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In this article the Campbell’s theorem is used to evaluate the equilibrium emittance and energy spread
in a Compton ring. This method allows us to have an efficient analytical approach separating the
contributions of the Compton cross section from the luminosity factor. The consequent advantage is given
by the possibility to have an easy extrapolation for the “nonclassical” cases like the polarized Compton
backscattering or the evaluation of the equilibrium given by different radiation mechanisms. The effects
accounting for the polarized Compton backscattering in the article are evaluated numerically. The
analytical results in the nonpolarized case and in the negligible recoil effect approximation are in excellent
agreement with the values obtained by matching the Compton damping rate with the quantum fluctuations,
and they show that the equilibrium energy spread and emittance are independent from the luminosity.
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I. INTRODUCTION

A. Interest of Compton sources

At present there is a growing interest in radiation sources
based on the Compton backscattering effect [1]. This is the
consequence of the very important energy boost acquired
by the backscattered photon which allows us to provide
hard X-/gamma ray sources with relatively moderate
accelerator beam energies. In the past, these sources have
not been largely exploited due to the low emitted flux given
by the Compton/Thomson cross section. Nowadays, the
impressive technology advances in high (average and peak)
power lasers, in the stabilization of high gain optical
amplifiers [2], in the optical recirculator design [3], and in
the accelerator technology give the opportunity to envisage
compact Compton backscattering sources (CBS) with pos-
sible applications in different applied fields. Moreover, the
energy-angle kinematic dependence of the emitted photons
makes
it possible to obtain a quasimonochromatic X-/gamma ray
beam (monochromaticity of the order of a percent) using a
simple diaphragm system. Different user communities are
therefore studying the possible applications of CBS in, for
example, the field of protein crystallography, medical sci-
ence, and cultural heritage [4,5]. Nuclear science applica-
tions are also taken into account with the production of

gammarays for fundamentalphysics research [6]andnuclide
detection [7,8].
A wide spectrum of applied science communities will

profit from all these experimental programs with different
requirements on the emitted photon beam characteristics
determining the accelerator-laser system design. Linear
accelerators coupled with high peak lasers are usually
envisaged for the high brilliance applications. On the other
side, a high average flux need is covered either by the
superconductive linacs [also in the Energy Recovery
configuration (ERL)] [9,10] or by the Compton rings
[11,12] associated with high average power lasers ampli-
fied in passive optical resonators [13].

B. Circular Compton sources

As far as the Compton rings are concerned different
projects are being developed. Pioneering experimental
activities in the field of gamma ray production have been
worked out in ADONE [14], Novorsibirsk [15], Super
ACO [16], Duke University [17], and ESRF [18]. In the
TERAS ring 2 × 104 gamma rays per second in the MeV
energy range were produced by Compton scattering [19].
In SPring-8 the achieved flux reached 2.5 × 106 gamma
rays per second at 2.4 GeV photon energy. Experiments
of the FEL intracavity photon-electron scattering in the
UVSOR ring [20] also provided a flux of 2 × 106 gamma
rays per second using a 20 W laser power. Duke University
developed a strong research program in its storage ring
[21]. This allows us to reach a stored laser power in the kW
regime increasing the emitted flux up to a few 1010 gamma
rays per second with a photon energy cutoff of 100 MeV.
In the X-ray domain the only operating storage ring is the
one constructed by Lyncean Technologies Inc. [22]. It
produces an average flux of 1011 X-rays per second in the
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10–20 keV energy range by means of an optical system
based on a high gain Fabry-Perot resonator. Other projects,
always based on the high gain optical resonators, are
ThomX [4] and NESTOR [23] at present in the construc-
tion phase. Here, the increased electron beam energy and
optical resonator gain should allow to reach the 1012–1013

X-rays per second flux regime emitting photons up to
89 keV for ThomX and 900 keV for NESTOR.

II. CIRCULAR COMPTON SOURCES

A. Beam dynamics

In the past, Compton backscattering of laser photons off
the high energy electrons has been proposed in the Linear
Collider framework [24] as a method to cool a multi-GeV
electron beam through radiation damping. Then, in [25],
the authors proposed a compact laser-electron storage ring
in the tens of MeV energy range for electron beam cooling
and X-ray generation. At higher energy (few GeV) CBS
can be employed for gamma ray generation [26] aiming at
the nuclear applications and positron production.
For all the different applications requiring different beam

energies different regimes have to be taken into account
as far as the CBS beam dynamics is concerned because of
the energy quadratic dependence of the backscattered
photon energy and consequently of the electron recoil.
At low energy, due to the short beam lifetime and low
synchrotron power emitted, the Compton contribution
defines the equilibrium emittance and energy spread. At
higher energy the strong electron recoil at the Compton
cutoff also has to be taken into account since it can drive the
electron outside the rf bucket, increasing the beam losses.
So, the Compton scattering can be treated as a “quantum
noise” to be added to the synchrotron cooling and quantum
fluctuation contributions. Moreover, for the applications
involving polarized beams, it is also important to estimate
the equilibrium properties accounting for the polarization
of the initial states. The dynamics of the electron beam
under the Compton scattering regime is thus considered a
critical point of a Compton ring design as a function of the
beam energy and the emitted flux.

B. Compton backscattering kinematics
and cross section

Compton backscattering describes the process γ
e− → γe−, where the scattered photon acquires part of
the electron kinetic energy. The kinematics imposes that
the electron undergoes a recoil after the emission as
described on Fig. 1, where Ee, Eγ , and EL are, respectively,
the incident electron, the scattered photon, and the laser
photon energies; ϕ and θe are the collision and the scattered
electron recoil angles.
The Compton backscattering effect can be also seen like

the emission of radiation by the electrons oscillating in the
laser field [27], as in an undulator. The angular distribution

of the scattered photons is thus concentrated within the
typical ∼1=γ opening angle cone around the direction of
motion of the electrons.
The product of the total Compton cross section times

the luminosity determines the emitted flux. The differential
cross section gives the spectral content. To define the
Compton scattering cross section, it is convenient to define
two dimensionless variables [28]:

x ¼ 2γ
EL

mec2
ð1 − β cosϕÞ and y ¼ Eγ

Ee
≤ ym ¼ x

xþ 1
;

(1)

where β ¼ v
c and γ ¼ 1ffiffiffiffiffiffiffiffi

1−β2
p is the Lorentz factor. For the

Compton scattering of the laser light when γEL ≪ mec2,
one usually has x ≪ 1. If “head-on” collisions (ϕ ¼ π,
x ¼ 4γ2EL=Ee) are taken into account, the Eγ maximum
value (energy spectrum cutoff) is Emax

γ ≈ 4γ2EL.
Considering the most general case of a polarized laser

colliding with a polarized electron beam, the photon energy
spectrum is given by the differential cross section summed
over the spin states of the final particles [28,29]:

dσc
dy

¼ 2πr2e
x

�
1

1 − y
þ 1 − y − 4rð1 − rÞ

þ PePcrxð1 − 2rÞð2 − yÞ
�
; (2)

where re ¼ e2

mec2
≈ 2.82 × 10−15 m is the classical electron

radius, Pe is twice the helicity of the initial electron, Pc
stands for the laser photon degree of the circular polari-
zation (initial photon helicity), and

r ¼ y
xð1 − yÞ ≤ 1: (3)

The total Compton cross section can be written then as a
sum of two terms [29]:

σc ¼ σnpc þ PePcσ0; (4)

where σnpc is the Compton cross section for unpolarized
particles given by

FIG. 1. The kinematics of the Compton scattering.
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σnpc ¼ 2πr2e
1

x

��
1 −

4

x
−

8

x2

�
lnð1þ xÞ þ 1

2
þ 8

x

−
1

2ð1þ xÞ2
�
; (5)

and σ0 reads

σ0 ¼
2πr2e
x

��
1þ 2

x

�
lnð1þ xÞ − 5

2
þ 1

xþ 1
−

1

2ð1þ xÞ2
�
:

(6)

It is important to point out, that for circularly polarized
laser photons, the differential and the total Compton
cross sections [see Eqs. (2) and (4)] do not depend on
the transverse polarization of the initial electrons. This is
correlated to the storage rings case where the particle spin
precesses around the dipole magnetic field, so it is trans-
versal in respect to the longitudinal momentum. Moreover,
for the linear polarized laser photons the cross sections do
not depend at all on the polarization of the initial electrons
[30]. The total Compton cross section for the polarized
initial states [see Eq. (4)] differs from the unpolarized case
only if the laser photon is circularly polarized and the
electron has nonzero projection of the spin onto the
direction of momentum.
In the case when x ≪ 1, the unpolarized total Compton

cross section given by Eq. (5) as a function of x can be
expanded into Taylor series and so

σnpc ≈ 2πr2e
4

3
ð1 − xÞ ≈ σTð1 − xÞ (7)

the total Compton cross section is nearly equal to
the classical Thomson cross section σT ¼ 8πr2e=3≈
6.65 × 10−29 m2.

III. ELECTRON BEAM ENERGY SPREAD
AND EMITTANCE CALCULATIONS

BY CAMPBELL’S THEOREM

A. Campbell’s theorem

As previously said, Compton backscattering in the CBS
may be considered as a shot noise process and therefore
treated by taking into account Campbell’s theorem evalu-
ating the average effect of Poisson excitation processes on
different distributions [31].
In general, the shot noise function sðtÞ can be seen

as random fluctuations in the output of a linear system
activated by a series of Poisson δ-events x0ðtÞ, e.g., photon
emission or electron-photon scattering, occurring at the
random time ti:

sðtÞ ¼
X
i

agðt − tiÞ with x0ðtÞ ¼
X
i

aδðt − tiÞ; (8)

where a is the amplitude of the δ-excitation and gðtÞ is the
response of the system. In this framework, Campbell’s
theorem [32–34] provides the information about the first
and second central momenta of the probability distribution
describing such a process.
Assuming a linear dynamic system and knowing its

response to a δ-excitation occurring randomly in time
with average frequency f, the second central momentum
or variance of the process σ2s is

σ2s ¼ a2f
Z þ∞

−∞
g2ðt − t0Þdt: (9)

If a series of excitations occurs randomly in time, with
amplitude distribution _nðaÞ, Eq. (9) can be written in a
more general form as:

σ2s ¼
Z

∞

0

a2 _nðaÞda
Z þ∞

−∞
g2ðt − t0Þdt ¼ AG; (10)

whereA is the integral describing the second order moment
of the excitation distribution and G is the integral over the
response function.
It seems therefore possible to apply Campbell’s theorem

to obtain the equilibrium energy spread and transverse
emittance in a Compton ring taking into account the
photon-electron scatterings as the statistical events affect-
ing the particle dynamical state and the betatron and energy
oscillation damping as the system response.

B. Equilibrium energy spread and emittance
induced by Compton scattering

In absence of Compton scattering the beam dynamics
provide a Gaussian equilibrium longitudinal and transverse
distributions [35]. As far as the longitudinal phase space is
concerned, as previously mentioned, the electron beam
energy spectrum is modified by the laser photon-electron
interaction quantum excitation. The equilibrium energy
spread, defined through the square root of the variance of

the electron energy distribution
ffiffiffiffiffiffiffiffiffiffiffi
σ2Comp

q
, can be derived on

the basis of Campbell’s theorem.
In the transverse phase space a photon emission with

angle θγ gives to the electron a recoil resulting in a
transverse deflection θe and consequently in the transverse
emittance variation. Assuming that the Compton interac-
tion region corresponds to a beam waist (that is straightfor-
ward if the luminosity has to be maximized), it is given that
ϵ ¼ 2hθ2eiβ�, where β� is the electron betatron function in
the interaction point (IP) [36]. The equilibrium transverse
emittance ϵ can also be evaluated by means of the variance
of the electron transverse angular deflection hθ2ei.
In a storage ring the response of the electron to a δ-pulse

excitation (Compton scattering) at the time t0 ¼ 0 can be
seen as the damped betatron and synchrotron oscillations
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[36,37]. Projecting on the transverse and longitudinal
planes these oscillations read respectively:

gBðtÞ ¼ θee−αBt cosðΩbtÞ; (11)

gSðtÞ ¼ Eγe−αEt cosðΩstÞ; (12)

where g0 ¼ Eγ or θe is the initial electron energy variation
or transverse deviation; αB, αE andΩb,Ωs are, respectively,
the damping rates and frequencies of the transverse
(betatron) and longitudinal (synchrotron) modes of electron
oscillations.
According to Eq. (10), we can now calculate the integral

G for the two different modes of oscillations. In general
form it can be written as

G ¼ 1

g20

Z
∞

t0

g2ðt − t0Þdt ¼
1

g20

Z
∞

0

g2ðtÞdt

¼
Z

∞

0

ðe−αt cosΩtÞ2dt ¼ α

4ðΩ2 þ α2Þ þ
1

4α
: (13)

Usually, the damping rate in the storage rings, of the
order of tens of Hz, is relatively small in respect to the
synchrotron and betatron frequencies, so α ≪ Ω and it is
possible to neglect the first term in Eq. (13) resulting in

G ¼ 1

4α
: (14)

The damping rate α can be expressed in the following
way for all three degrees of freedom:

αi ¼ Jiα0 ¼ Ji
hPγi
2Ee

(15)

with

Jx ¼ 1 −D; Jy ¼ 1; Je ¼ 2þD;
X
i

Ji ¼ 4;

(16)

where hPγi is the average rate of the electron energy loss,
Ee is the electron beam energy, Ji are the damping partition
numbers, and D is a quantity (number) which depends on
the property of the guide field [35,38]. So, the inverse of the
damping rate can be seen as the time it takes for the electron
to radiate its energy. To a large extent, considering a ring
with a design orbit lying in the horizontal plane and a
magnetic field which is homogeneous and symmetric in
respect to that plane,D is a fairly small number [35]. In this
case, the damping rate of synchrotron oscillations is twice
the transverse damping rate.
Now, taking into account that the total flux of scattered

photons can be evaluated as a product of the luminosity
by the Compton cross section, the damping rates can be
formulated as:

αE ¼ hEγiF
Ee

¼ hEγiLσc
Ee

and

αB ¼ hEγiF
2Ee

¼ hEγiLσc
2Ee

;

(17)

where F is the flux of the scattered photons, L is the
luminosity of the Compton collisions, σc is the total
Compton scattering cross section, and Eγ is the energy
of the emitted photon for which the average is

hEγi ¼
R Emax

γ

EL
Eγ

dσc
dEγ

dEγR Emax
γ

EL

dσc
dEγ

dEγ

: (18)

The integration in Eq. (18) goes in the interval from the
energy of the laser photons EL up to the Compton energy
cutoff Emax

γ .
Therefore, in order to evaluate the variance of the energy

and angular spreads, one has to plug the damping rates
[see Eq. (17)] into Eq. (13) separately for the two modes of
oscillations and then insert it into Eq. (10) knowing that for
the synchrotron oscillations:

AE ¼
Z

∞

0

a2 _nðaÞda ¼
Z

Emax
γ

EL

E2
γ _nðEγÞdEγ

¼
Z

Emax
γ

EL

E2
γL

dσc
dEγ

dEγ; (19)

whereas for the betatron ones:

AB ¼
Z

∞

0

a2 _nðaÞda ¼
Z

θmax
e

0

θ2e _nðθeÞdθe

¼
Z

θmax
e

0

θ2eL
dσc
dθe

dθe; (20)

where _nðEγÞ and _nðθeÞ are the fluxes expressed, respec-
tively, in energy and angular coordinates, given by the
product of the luminosity times the spectral density of
the photons. It still will be convenient to change the
variable of integration in Eq. (20) to Eγ. Given dσc=dθe ¼
ðdσc=dEγÞðdEγ=dθeÞ, AB can be written as:

AB ¼
Z

Eγðθmax
e Þ

0

θ2eðEγÞL
dσc
dEγ

dEγ: (21)

where Eγðθmax
e Þ is the scattered photon energy correspond-

ing to the maximum value of the scattered electron angle
θmax
e in the given interval and can be evaluated taking into
account the well-defined relationship between the energy
and the scattering angle in the Compton scattering [39]:
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θ2eðEγÞ ¼
Emax
γ Eγ − E2

γ

E2
eγ

2
: (22)

Finally, taking into account Eqs. (10), (14), and (17), the
variance of the electron beam energy distribution is

σ2Comp ¼
Ee

4hEγi
Z

Emax
γ

0

1

σc
E2
γ
dσc
dEγ

dEγ ¼
Ee

4hEγi
σ2Eγ

; (23)

where σ2Eγ
is a variance of the scattered photon energy

spectrum. On the other hand, the variance of the electron
transverse angular deflection is given by

hθ2ei ¼
Ee

2hEγi
Z

Eγðθmax
e Þ

0

1

σc
θ2eðEγÞ

dσc
dEγ

dEγ ¼
Ee

2hEγi
σ2θe

����
Eγ

;

(24)

where σ2θe jEγ
is a variance of the scattered electron angular

distribution integrated over the scattered photon energy
spectrum.
From the two expressions above, it becomes clear

that the calculation of the equilibrium energy spread
and transverse emittance involves the knowledge of the
differential cross section of the Compton scattering. This
allows us, according to Eqs. (23) and (24) to extend the
Campbell’s theorem method to the case of the polarized
Compton scattering.

IV. ANALYTICAL SOLUTION IN A LOW
RECOIL APPROXIMATION

Analytical expressions can be found for the general case
of “head-on” collisions, unpolarized relativistic beams and
assuming a negligible recoil, so that x ≪ 1 which implies
Ee − Eγ ≈ Ee. This is a practical example providing the
closed-form expressions for the equilibrium emittance and
energy spread.
Considering Eq. (2) with r ¼ y

xð1−yÞ the Compton differ-
ential cross section is

dσc
dy

¼ 2πr2e
x

 
1þ 1

1 − y
− y −

4y
�
1 − y

xð1−yÞ
�

xð1 − yÞ

þ PePc

ð2 − yÞ
�
1 − 2y

xð1−yÞ
�
y

1 − y

!
(25)

and substituting y ¼ Eγ

Ee
and x ¼ 4γ2EL

Ee
it reads:

dσc
dEγ

¼ πr2e
2γ2EL

 
Ee − Eγ

Ee
þ Ee

Ee − Eγ

−
EeEγ

�
1 − EeEγ

4γ2ELðEe−EγÞ
�

γ2ELðEe − EγÞ

þ PePc

Eγ

�
2 − Eγ

Ee

��
1 − EeEγ

2γ2ELðEe−EγÞ
�

Ee − Eγ

!
; (26)

where it is still possible to separate the unpolarized and
the polarized contributions. Taking into account only the
unpolarized part and imposing Ee − Eγ ≈ Ee one obtains
the following expression for the differential cross section:

dσnpc
dEγ

¼ πr2e
2γ2EL

 
2 −

Eγ

�
1 − Eγ

4γ2EL

�
γ2EL

!
(27)

and rearranging the terms the final expression reads:

dσnpc
dEγ

¼ πr2eðE2
γ − 4γ2EγEL þ 8γ4E2

LÞ
8γ6E3

L
: (28)

In these approximations the integration of Eq. (28) gives
the total cross section which is equal in this case to the
Thomson cross section σT :Z

4γ2EL

0

dσnpc
dEγ

dEγ ¼ σT ¼ 8

3
πr2e: (29)

At this point, plugging the differential cross section
[Eq. (28)] in the integrals of Eqs. (18) and (23), it is
possible to provide the analytical form for the average and
the variance of the emitted photon energy:

hEγi ¼ 2ELγ
2 and σ2Eγ

¼ 28

5
E2
Lγ

4: (30)

Inserting the above relations into Eq. (23), the relative
equilibrium energy spread reads:

δComp
E ≡ σComp

Ee
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

10

ELγ

mec2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

10

λC
λL

γ

s
; (31)

where λC ¼ h=mec ≈ 2.43 × 10−12 m is the Compton
wavelength of the electron and λL is the wavelength of
the laser. It can be pointed out that the energy spread
induced by the Compton scattering is independent of the
laser power and machine parameters.
In order to evaluate also the emittance, the Compton

differential cross section and the average energy have
to be plugged into Eq. (24), where the integration is done
over the whole electron angular range after the Compton
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scattering. Given the approximations discussed above, the
energy of the scattered photon Eγ corresponding to the
maximum electron deflection θmax

e [see Eq. (22)] is found to
be Eγðθmax

e Þ ¼ 2γ2EL. Evaluating the integral in Eq. (24),

one gets σ2θe jEγ
¼ 6E2

Lγ
2

5E2
e
. Therefore, the variance of the

electron transverse angular deflection can be written as:

hθ2ei ¼
3

10

EL

γmec2
¼ 3

10

λC
λL

1

γ
: (32)

Projecting it onto the x-y plane, one has hθ2x;yi ¼ 1
2
hθ2ei.

As stated before, the transverse emittance is related to the
angular spread of the electron beam σθe as

ϵComp
x;y ≡ ϵComp

⊥ ¼ 2hθ2x;yiβ� ¼
3

10

λC
λL

1

γ
β�; (33)

that corresponds to the equilibrium normalized emittance of

ϵComp
n⊥ ¼ γϵComp

⊥ ¼ 3

10

λC
λL

β�: (34)

Assuming a Compton ring working at 1.3 GeV electron
beam energy with the IP beta function β� ¼ 1 cm and
together with a 1 μm (1.17 eV) wavelength laser, the
normalized emittance due to the Compton scattering is
∼7 × 10−9 m · rad. The equilibrium energy spread accord-
ing to Eq. (31) is ∼6%.
Using different methods, the corresponding results

obtained in [40,41] are in full agreement with the
Campbell’s theorem method. Only in [25], there is a
difference given by a factor 1=

ffiffiffi
2

p
in the calculated

equilibrium energy spread. However, in a later publication
[42] the author pointed out this difference and gave the
proper result.
In the case of a “nonzero” collision angle ϕ (see Fig. 1)

between the laser pulse and the electron beam (ϕ ¼ π
signifies the “head-on” collisions) in the formulas for the

equilibrium energy spread [Eq. (31)] and the normalized
transverse emittance [Eq. (34)], the wavelength of the laser
λL should be substituted by the 2λL

1−cosϕ in order to extend the
considerations for the case of oblique collisions [41,43].

V. NUMERICAL SOLUTION FOR POLARIZED
INITIAL STATES

Often it is not possible to get an analytical solution, but
numerical integration can easily provide the correct esti-
mations. As an application example the Compton scattering
including the polarization of the initial states has been
considered. In this case Eq. (25) has been taken into
account and the expressions Eqs. (23) and (24) have been
integrated numerically.
Since the asymmetry in the Compton differential cross

section between the PcPe ¼ �1 states is small at moderate
electron beam energy (Ee < fewGeV) and becomes very
large at higher electron energies, an example considering
a 10 GeV electron beam energy and a 1 μm wavelength
laser has been taken into account. In this case, changing
the initial polarization states introduces ∼18% of variation
in the normalized transverse equilibrium emittance (see
Fig. 2). On the other hand, for the relative energy spread, as
illustrated in Fig. 2a, this results in a ∼2% deviation. The
emittance and energy spread dependence on the polariza-
tion product PcPe is almost linear at low electron beam
energy (Ee ∼ 1 GeV), although at energies higher than a
few tens of GeV it shows rather nonlinear behavior. It is
worth pointing out that varying the initial polarization
states, there is not a simultaneous net cooling effect in
either emittance or energy spread in respect to the unpo-
larized case PcPe ¼ 0.
Given that the polarized cross section asymmetry is

strongly dependent on the energy, the relative variation of
the energy spread and of the emittance have been evaluated
in the PcPe ¼ �1 range for different beam energies (see
Figs. 3b and 3a). Strong variations are expected for the

(a) (b)

FIG. 2. Compton dynamics including the polarization of the initial states. (a) and (b) show, respectively, the equilibrium normalized
transverse emittance and relative energy spread as a function of the product of electron and laser photon polarizations for a 10 GeV
electron beam energy. A 1 μm wavelength laser and an IP beta function β� ¼ 1 cm are taken into account.
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high energy beams. This has to be taken into account in
Compton polarimetry and beam energy measurements by
evaluating the total equilibrium energy spread or emittance
including the synchrotron radiation emission. This is the
subject of the next paragraph.

VI. EQUILIBRIUM ENERGY SPREAD AND
EMITTANCE IN A COMPTON RING

In a Compton storage ring configuration the final equi-
librium energy spread is the result of both the Compton and
the synchrotron emission processes. In this case, supposing
that synchrotron radiation and Compton scattering are
uncorrelated, the final energy variance will be the sum of
the weighted variances of the two different processes:

σ2E ¼ σ2SynchðΔEÞSynch þ σ2CompðΔEÞComp

ðΔEÞSynch þ ðΔEÞComp
; (35)

where σSynch, σComp are, respectively, the equilibrium
energy spread in presence of the synchrotron radiation and
Compton scattering; ðΔEÞSynch, ðΔEÞComp are the energy
losses per turn and per particle caused by synchrotron
radiation and Compton scattering.
The natural energy spread and energy loss due to

emission of the synchrotron radiation is determined by
the energy of the stored electron beam and the lattice design
(by the bending radii of the dipoles in the case of an
isomagnetic ring) [44].

δSynchE ≡ σSynch
Ee

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cqγ

2Is3
ð2Is2 þ Is4Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cqγ

2Is3
JeIs2

;

s
(36)

ðΔEÞSynch ¼
Cγ

2π
E4
eIs2; (37)

where Is2 and Is3 are the synchrotron radiation integrals,
Cγ ¼ 8.846 × 10−5 m=GeV3 and Cq ¼ 3.8319 × 10−13 m

are the quantum coefficients and Je is the damping partition
number of the longitudinal plane.
The energy spread induced by Compton scattering is

given by Eq. (31) and the energy loss per turn and per
particle is set to the average energy of the emitted photons
defined by Eq. (18), that is ðΔEÞComp ¼ F hEγi ¼ LσchEγi.
To provide a numerical estimation we can give a basic

example taking into account an isomagnetic ring with
ρ ¼ 5.37 m (bending radius of the ATF ring in KEK,
Japan) and the Compton “head-on” collisions with x ≪ 1
and round beams. In this case Eqs. (36) and (37) can be
expressed as:

δSynchE jiso ¼
ffiffiffiffiffiffiffiffiffiffi
Cqγ

2

Jeρ

s
; (38)

ðΔEÞSynchjiso ¼
Cγ

ρ
E4
e; (39)

and the luminosity of the Compton collisions reads:

L ¼ NeNph
1

2π

1

2σ2e;L
; (40)

where σe;L is the electron or the laser RMS beam size in
the IP. As a reference normalization for the Compton
interaction probability we set the laser pulse energy in a
way that we have a unit probability to have one scattering
per turn per particle with the laser and electron beam sizes
of 25 μm:

Lσc ¼ σcNeNph
1

2π

1

2σ2e;L
¼ 1: (41)

Solving Eq. (41), one gets the laser pulse energy equals
to 22 J. Substituting and integrating Eq. (35) it is possible to
evaluate the partial impact of the Compton backscattering
and synchrotron radiation on the beam dynamics as a

(a) (b)

FIG. 3. Compton dynamics including the polarization of the initial states. (a) and (b) show, respectively, the deviations in the
equilibrium normalized transverse emittance and relative energy spread (see Fig. 2) at different electron beam energies varying the
polarization product in the PcPe ¼ �1 range. The collision parameters are the same as for Fig. 2.
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function of the electron beam energy and for different laser
pulse energies (see Fig. 4). At high energy the synchrotron
damping dominates and the asymptotic behavior follows
the synchrotron dynamics characteristics, especially for the
low Compton flux. On the other hand, the Compton effect
is very effective at low energy, where a net energy spread
increase is appearing. The derivative change as a function
of the beam energy is noticeably a function of the laser
pulse energy. A numerical analysis of the derivative change
location for different laser pulse energies shows that the
normalized electron beam energy at which the final
equilibrium energy spread reaches its maximum is related
to the normalized electron beam energy at which the energy
losses given by the two mechanisms are equal, i.e.,

Ei
eðδmax

E Þ
E0
eðδmax

E Þ ¼
Ei
eððΔEÞComp ¼ ðΔEÞSynchÞ

E0
eððΔEÞComp ¼ ðΔEÞSynchÞ

; (42)

where the superscript i indicates the values taken at
different laser pulse energies and E0

e is a reference energy
for normalization.
It is worth pointing out that as opposed to the case of the

equilibrium defined only by the Compton scattering, the
result obtained considering the Compton scattering and
synchrotron radiation is a function of the Compton colli-
sion luminosity.
The same analysis worked out for the energy spread can

be done in the case of the transverse emittance. In this case
we have that:

ϵ⊥ ¼ ϵSynchðΔEÞSynch þ ϵCompðΔEÞComp

ðΔEÞSynch þ ðΔEÞComp
: (43)

Taking the expression for the natural beam emittance
[44] and assuming the previous Compton collision param-
eters, one can evaluate the relative contributions in the case

of the ThomX ring [4] (bending radius ρ ¼ 0.35 m) as
illustrated in Fig. 5. It is possible to appreciate the net
transverse cooling effect of the Compton scattering in a
large energy range. For lower energies, the contribution
provided by the Compton scattering is larger and the
resulting emittance defined by Eq. (43) follows the
Compton induced emittance (see Fig. 5 where all four
curves “Sþ C” coincide with the curve calculated for the
Compton induced emittance). At higher energy, the syn-
chrotron damping again dominates and the asymptotic
behavior follows the emittance given by the synchrotron
dynamics.
In a real Compton ring the energy spread and emittance

are also affected by different collective effects leading
to the increase of the 6D-emittance as a function of the
electron bunch charge. By applying the Campbell’s theo-
rem and the weighted average sum it should be possible
to extend this analysis to a more complex scenario, like
including the coherent synchrotron radiation (CSR) effects.

VII. CONCLUSIONS

In the framework of the Compton ring dynamics the laser
photon-electron scattering can be seen as a shot noise
process. In this context, it is possible to evaluate the
equilibrium energy spread and emittance of the beam by
means of Campbell’s theorem. This method allows us to
extend the calculations to the numerical evaluation of
polarized beam equilibrium as well. An example at
10 GeV was provided together with the relative variation
of the equilibrium energy spread and emittance as a
function of energy showing a few percent variation for
the energy spread but a bigger contribution for the
emittance. The relative contributions as a function of
energy for two different polarization states have been
illustrated showing a slow increase. The final analytical

FIG. 4. Compton ring relative energy spread. The natural
energy spread (“Synch”) is calculated for an isomagnetic ring
with magnetic radius of 5.37 m. A 1 μmwavelength laser is used
for estimating the Compton induced energy spread (“Comp”).
The final equilibrium energy spread (“Sþ C”) is given for four
different laser pulse energies and for the electron and laser beam
size of σe;L ¼ 25 μm.

FIG. 5. ThomX ring equilibrium transverse emittance. The
natural emittance (“Synch”) is calculated taking into account the
lattice of the ThomX ring. A 1 μm wavelength laser is used for
estimating the Compton induced emittance (“Comp”). The final
equilibrium transverse emittance (“Sþ C”) is given for four
different laser pulse energies and for the electron and laser beam
size of σe;L ¼ 25 μm.

I. CHAIKOVSKA AND A. VARIOLA Phys. Rev. ST Accel. Beams 17, 044004 (2014)

044004-8



results given in the low recoil approximation are in perfect
agreement with those obtained by matching the laser
cooling and quantum excitation terms in the Compton
backscattering. They show that the equilibrium emittance
and energy spread are not dependent on the luminosity but
depend only on the differential cross section. An extrapo-
lation to the case of the equilibrium emittance and energy
spread given by both Compton and synchrotron radiation
has been illustrated. This shows that in this case, the
equilibrium state is a function of the Compton collision
luminosity. These methods can be extended to other
radiation mechanisms and instability processes.
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