of the focusing strength
with respect to the longitudinal coordinate z. The phase
advance φ is found as:

φ ¼
ffiffiffiffiffiffi
K0

p
z

1þ gz
; (7)

which converges for large z to φ∞ ¼
ffiffiffiffi
K0

p
g . Figure 1 shows

some example trajectories for different values of φ∞. It
illustrates the transition from a free expansion for small
phase advance to the case of an adiabatic expansion with an
oscillation of slowly increasing amplitude for larger phase
advance.
Equation (5) describes the motion of individual particles.

To describe the envelope of a beam, Eq. (5) needs to be
squared followed by averaging over the variables. After
replacements according to Eq. (1) the beta function
follows as:
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β ¼ ð1þ gzÞ2
�
β0

�
cos2φ − 2gffiffiffiffi

K0

p cosφ sinφþ g2

K0
sin2φ

�
− α0

�
2ffiffiffiffi
K0

p cosφ sinφ − 2g
K0
sin2φ

�
þ γ0

�
1
K0
sin2φ

��
: (8)

This equation simplifies greatly when the matching
conditions for the beam in the plasma are introduced.
With α0 ¼ 0; γ0 ¼ 1

β0
; K0 ¼ 1=β20 we get:

β ¼ β0ð1þ gzÞ2½ðcosφ − gβ0 sinφÞ2 þ sin2φ�

≈ β0ð1þ gzÞ2 ¼ β0

�
K0

KðzÞ
�1

2

: (9)

The approximation made in the second step requires that
gβ0 ≪ 1. The same approximation is made by Helm in
his derivation of the adiabatic approximation (see
Appendix A.2 for details). The connection to the adiabatic
solution becomes obvious by noting that gβ0 ¼ φ−1

∞ , i.e.,
gβ0 ≪ 1 corresponds to the case of a large phase advance as
expected for an adiabatic behavior. While the exact solution
is valid only for a tapered focusing field in accordance to
Eq. (6), the adiabatic solution is valid for arbitrary spatial
dependencies of the focusing strength provided that the
variation of the focusing strength is slow as compared to the
phase advance.
The other extreme of Eq. (9) is found for a small phase

advance by setting cosφ∞ ¼ 1; sinφ∞ ¼ ffiffiffiffiffiffi
K0

p
=g which

yields β ≈ z2
β0
. This is identical to the result of a beam in a

free drift which starts with β ¼ β0 at the exit of the plasma
channel. Of great practical importance is the transition
between adiabatic and nonadiabatic motion. The slightly
nonadiabatic case marks conditions where the fastest
expansion of the beam size is realized and nonadiabatic
effects just start to play a role. Since in a general case the
adiabaticity can differ for different locations of the field
profile, the question of the optimal field profile is directly
connected with the slightly nonadiabatic case. Both in the
fully adiabatic and in the fully nonadiabatic case the details
of the field profile are of minor importance.

Equation (9) is independent of the particle energy, i.e.,
the trace-space emittance is conserved not only in the
adiabatic limit, but also in the free space limit. However,
in order to keep the growth of the canonical phase-space
emittance under control it is important to keep the diver-
gence of the beam small. From the relation α ¼ − 1

2
β0 we

find in the free space limit:

αf ≈ −
z
β0

; (10)

while it is reduced in the adiabatic case to:

αa ¼ −β0gð1þ gzÞ ≈ −β0g2z: (11)

The ratio is thus just given by the inverse square of the
total phase advance:

αa
αf

¼ ðβ0gÞ2 ¼ φ−2
∞ : (12)

For a comparison of the emittance growth it is, however,
not reasonable to compare parameters at the same longi-
tudinal position, because in the case of an adiabatic
matching section a much longer distance is required to
expand the beam by a significant amount.
When the matching section ends the beam expands in a

free drift with the initial conditions βe and αe which mark
the optical functions at the end of the matching section.
The derivative of the expansion in the subsequent drift is
given by:

β0drift ¼ −2αe þ 2

�
1þ α2e
βe

�
Δz; (13)

where Δz is the distance relative to the end of the
matching section. Equation (13) is dominated by αe
when α2e > 1. In this case the beam continues to expand
in the drift just as in the matching section. Thus the
maximum reasonable length of the matching section is
defined by the condition α2e > 1.

IV. NUMERICAL CALCULATIONS

For the following numerical examples beam parameters
as used in Ref. [4] have been chosen to allow a comparison.
The parameters are summarized in Table I; the focusing
strength is tapered according to Eq. (6). The simulation
assumes a theoretical radial focusing force which does not
depend on the position within the bunch. Longitudinal
forces as they appear in a plasma channel but also in other
focusing elements are not taken into account.
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FIG. 1. Example trajectories for various values of the phase
advance.
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Figure 2 compares the development of the beam size in a
matching section for varying taper parameter g. The beam
size and divergence can be controlled as predicted by
theory. The factor gβ0 yields values from 0.04 for g ¼
200 m−1 up to 0.12 for g ¼ 700 m−1 and thus spans a
parameter range from the fully adiabatic expansion into a
slightly nonadiabatic expansion. This is reflected in the
development of the normalized phase-space emittance
which is plotted in Fig. 3 for the four cases shown in

Fig. 2 with corresponding line styles. While the trace-space
emittance (not shown) stays constant in all cases the phase-
space emittance increases when the beam expands. The
emittance growth is dramatic in case of a free drift, but
negligible in case of a fully adiabatic expansion. Table II
compares the phase-space emittance which is reached at
equal transverse beam size.
The emittance growth due to the nonadiabaticity of the

field can be treated as a quadratic addition to the incoming
emittance. This contribution is then found to scale linearly
with the energy spread of the beam. A reduced energy
spread thus allows us to choose parameters deeper in the
nonadiabatic region, i.e., to realize a faster expansion of the
beam without emittance growth.
In Fig. 4 the further development in a drift following the

matching section is illustrated. As discussed in the previous
paragraph the beam continues to expand in the drift just
as in the matching section when the condition α2e > 1 is
fulfilled.

V. BEST FIELD PROFILE

In the adiabatic approximation the beta function just
scales as the square root of the initial to the local focusing
strength βðzÞ ¼ β0½ K0

KðzÞ�
1
2 and is in this form applicable to
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FIG. 2. Development of the beam size behind a plasma channel
for g ¼ 200 m−1 (smallest divergence), 500 m−1, 700 m−1 and
the free space solution (largest divergence). The constant focus-
ing channel ends at z ¼ 0.

TABLE I. Main simulation parameters.

Normalized emittance 2.5 × 10−6 m
Energy 912 MeV
rms energy spread 6.4%
Initial beam size 0.5 × 10−6 m
β0 1.8 × 10−4 m
K0 3.14 × 107 m−2
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FIG. 3. Development of the normalized phase-space emittance
behind a plasma channel. Parameters and line styles correspond
to Fig. 2. The trace-space emittance (not shown) stays constant in
all cases.

TABLE II. Comparison of beam parameters at equal transverse
size of 0.02 mm corresponding to a beam expansion by a factor
of 40.

Taper parameter g Longitudinal position Emittance
m−1 10−2 m 10−6 m

200 21.6 2.53
500 7.8 2.58
700 5.6 2.65
Free space 0.7 6.9
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FIG. 4. Development of the transverse beam size in a matching
section with g ¼ 500 m−1 (solid line). Broken lines indicate the
further development in a drift when the matching section ends at
jαej ¼ 0.5; 1.0 and jαej ¼ 2.0. The last line overlaps already
completely with the solid line.
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any variation of the focusing strength provided that the
variation is adiabatic. This opens the question of which
functional dependence of the focusing strength is optimal
in the sense that it yields the fastest expansion of the beam
with minimal emittance growth. In fact Helm formulated
the adiabatic solution without assumption of a specific
functional dependence and proposed in a second step only a
focusing following:

KðzÞ ¼ K0

ð1þ gHzÞ2
; (14)

as ideal field profile. From the definition of the adiabaticity
parameter one concludes that Helm’s taper parameter
gH ¼ 2g. In this case the weaker power of Helm’s scaling
law leads to a much smaller beam size at the end of the
matching section. For a better comparison comparable
beam sizes at the end of the section are required. Since
we are here interested in the slightly nonadiabatic case
this requires some tuning of the taper parameter. Figure 5
compares the beam size development for the power of four
scaling [cf. Eq. (6)] as found in the analytical treatment
with g ¼ 700 m−1 with the power of two scaling as
proposed by Helm with gH ¼ 9000 m−1. Despite the
comparable beam size at the end of the section the
emittance, shown in Fig. 6, is significantly larger in case
of Helm’s field profile. This is due to the fact that a fast
expansion in the beginning of the matching section is
required in order to reach the desired beam size because
the expansion is strongly reduced in the last part of the
section. The rapid expansion of the beam size leads to a
strong increase of the emittance which outranges the
emittance growth of the other field profile with the linearly
growing beam size. Due to the reduction of the beam
divergence in the last part of the section the emittance
growth in phase-space now also shows up as equivalent
growth of the trace-space emittance. The new profile found
in this study is thus the better solution for the matching of
beams with large divergence and energy spread when the

emittance growth shall be minimized. (If emittance growth
is not a concern, Helm’s solution offers a better control over
the beam divergence.) This finding does not prove that a
focusing profile following Eq. (6) is the optimum of all
possible field profiles but supports the assumption that
this is the case. Indeed, if we understand adiabaticity as a
condition where a variation of the focusing develops so
slowly that the beam size can follow the variation, a channel
in which the beam size expands at a constant rate appears to
be optimal.

VI. CONCLUSION

Adiabatic matching sections are an option to control
the beam divergence and the emittance growth of beams
exiting a plasma channel. Future investigations need to be
based on realistic density profiles of a plasma down-ramp
and take into account effects as phase dependent forces,
phase slippage, damping of the beam divergence, and
energy variation due to the longitudinal field components.
Additional variations of the focusing forces may appear as a
result of the divergence of a plasma driving laser or charged
particle beam. While in the latter case only the amplitude
of the wave changes, the plasma wavelength changes in
addition in case of density variations, which is associated
with phase shifts. The discussion above suggests that we
seek a density profile in which the beam expands at a
constant rate to meet a constant adiabaticity condition at all
locations even in cases where the theory developed in this
presentation is not strictly applicable. The dynamics in a
plasma of varying density is complicated and it is not
a priori clear that appropriate solutions for the adiabatic
matching section can be found for all plasma parameters
without being hampered by detrimental effects like decel-
eration due to phase shifts. The analytical solution can
serve as a guideline for the optimization and help to
disentangle effects of fundamental nature from effects
which are related to the specific dynamics in a plasma
channel. In the case of beams with large energy spread
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relatively long matching sections are required to be
effective, which might also not be practical in all cases.
A further reduction of the energy spread is hence highly
desirable.
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APPENDIX

1. Solution of the differential equation

Following the ansatz:

x ¼ AðzÞ cos
Z ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p

dzþ BðzÞffiffiffiffiffiffiffiffiffiffi
KðzÞp sin

Z ffiffiffiffiffiffiffiffiffiffi
KðzÞ

p
dz

(A1)

the single particle differential equation x00 þ Kx ¼ 0 is
written as:

−
�
2

ffiffiffiffi
K

p
A0 þ AK0

2
ffiffiffiffi
K

p
�
Sþ A00Cþ

�
2B0 −

BK0

2K

�
C

þ
�
−
B0K0

K3=2 þ
3BK02

4K5=2 þ B00ffiffiffiffi
K

p −
BK00

2K3=2

�
S ¼ 0;

C ≔ cos
Z ffiffiffiffi

K
p

dz; S ≔ sin
Z ffiffiffiffi

K
p

dz: (A2)

This equation can only be fulfilled if individual terms
yield zero. Thus from:

�
2

ffiffiffiffi
K

p
A0 þ AK0

2
ffiffiffi
K

p
�

¼ 0;

�
2B0 − BK0

2K

�
¼ 0; (A3)

we get:

A
A0 ¼ −

4K
K0 ;

B
B0 ¼

4K
K0 : (A4)

Moreover,

A″ ¼ A0K0

4K
þ AK02

4K2
−
AK″

4K
¼

�
−
5

4

K0

K
þ K″

K0

�
A0 ¼ 0

(A5)

and

B00 ¼
�
−
3

4

K0

K
þ K00

K0

�
B0 (A6)

�
−
B0K0

K3=2þ
3BK02

4K5=2 þ
B00ffiffiffiffi
K

p −
BK00

2K3=2

�
¼−

�
−
5

4

K0

K
þK00

K0

�
B0ffiffiffiffi
K

p ¼0:

(A7)

Hence, in order to fulfill Eq. (A2) the condition:

−
5

4

K0

K
þ K00

K0 ¼ 0 (A8)

needs to be fulfilled, with the solution:

KðzÞ ¼ K0�
1 − K0

0

4K0
z
�

4
(A9)

and

K0ðzÞ ¼ KðzÞ K0
0

K0

�
1 − K0

0

4K0
z

� ;
Z ffiffiffiffi

K
p

dz ¼
ffiffiffiffiffiffi
K0

p
z

1 − K0
0

4K0
z
;

(A10)

where an integration constant is chosen such that the
integral is zero for z ¼ 0.
From Að0Þ cos R ffiffiffiffi

K
p

dz ¼ Að0Þ follows Að0Þ ¼ x0.

Introducing K and K0 into A ¼ −4 K
K0 A0 yields A ¼

−4Cð1 − K0
0

4K0
zÞ with the integration constant C. Thus with

C ¼ −x0=4 we get:

AðzÞ ¼ x0

�
1 − K0

0

4K0
z

�
: (A11)

Equivalently follows from B ¼ 4 K
K0 B0 B ¼ C

4

�
1

1−
K0
0

4K0
z

�
and

thus with x0ð0Þ ¼ x00 C ¼ 4ðx00 − A0Þ which finally yields:

BðzÞ ¼ x00 − A0

1 − K0
0

4K0
z
: (A12)

Introducing the taper parameter g and the phase advance
φ yields Eq. (5).

2. Comparison with Helm’s adiabatic approximation

Helm [2] formulated an approximate solution for a
tapered solenoid field. The approximation is valid if the
adiabaticity parameter ε ¼ j B0pz

eB2 j ≪ 1. This condition is
equally fulfilled for all positions z if the field follows the
condition:

B ¼ B0

1þ gHz
; (A13)

where gH is a taper parameter and B0 is the initial solenoid
field value.
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The adiabaticity parameter writes then as:

ε ¼ gHpz

eB0

≪ 1: (A14)

The focusing strength of a solenoid is given by
K ¼ ð eB

2pz
Þ2. It follows:

KðzÞ ¼ K0

ð1þ gHzÞ2
; K0ðzÞ ¼ −2gHK0

ð1þ gHzÞ (A15)

with the initial focusing strength K0 ¼ ðeB0

2pz
Þ2 and

K0
0 ¼ −2gHK0. Thus the taper parameter gH can be

replaced in Eq. (A15) to yield:

KðzÞ ¼ K0

ð1 − K0
0

2K0
zÞ2

¼ K0

1 − K0
0

K0
zþ ðK0

0

K0
Þ2 z2

4

(A16)

which needs to be compared to:

KðzÞ¼ K0

ð1− K0
0

4K0
zÞ4

¼ K0

1−K0
0

K0
zþðK0

0

K0
Þ2 3z2

8
−ðK0

0

K0
Þ3 z3

16
þðK0

0

K0
Þ4 z4

256

:

(A17)

Helm’s definition of the taper parameter gH hence differs
by a factor of two from the definition introduced in this
paper. The resulting field profile is identical for small
values of z but differs for large z.
The adiabaticity parameter

ε ¼ gHpz

eB0

¼ gH
2

ffiffiffiffiffiffi
K0

p ¼ φ−1
∞ (A18)

is identical to the inverse phase advance in the limit
of large z of the analytical solution presented in this
paper. With B0=B ¼ 1þ gHz,

4pz
B0B

¼ 1ffiffiffiffiffiffiffi
K0K

p ¼ 1þgHz
K0

andR
eB
2pz

dz ¼ R ffiffiffiffi
K

p
dz ¼ φ Helm’s solution for the particle

radius which takes over the role of the transverse coordinate
in the rotating Larmor frame writes as:

r ¼ r0ð1þ gHzÞ12 cosφþ r00ð1þ gHzÞ12ffiffiffiffiffiffi
K0

p sinφ;

ð1þ gHzÞ12 ¼
�
K0

KðzÞ
�1

4 ¼ 1þ gz; (A19)

which needs to be compared to Eq. (5). The addition of
−x0g in the second term of Eq. (5) leads to the additional
term in the envelope equation (9) which is neglected in case
of the adiabatic approximation.
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