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The performance of future linear colliders will depend critically on beam-based alignment and feedback
systems. In ILC and CLIC it is planned to perform dispersion-free steering in the main linacs. To this end
the beams are accelerated with different gradients to evaluate the dispersion. The steering is performed by
minimizing the average offset of the different beams in the beam position monitors and, at the same time,
the difference between the beam trajectories. The experimental verification of the dispersion-free steering
algorithm is essential to prove its effectiveness and to prepare the commissioning of such machines. The
algorithm should take an orbit measurement at every cycle (train to train), estimate the correction from this
information, and, from the system response matrices, apply the correction. We have successfully tested
dispersion-free steering at FACET, including an adaptive system-identification algorithm, where the system
response matrix is measured dynamically and automatically.
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I. INTRODUCTION

The proposed high-luminosity, electron-positron linear
colliders CLIC [1] and ILC [2] require normalized vertical
emittances of the order of 10 nm at the interaction point in
order to reach the target luminosities of 1034=cm2=s. Two
of the main sources of emittance growth are: the emittance
dilution due to spurious dispersion in the quadrupoles,
which scales as the absolute misalignment of the beam
position monitors (BPMs) squared, and the emittance
dilution due to transverse wake fields which scales as
the square of the accelerator structure offset [3]. For
instance, the main linacs of the CLIC machine at 3 TeV
center of mass energy are 21 km long and contain about
2000 quadrupoles and BPMs [1]. Due to the sheer amount
of components, local BBA alignment techniques are
impractical and excessively time consuming. Instead, in
order to align such linacs in a robust and more practical
way, global correction algorithms have been studied
intensively during the last decades [4–7]. For both CLIC
and ILC global dispersion-free correction algorithms [4]

have been proposed and foreseen as part of the linac tuning
procedures [1,2].
In this paper we study a variant of dispersion-free

correction, which is based solely on a model of the linear
response of each BPM to a corrector kick. We summarize
such an information in the system response matrix, R,
defined as

Rij ¼
∂xi
∂θj ;

where xi is the position of BPM i and θj the set-point of
corrector j. To first order, Rij is identical to the elementM12

of the linear transfer matrixM from the jth corrector to the
ith BPM. The response matrix is calculated using orbit
differences and, to first order, is independent of the absolute
beam trajectory. This is also true for the effect of the dipole
mode of the transverse wake, which is linear in the
transverse coordinates [8]. The response matrix can in
principle be extracted from a computer model of the
machine. The accuracy of the response matrix then depends
on the quality of the model. In this paper we study an
alternative approach where this matrix is inferred from
repeated measurements on the machine. This approach has
the advantage that all linear contributions to the response
matrix are correctly included. We have developed a
system identification algorithm that automatically combines
several measurements [9].
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The knowledge of the response matrix allows us to
apply beam-based alignment techniques. Among these
techniques, dispersion-free steering (DFS) is recognized
as one of the most effective in preserving the low
emittances of future linear colliders. DFS aims at correcting
orbit and dispersion simultaneously, effectively overcoming
systematic errors due to BPM offsets.
For the feasibility studies of linear colliders, an exper-

imental proof of principle of the linac tuning algorithms,
including DFS, is highly anticipated as most of emittance
preservation studies rely solely on simulations. Early
experimental tests of beam-based alignment were per-
formed at the Stanford Linear Collider (SLC), as reviewed
in Ref. [10], however did not give fully conclusive results
and did not demonstrate emittance reduction [11]. One
reason given for the limited performance was reported to be
a potential mismatch between the model used to compute
the correction, entirely based on an ideal computer lattice
and the real machine.
Other experimental studies of beam-based alignment

were later performed using a variant of dispersion-free
steering, called “two-beam” dispersion-free steering, both
at the SLC [10] and at the circular collider LEP [12]. The
two-beam dispersion correction consisted of applying DFS
measuring the dispersion as the difference between the
orbits of the electron and positron beams. Two-beam
DFS was applied with great success at LEP: the vertical
dispersion was reduced to the expected design minimum,
with a significant impact on the vertical emittance and on
the luminosity. The same technique was less successful at
the SLC, where it led to a vertical emittance at the end of
the linac as large as 2–3 times the value at injection [13].
The difference between the two-beam DFS performance at
the SLC and at LEP can be understood if one considers how
different the machine knowledge is when operating with a
ring or with a linac. In the case of a ring repeated
measurements on the closed orbit can be performed to
precisely measure the machine optical properties prior to
compute a correction, whereas the bunches travel a linac
only once. Mismatches between the ideal and the real
optics are thus much harder to identify in a linac.
Furthermore, neither in ILC nor in CLIC will the electrons
and the positrons share the same beam-pipe, rendering
impossible such an efficient “two-beam” dispersion meas-
urement. It is worth recalling that the sensitivity of DFS to
energy errors scales with 1=ΔE (the effective energy
change used to measure the dispersion). Using electrons
and positrons gives an effective energy difference of 200%,
which greatly improves the performance of DFS. In a linac
with only electrons, or only positrons, the feasible energy
difference that can typically be achieved amounts to about
5–10% of the beam energy, posing an additional challenge
that emphasises the relevance of the study here presented.
With the availably of a new linac test facility, the

FACET test-facility at SLAC [14], which makes use of the

first 2 km of the Stanford Linear Collider, tuning
algorithms for linear colliders can again be tested exper-
imentally. In this paper we report on the first experimental
proof of principle of emittance reduction in a long linac
by applying dispersion-free correction using automatic
system-identification algorithms.
The paper is organized as follows: First, we describe the

system identification approach used to construct the
response matrix. Then, we present the dispersion-free
correction technique, and verify the combined effect of
the system identification and dispersion-free correction by
PLACET [15] simulations of a model of the FACET linac.
Finally, we report on experimental results from the FACET
linac where system identification and dispersion-free cor-
rection, tested on a computer model, were applied in an
identical manner to the real machine.

II. SYSTEM IDENTIFICATION

The orbit response of an accelerator to its correctors
provides important information to many beam-based meth-
ods used during the operation of a modern particle
accelerator. Examples include beam-based alignment, orbit
feedback systems, diagnosis and error detection tools. The
orbit response is a matrix usually measured by exciting
each corrector one after the other and recording the excited
trajectory. The achievable accuracy of this method is
limited by the maximal excitation strengths and by the
resolution of the BPMs. In Ref. [9] we have successfully
studied the possibility of using many small excitations over
time to gradually improve the system knowledge with the
help of system identification algorithms that optimally
reduce the effects of the measurement noise.
System identification is the process of estimating

unknown parameters of a system with known structure
by measurements of its response. This problem is addressed
by exciting the measured system with a given set of
actuators and using the system response to estimate the
unknown parameters. A schematic of the algorithm is
shown in Fig. 1. An important requirement for system
identification is that the excitation is broad enough to
sample the whole parameter space of the system to be
identified. In the case of particle accelerators the maximal
allowable beam excursion can become a limiting factor. For
this reason, the excitation has to be chosen such that every
beam excursion xik in the ith BPM due to an excitation of
the kth corrector stays below a given maximal excursion
jxikj < jx̂j. The beam excursion xik can be written as

xik ¼
ffiffiffiffiffiffiffiffiffi
βiβk

p
sin ðϕi − ϕkÞ

ffiffiffiffiffiffi
Ek

Ei

s
θk; (1)

where β and ϕ represent the β-function and the phase
advance at a certain position, E the beam energy, and θk is
the kick applied to the beam by the corrector. This formula
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suggests that BPMs and correctors located at large β-
functions are favorable, and allows us to estimate the
required kick to excite an arbitrary oscillation. At FACET
we chose to use 1 mm large excitations in the horizontal
direction, and 0.5 mm in the vertical one. We furthermore
selected a subset of BPMs and correctors with large beta
functions, according to Eq. (1), to maximize the signal-to-
noise ratio of our measurements.
To estimate the response matrix, different algorithms can

be found in the literature, see for instance [16,17]. In our
study we focused only on the algorithms that can be
formulated in a recursive form (very well suited for on-
line calculation), and ultimately chose the recursive least
squares (RLS) algorithm: a recursive variant of the well-
known least squares (LS) solution. Figure 1 depicts the
block diagram of this algorithm: the correctors are indi-
cated with uk, the BPMs with yk, and the BPM noise with
nk. The response matrix to be identified is R, and d is the
reference orbit.

III. BEAM-BASED ALIGNMENT

Beam-based techniques use beam measurements to infer
beam properties such as orbit and dispersion, and to
improve the machine performance based on this informa-
tion. Such techniques include for example: quadrupole-
shunting, beam-based alignment, energy monitoring,
feedback loops, etc. Among the alignment algorithms,
“one-to-one” (1∶1) is a correction technique that tries to
steer the beam to its nominal trajectory by minimizing the
reading of each BPM using appropriate corrector strengths.
This technique is useful to ensure the beam travels through
the machine without hitting the walls, but in general is not
sufficient to preserve nanometer-scale emittances. The
reason is that 1∶1 correction does not take into account
the systematic errors introduced by misaligned BPMs.
During the last decades improved algorithms have been
developed to overcome this limitation: one example is DFS,
first presented in Ref. [4]. DFS is a variant of 1∶1 correction
that attempts simultaneously to steer the beam to its

nominal orbit and to correct the beam dispersion, by
minimizing the following merit function:

χ2 ¼
X
bpms

x2i þ ω2
X
bpms

ðx0i − xiÞ2 þ κ2
X
corrs

θ2j ; (2)

where θ is the vector of unknowns, θj (the corrector
strengths); and the vectors x, x0 are, respectively, the
BPM readings for the nominal and the dispersive beams,
xi and x0i. The parameters κ and ω are free and need to be
tuned to achieve best performance: ω is a weighting factor
balancing between orbit and dispersion correction, κ can be
used to limit the amplitude of the corrections (increasing κ
is equivalent to cutting the least significant singular values
of the system matrix, larger values of κ effectively cut more
singular values). The factor κ is generally chosen empiri-
cally, but the weighting factor ω can be estimated using the
formula:

ω2 ¼ σ2bpmoffset þ σ2bpmprecision

2σ2bpmprecision

: (3)

A careful choice of the free parameters is crucial to achieve
optimal performance. The least squares solution of Eq. (2)
with respect to the correctors can be written as the
following system of equations,

" x
ω · ðx − x0Þ

0

#
¼

" R
ω · ðR −R0Þ

κ · I

#
θ; (4)

where R and R0 are the response matrices of the nominal
and the test beams used to quantify the dispersion; I is the
identity matrix.
Dispersion-free steering requires a test-beam that follows

a dispersive trajectory to measure the dispersion. A few
techniques are routinely used to measure the dispersion:
one of them consists of creating an energy difference
upstream the section to be corrected and then measuring
the orbit deviation in the BPMs. We identified two possible
methods for creating such an energy difference at FACET:
(i) moving the klystrons phase shifters to modify the energy
gain in some sectors; (ii) changing the klystron amplitudes
(or switching off some klystrons).We adopted the first
method, as it seems the most practical to implement. If
positrons will be available in the future, BPM readings
from both electron and positron trains could be combined to
obtain a dispersion measurement.

IV. SIMULATION OF THE EXPERIMENT

A simulation of the entire experiment has been carried
out to evaluate the performance of dispersion-free steering
and system-identification algorithms at FACET, using the
tracking code PLACET. In simulation, we chose to use a
BPM resolution of 5 μm: this is compatible with the BPM

FIG. 1. General system identification scheme with the corrector
set points θk, the BPM measurements xk, and the BPM noise nk.
In the case of system identification for orbit response matrices the
system parameters to be identified are the orbit response matrix R
and the reference orbit d, where the hat index is used to
distinguish between estimated and real parameters.
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resolution achieved at FACET, as it is explained in the
following sections. A summary of the relevant parameters
of the simulation is presented in Tables I and II.
In the first part of our simulated experiment, the system

identification algorithm has been applied over the linac in
order to evaluate the measurement of the system response
(that is, we did not use the theoretical response matrix). The
convergence parameter we used to quantify how well
the system-identification algorithm has learned the
response matrix, ξ, is the relative “Frobenius” distance
[the Frobenius distance is defined as : ∥R∥F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðRRTÞ

p
]

between the estimated and the ideal response matri-
ces: ξ ¼ ∥Rmeasured − Rideal∥F=∥Rideal∥F.
The result of the simulations, showing the convergence

for different values of the permitted excitation, are shown in
Fig. 2. In this plot the black line, i.e., the line manifesting
the quickest convergence, corresponds to the realistic case
of 1 mm orbit oscillation like we have used during the
experiment.

To apply DFS, we measured the dispersion by offsetting
by 5 deg the phase of a sub-booster upstream the part of
linac we applied the correction in. A careful optimization of
the DFS free parameters resulted in κ ¼ 1 ½μm=kV�,
ω ¼ 14. The results of the simulations are shown in
Fig. 3. It must be emphasized that we do not expect to
obtain a perfect match between simulation and experimen-
tal measurements. The final result of the correction algo-
rithms depends on several parameters that can significantly
differ between the computer-simulated and the real experi-
ment, for example: the focusing properties of the lattice, the
choice of BPMs and correctors used during correction, how
the energy difference is created to measure the dispersion,
the input bunch length, the input bunch population, etc.
However, since we reconstruct the machine response in
both cases, these differences do not affect the performance
of the correction as such. This performance can be
evaluated in simulation, where it is shown that applying
DFS reduces the emittance growth more effectively than a
simple orbit-based correction. It must be noted that a
residual emittance growth is still observable.
A further step we took to assess the performance of

SYSIDþ DFS was to simulate the impact of an imperfect
model knowledge on DFS itself; that is, apply DFS using
response matrices spoiled by BPM random noise, instead of
the ideal, theoretical, matrices. At this purpose we averaged
the emittance growth of 1000 different random seeds, not
just 100 like we did previously, because in this case the
numerical sampling of the system must not just take into
account the randomness of the misalignments, but also the
arbitrariness of the response matrix; in fact each seed is
subjected to a different set of misalignments and a different
imperfect response matrix. Figure 4 shows the impact of a
1% error and 5% error on the performance on DFS.
An analysis of the performance of DFS has been carried

out to achieve full understanding of the system in study.

TABLE I. Misalignment and BPM precision values used for in
the FACET linac simulation.

Symbol Value, RMS

σquadrupole offset 100 μm
σbpm offset 100 μm
σbpm precision 5 μm

TABLE II. Relevant beam parameters at the injection of the
FACET linac.

Symbol Value

γϵx 30 μm · rad
γϵy 2.5 μm · rad
σz 1 mm
σE 1%
q 1.6 nC
E0 1.19 GeV

FIG. 2. Convergence of the system identification algorithm.
A relative error of 1% is considered sufficient to perform BBA.
The result is the average of 100 random seeds.
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FIG. 3. Emittance growth along the vertical axis before and
after dispersion-free steering. The result is the average of 100
random seeds of misalignment.

A. LATINA et al. Phys. Rev. ST Accel. Beams 17, 042803 (2014)

042803-4



DFS has been applied to simulated machines affected by
only one single source of imperfection at the time; four
cases have been studied: only misaligned quadrupoles, only
misaligned cavities, only misaligned BPM with perfect
resolution, and perfectly aligned BPMs only affected
by measurement noise. Each single case has been com-
puted for different values of the parameter ω, effectively
showing how the performance of 1∶1 (small values of ω)
evolves toward more effective dispersion corrections (large
values of ω). Figure 5 shows the result of this simulation.
The plot shows that the dominating contributions to
emittance dilution is due to structure misalignments, which
demonstrates the strong effect of the wakefields in the
FACET linac.

V. EXPERIMENTAL SETUP

As an experimental test bed we targeted a 500 m section
of the SLAC FACET linac, starting 200 m downstream of
the injection into the linac and ending 700 m downstream.
The bunch length in this part of the linac was about 1 mm.
The bunch charge was 1.6 nC and the energy at the starting
point of the correction was 4 GeV. We denote as the
“golden orbit” the initial electron orbit as steered manually
by the FACET operators, before our correction.
Before dispersion correction an initial system identifi-

cation for both the nominal orbit, R, and the dispersive
orbit, R0 is required. In order to achieve an effective BPM
resolution of less than 5 μm, as shown to be required by
simulation, 100 BPM samples were averaged for each
measurement. The resulting total time to identify the orbit
originating from one corrector was about 2 min, leading to
about 4 h for identifying 60 correctors, for nominal and
dispersive optics, in both planes, over 500 m of the linac.
About 75% of the total identification time comes from
waiting for corrector set point change to stabilize, about
25% comes from the BPM sampling (100 samples at
30 Hzþ functions overhead). Although the identification
is relatively time consuming, once the linac model has been
identified one correction iteration takes only 2 min to
perform since the calculation of the correction takes
negligible computational time and all corrector set-points
can be changed simultaneously. New scripts, based on the
SLACAIDA interface to the EPICS control system [18,19],
were developed for the experiment allowing the system
identification and the global correction to be applied in a
fully automatic manner. A “flight simulator” version of the
experiment was created, in which we interfaced the
simulation with the experimental scripts that we developed,
in order to test all the online scripts on a computer before
using them on the real machine.
To identify the response matrix for the dispersive test

beam, required for the dispersion correction, we changed
the phase of a single klystron upstream the section of
interest, from 0 to 90 deg. The selection of the klystron and
the phase change was based on simulation, and calculated
to create an energy difference of the test beam with respect
to the main beam of 156 MeV (about 0.78% relative energy
difference at the end of the linac). No change of the
quadrupole magnet strength was applied, thus avoiding
potential issues with dependence of the magnetic centers of
the quadrupoles on the magnetic fields.

VI. RESULTS

First, system identification for the selected 500 m of the
linac was performed. Figure 6 shows the orbit response
matrix, R, as measured by estimating the orbit difference
from alternate-sign correctors kicks and then applying the
system identification algorithm to construct the response
matrix. We then applied a global orbit correction to verify
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FIG. 4. Emittance growth after dispersion-free steering with
imperfect model, compared to the case with perfect mode. The
results are the average of 1000 random seeds.
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dominating contribution to emittance dilution is due to structure
misalignments, which demonstrates the strong effect of the
wakefields on the FACET linac.
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that the system identification has been successful. The orbit
correction was performed by artificially creating an orbit
bump with respect to the golden orbit, and automatically
steering back to the target orbit (the golden orbit). Figure 7
shows the results of the global orbit correction. The
correction minimizes the rms difference of the current
orbit (averaged over 100 BPM samples) to the target orbit.
The residual difference, of the order of 100 μm, between
the corrected orbit was mainly due to machine drift.
The global dispersion correction algorithm was then

applied, as described by Eq. (4). The weighting of the
difference orbit with respect to the nominal orbit was set to
ω ¼ 10, which gave the optimal dispersion reduction after
trying a range of weights. This is in good correspondence

with the theoretical calculation of the weighting,
ωtheory ¼ 14, calculated from Eq. (3), and with the result
of the simulation, as visible in Fig. 5. To stabilize the
solution when inverting the system matrix given by Eq. (4),
70% of the singular values were ignored corresponding to
the least significant correction modes. The correction gain
used was 0.75. The results are summarized in Fig. 8 (top).
The horizontal dispersion is corrected by a factor 3 and the
vertical dispersion by a factor 4. Note that the rms orbit is
not necessarily improved as the dispersion is reduced, as is
expected. During the dispersion correction, the tails
observed on the transverse profile monitor at the end of
the FACET linac were being reduced for each iteration, as
shown in Fig. 8 (bottom). The dispersion correction results
were reproducible and gave robust convergence, once good
parameters for the gain, the weight and the singular value
cut were established. Furthermore, the response matrices
identified the first day were also shown to give a robust
correction in the two days following the system identi-
fication, i.e., the FACET machine was stable enough over
this period of time to not have to reidentify the machine.
Finally, a dedicated experiment was performed to mea-

sure the effect of the dispersion correction on the linac
emittance. For this proof-of-principle experiment we arti-
ficially spoiled the emittance in the linac by randomly
exciting the correctors upstream of the section of interest;
this induced an orbit difference between nominal and test
beam of 1 mm, which generated a significant emittance
growth. Then, the dispersion-free correction was applied
and for each iteration the emittance was measured in the
first emittance measurement station after the section where
the correction was applied, located just after the FACET
mid-linac compressor chicane. This measurement station
uses four wire scanners. The wire scanners are the same as
were designed for the SLAC Linear Collider [20]. Each
wire scanner measures the beam profile at a different z
location. Based on asymmetric Gaussian fits, the emittance
can be estimated, together with the beam Courant-Snyder
parameters [21]. The results, shown in Fig. 9, demonstrate
that the global dispersion correction successfully reduces
the measured emittance. In particular, the vertical emittance
is reduced by a factor 30. Note that in the vertical plane the
emittance is reduced simultaneously with the vertical
dispersion, while the norm of the vertical absolute orbit
is practically constant after the first iteration. This shows
that the reduction in dispersion is the cause of the reduction
of the emittance. The residual emittances after the correc-
tions were of the order of 10 μm in the vertical plane and
40 μm in the horizontal plane. Each iteration takes only
about 2 min to perform on 500 m of the linac. In principle,
the correction time per iteration would be of the same order
on a larger machine (for example ILC or CLIC) assuming a
good model has been established, and assuming all BPMs
can be read simultaneously and all correctors can be
changed simultaneously.

FIG. 6. The orbit response matrix, R, as measured by estimat-
ing the orbit difference from alternate signs correctors kicks and
applying the system identification algorithm.
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FIG. 7. The rms difference of the current orbit (averaged over
100 BPM samples) with respect to the target orbit (taken here as
the golden orbit). This demonstrates that the global orbit
correction algorithms successfully reduces the orbit difference,
and that the orbit converges in a robust way to a minimum
value. In particular, this demonstrates that the machine system
identification has been successful. Iteration zero is before the
correction.
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way to a minimum value. The horizontal dispersion is corrected by a factor 3 and the vertical by a factor 4. Note that the absolute orbit is
not necessarily improved as the dispersion is reduced, as is expected. (bottom) Phosphorous beam profile monitor measurements at the
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FIG. 9. (a) The rms difference of the current orbit with respect to the golden orbit (dotted lines), and the rms value of the difference
orbits (full lines), over 500 m in the first half of the FACET linac, for each iteration of the correction. (b) The measured emittance just
after the corrected section, as measured for each iteration of the correction. We observe that the global correction successfully reduced
the measured emittance. Note that in the vertical plane the emittance is reduced in concert with the vertical dispersion, while the norm of
the vertical absolute orbit is practically constant after the first iteration. This shows that the reduction in dispersion is the cause of the
reduction of the emittance. Each iteration takes about 2 min to perform on 500 m of the linac. Iteration zero is before the correction.
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As shown by the simulation studies reported in Fig. 5,
it is probable that the transverse wake fields in offset
accelerating structures dominate the residual emittance
growth. For the FACET linac we are currently studying a
variation of dispersion-free steering using a different-
charge test beam, a “wake-free steering,” that may be
able to further reduce the emittance. For CLIC or ILC,
however, an energy-different test beam, as used in this
experiment, is what is foreseen to be used; therefore we
consider the demonstration of this technique on the
FACET linac as an important milestone in the linear
collider studies.

VII. CONCLUSIONS AND OUTLOOKS

We have demonstrated the proof of principle of a global
dispersion-free correction algorithm on 500 m of the
FACET linac. The correction is based on a model
automatically identified via a series of measurements,
where no a priori information about the machine is
required. The dispersion-free correction robustly con-
verges to a solution where the difference orbit of a
nominal and a dispersive orbit is minimized. An artifi-
cially introduced emittance increase could be reduced by a
factor 30 by the DFS procedure, proving that correcting
the dispersion effectively improves the emittance. The
system identification and correction proposed here was
performed in a deterministic, robust, reproducible, and
automatic matter, as opposed to an empirical and labo-
rious search for a golden orbit. The success of a global
dispersion-free correction is a significant step forward
toward the validation of emittance preservation techniques
for future linear colliders.
Although dispersive emittance dilution was efficiently

corrected by DFS, the FACET linac suffers from significant
transverse wake fields, as confirmed by simulations. To
achieve further emittance reduction, dispersion-free steer-
ing could possibly be improved by measuring the impact of
the wakes using a test beam of different charge. We
are currently studying a novel scheme for a practical
implementation of such a wake-free steering at FACET.
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