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This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for
the maximum achievable current density in electron guns. Using a simple model, we derive quantitative
formulas in good agreement with simulation codes. The new scaling laws for the peak current density of
temporally long and transversely narrow initial beam distributions can be used to estimate the maximum
beam brightness and suggest new paths for injector optimization.
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Modern photoguns have made a tremendous impact on
the range of applications of electron accelerators with the
improvement of the source beam brightness by orders of
magnitude with respect to previous generations of electron
sources. The blending of high peak fields at the cathode
with sub-mm spot size and sub-ps short laser pulses have
enabled the production of very high current and low
emittance beams that can be used to drive fourth generation
light sources [1], generate copious amounts of THz
radiation [2], probe structural dynamics at the ultrafast
time scale [3], or serve as injectors for laser-based compact
accelerators [4]. Despite the extensive use of laser-driven
electron guns in a broad range of science applications, a
complete theory for the maximum current extractable from
such sources has not been derived yet.
The maximum current density in an electron source is

typically given by the Child-Langmuir law (C-L, [5]) which
is found by self-consistently solving the Poisson equation,
the equations of motion for the electrons and the continuity
equation in an accelerating gap of voltage V. The derivation
assumes (i) an infinitely wide beam in the transverse
dimensions (1D approximation), (ii) that the beam com-
pletely fills the accelerating gap so that a steady state
solution can be found, and (iii) that relativistic effects can
be neglected.
In state-of-the-art photogun designs, different schemes

and field configurations are used in the attempt to maximize
the extracted beam brightness with the optimum point
strongly depending on the specific requirements of the
beam application (for a comprehensive review see [6]).
Nevertheless, to take advantage of the time structure of the
drive lasers and increase the peak current, in all recently

commissioned or designed photoinjector sources the initial
electron beam pulse length is always much smaller than the
accelerating gap. Furthermore, the laser spot size on the
cathode in photoinjectors tends to be small (sub-mm) to
decrease the cathode emittance contribution and increase
the brightness.
Such conditions are very far from the range of

application of the Child-Langmuir formula, with its one-
dimensional steady state solution. As a matter of fact many
photoguns have achieved current densities much higher
than those predicted by the C-L [6]. A different formula is
required to describe the maximum current density for the
cases of experimental interest of sub-ps and ps laser pulses
illuminating cathodes with sub-mm spot sizes in the high
field region.
Recently a few papers proposed a solution to such a

problem in specific areas of interest. For very short
bunches, the so-called “pancake regime,” the approxima-
tion of a deltalike pulse has been adopted [7], where the
beam is seen as an infinitely thin sheet of charge, with an
associated surface charge density. The problem has also
been treated for beam transverse sizes comparable to the
accelerating gap dimensions (down to 0.1 times the gap),
first by fitting the simulation results [8], and then by
solving analytically the electric field integral after a Taylor
series expansion [9]. Nevertheless a comprehensive theory
valid for all beam aspect ratios and linking together all the
different regimes has not been proposed yet.
In this paper we propose a simple physical picture of the

problem that leads to a general solution for any beam aspect
ratio, and allows us to derive scaling laws for beam current
density. Given the connection between the current density
and the beam brightness we can then obtain a new scaling
law for the maximum brightness achievable in photo-
injectors thus expanding the result recently discussed in
[7] to beams with different aspect ratios. Such a scaling law
gives a quantitative estimate of the relation between the
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various beam parameters. The optimum initial beam shape
may indeed not be a temporally short pancakelike distri-
bution. For example, for a fixed charge, a lower extracted
current from the cathode allows for a smaller transverse
emittance.
It should be noted that if the laser energy on the

photocathode is increased to extract peak currents well
above the limits given in this paper, a different regime of
photocathode physics will occur characterized by current
oscillations (a virtual cathode instability) [10]. The direct
consequence of such instability is a strong degradation of
the beam brightness. The description of this regime is
beyond the scope of this paper.
Let us begin our discussion from the classic C-L

equation for the limiting current density:

jCL;1D ¼ 4ϵ0
9

ffiffiffiffiffi
2e
m

r
V3=2
0

d2
; (1)

where V0 is the total applied voltage in the gap, d is the gap
length, ϵ0 is the vacuum dielectric permittivity, m and e are
the electron mass and charge.
In order to get a physical picture for the electric field

and particle dynamics, we model the beam as formed by
infinitely thin disks of surface charge density σ which are
continuously emitted at the cathode plane. In the C-L
picture, the beam longitudinal slices are assumed infinitely
wide transversely, thus generating a constant electric field
Es ¼ �σ=2ϵ0, only dependent on the sheet charge density
but independent of the longitudinal distance from the slice.
In this approximation the electric field at the z ¼ 0 plane
(cathode) keeps adding up as more particles are emitted,
with the current density eventually reaching the C-L steady
state solution where the total electric field (externalþ
space charge) at the cathode changes sign.
In the case of finite transverse dimensions, the electric

field of a thin disk is not constant anymore with the distance
from the source. The on-axis field for a disk of radius R is
EsðζÞ ¼ � σ

2ϵ0
ð1 − jζj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ R2

p
Þ [11], where ζ is the on-

axis coordinate measured from the center of the disk; it is
shown in Fig. 1 together with the field of an infinitely large
charged sheet. For a finite R, the on-axis electric field dies
off quickly for an increasing distance from the disk. This
means that particles at a distance larger than zeff ∼ R will
not contribute much to direct or the image field at the
cathode.
We can then define an effective diode of length zeff , and

apply the C-L equation to this new diode geometry, where
the gap length d is replaced by zeff. The gap voltage V0 for
this effective diode can be calculated as V0

zeff
d ¼ E0zeff

which is obtained with the consideration that the potential
in the empty part of the gap is unperturbed [12]. E0 is the
gun accelerating field which is assumed constant in this
derivation. This assumption is valid in case of static
accelerating fields (DC guns) or laser pulse length much

smaller than the rf period. The space-charge limiting
current for the effective diode can then be expressed using
a modified Eq. (1) for the current density and the beam
cross section πR2 as

Isat;2D ¼ CcI0

ffiffiffi
2

p

9

�
eE0R
mc2

�3
2

; (2)

where I0 ¼ 4πϵ0mc3=e≃ 17 kA is the characteristic
Alfven current, and Cc is a order-of-unity constant that
needs to be found by fitting simulation results. A more
formal derivation of (2) is given in the Appendix.
Equation (2) shows a dependence of the emitted current

on the externally applied electric field instead of the total
voltage, which is expected in the approximations of
vanishingly small transverse dimensions where the anode
can be considered infinitely far away from the cathode.
To verify Eq. (2) we analyze two cases representative of

(i) high gradient S-band rf photoinjectors and (ii) low
frequency or DC guns. The electric field and laser pulse
length for these two cases are taken to be respectively
E0 ¼ 60 MV=m, Δt ¼ 10 ps and E0 ¼ 20 MV=m,
Δt ¼ 60 ps. Here we consider a transversely uniform laser
pulse with flattop longitudinal profile of length Δt illumi-
nating the cathode. Although ideal, such laser pulse profiles
are not uncommon in laser system designs for driving
photoemission in electron sources. Furthermore, in the case
of fully space-charge limited emission, the radial intensity
profile is flattened out in emission by the saturation.
Figure 2 shows the total charge emitted as a function of
laser spot radius on the cathode, simulated with the disk-
model simple code (blue triangles), and with three-
dimensional codes [ASTRA [13] (black squares) and
GENERAL PARTICLE TRACER [14] (green dots)] using a
transverse flattop initial distribution. The red curve shows
the theoretical beam charge, obtained as Isat;2D from Eq. (2)
times the laser pulse length Δt. A best fit for the simulated
data found a value of Cc ¼ 1� 0.1, implying an effective
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FIG. 1 (color online). (a) Definition of 2D Child-Langmuir
parameters. (b) On-axis electric field of a charged disk for infinite
(blue dotted) and finite (red dashed) transverse dimensions. The
surface charge density is the same in both cases. The on-axis
coordinate ζ from the center of the disk is normalized by the disk
radius R. The electric field is normalized by σ=2ϵ0.
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diode extension approximately equal to the beam radius at
cathode, i.e., zeff ≅ R.
Three-dimensional effects due to the radial dependence

of the longitudinal component of the space-charge electric
field and to the transverse expansion that the bunch
undergoes as it is being emitted have been ignored in
the above derivation of Eq. (2). The disk model was used
here as an intermediate step to verify the scaling law
behavior in an idealized contest. The maximum charge in
this model is the integral of all the slices emitted up to the
point where the total field at the cathode changes sign. The
model only considers the on-axis field of a charged disk,
and also does not take into account the transverse dynam-
ics. One could think that a transverse explosion in the
cathode vicinity would lower the beam density, playing a
determinant role in the extraction. The agreement of the
theory and of the disk model with the 3D simulations (see
Fig. 2) confirms that these effects are small and do not alter
the functional dependence of the emission.
The dependence on the externally applied electric field

can also be verified with the simulations, and the results are
shown in Fig. 3(a) for a particular case of initial beam
radius R ¼ 40 μm and Δt ¼ 15 ps.
Each point of Figs. 2 and 3(a) has been taken simulating

a very large laser energy. The amount of extracted charge is
found to be independent of the laser energy in the limit

when the emitted charge reaches the space-charge satu-
ration level. This value is compared with the charge
predicted by the theory [current value from Eq. (2) multi-
plied by the laser pulse length Δt]. The evolution of the
electron current profile for laser energies above the space-
charge limit is reported in Fig. 4, for a beam corresponding
to the point at R ¼ 500 μm in Fig. 2(a). The tail of the
current profile shows the presence of a second peak and the
temporal profiles show the onset of characteristic virtual
cathode current oscillations.
Further insight is offered by looking at the total longi-

tudinal electric field and charge density distribution as a
function of distance from the cathode for the case of
Δt ¼ 60 ps and accelerating gradient E0 ¼ 20 MV=m
(Fig. 5). The snapshot of the field distribution is taken at
a time 60 ps at the tail of the laser pulse i.e., when the last
photoelectrons leave the cathode. On the left, we plot a
comparison of the fields for a beam of infinitely wide
transverse dimensions and one of a finite transverse size
R ¼ 400 μm. The right plot shows the charge density
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FIG. 2 (color online). Charge extracted as a function of radius.
Disk model, three-dimensional simulations (ASTRA and GPT)
and theory (Cc ¼ 1) for two different cases.
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FIG. 3 (color online). (a) Emitted charge vs electric field E0

for a cigar aspect ratio beam, Cc ¼ 1. (b) Peak current vs cathode
size in the short pancake-beam limit (E0 ¼ 60 MV=m,
Δt ¼ 500 fs) and Cs ¼ 1 [see Eq. (6)].

FIG. 4 (color online). Electron beam current extracted as
function of charge injected (laser energy) into the diode. The
example corresponds to the radius of 500 μm in Fig. 2(a). The
inset shows the extracted charge vs the injected one. The laser
pulse length was fixed to 60 ps. The ASTRA code was used in the
simulations.
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FIG. 5 (color online). Electric field within the electron beam at
the end of the laser pulse duration time Δt for a finite and infinite
transverse dimension (left panel) and the relative electron beam
charge density distribution (right panel) for the finite radius case
simulated by GPT. The black line on the left panel shows the level
of the external field.
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distribution for the finite beam at the same instant,
providing an explanation for the behavior of the electric
field: all the diode loading occurs over a small distance of
the order of R. Within this distance the electron beam
density rapidly decreases following the C-L theory
[ρðzÞ ∝ z−2

3], and the total electric field rapidly varies from
0 to the external applied field. Outside this region, the beam
dynamics is to a good approximation that of a single
particle, and the density only decreases due to the velocity-
induced particle redistribution [ρðzÞ ∝ z−1

2]. The negligible
contribution of the beam self-fields to the dynamics outside
the effective diode area is confirmed by comparing its
amplitude with that of the externally applied field (shown
by the black line at E ¼ E0 in the left plot). Such a
contribution reaches a maximum of 600 kV=m at the
beam’s head.
It is important to clarify the role of the image charge in

the beam dynamics of space-charge limited emission, by
comparing it with a different relevant case. In the blowout
regime [15], in order to create a uniformly filled ellipsoidal
distribution, the total extracted charge must be kept low
enough to minimize the image charge effects. The longi-
tudinal space charge dominates the evolution and the self-
electric field reaches at most few MV=m values, and is
responsible for a symmetric beam explosion. This regime is
very far from what we are considering here, where the
image charge is playing a dominant role in the beam
evolution, slowing down electrons in the cathode vicinity
and affecting the beam density as a function of the distance
from the cathode.
Figure 5 provides a better explanation of why the steady

state solution gives such a good approximation even though
we are looking at an inherently transient phenomenon such
as photoemission from a pulsed laser. The electron beam is
in fact much longer than the effective length of the diode
thus enabling the establishment of a steady state solution
within the effective diode.
To be more quantitative, at the end of the laser pulse the

beam extends a length Δze into the cathode-anode gap (see
Fig. 1) given by

Δze ¼
eE0

2m
Δt2: (3)

IfΔze is longer thanRweare in the “long”bunch (cigar aspect
ratio) case, and the approximations leading to Eq. (2) holds. It
should be noted that for cases of practical interest and realistic
accelerating fields R is typically less than few millimeters, so
that for accelerating electric field values less than few
hundreds MV=m relativistic effects [which will otherwise
modify Eq. (3)] can be neglected. The relatively small
propagation distance is also the reason why the evolution
of the beam transverse dimensions can be neglected and the
assumption of constant R is a good approximation.
In the opposite case of short electron bunches (pancake

aspect ratio, Δze < R), a steady state solution cannot be

reached since the extraction time is much shorter than the
beam effective diode transit time. Nevertheless, a formula
for the maximum peak current can still be deduced starting
from the maximum surface charge density allowed σsat. The
electron beam is approximated as a thin sheet of charge and
σsat can be calculated by imposing the condition that at the
end of the laser pulse the electric field at the cathode goes to
zero, once again just barely reaching the virtual cathode
formation condition where new-born particles would be
pushed back into the cathode.
This maximum surface charge density corresponds to a

maximum charge,

Qsat ¼ σsatπR2 ≅ ϵ0E0πR2; (4)

and has been extensively used in analysis of photoinjector
performances [7]. It is worth noting the different scaling of
the saturated charge with radius and electric field found in
the pancake case with respect to the cigar aspect ratio case
as shown in Figs. 2(a) and 3(a).
To determine the maximum peak current, we must

consider the electron dynamics in the effective diode for
an extracted charge density equal to σsat. In this case the
total electric field at the cathode will be zero and particles
close to the cathode will not move until the density drops.
The initial peak current extracted from the cathode will then
begin to decrease until the first particles at the head of the
bunch exit the diode, thus lowering the electric field at the
cathode. The characteristic time for this process to happen,

τ ¼
ffiffiffiffiffiffiffiffiffiffi
2mR
eE0

s
; (5)

can be used to derive the functional form of the maximum
peak current achievable in the pancake regime:

Ishortsat;2D ¼ Cs
σsatπR2

τ
¼ CsI0

ffiffiffi
2

p

9

�
eE0R
mc2

�
3=2

¼ Cs

Cc
Isat;2D; (6)

where Cs is again a constant to be determined with help of
simulations. We note that aside from such order-of-unity
constant we re-obtain the same expression of the maximum
current density of the long bunch case. Figure 3(b) reports
the peak current at the exit of a gun simulated with ASTRA,
for the case of E0 ¼ 60 MV=m and Δt ¼ 500 fs. The red
curve represents Eq. (6) for Cs ¼ 1.
Effectively at saturation, the emission time of the last

particle in the bunch can be considered equal to τ [Eq. (5)],
even if the real extraction in vacuum happens faster. This
characteristic time can be viewed as the cathode-dynamics
temporal response to a delta-function laser impulse.
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These formulas clarify the dependence of the final beam
properties on the transverse and longitudinal shape of the
initial distribution, and have important consequences in
the source optimization. The 4D transverse beam bright-
ness is defined as the 4D phase space density of the beam
B⊥ ¼ Q

ϵ2n
, where ϵn is the normalized transverse emittance of

the beam.
In the limit of cigar aspect ratio we can use Eq. (2) and

write a scaling law for B⊥:

B⊥ ∝
E3=2
0 Δtffiffiffiffi
R

p
σ2p⊥

(7)

which reveals that aside from improving the gradient and
the excess kinetic energy, significant improvements to the
beam quality could be achieved using longer and smaller
laser pulses as shown in Fig. 6. In deriving Eq. (7) we have
written the normalized transverse emittance for a uniform
beam as ϵn ¼ R

2

σp⊥
m0c

, and
σp⊥
mc is the normalized rms trans-

verse momentum spread of the particles at extraction.
In the pancake limit the total extracted charge is propor-

tional to the square of the beam radius, which makes B⊥
independent of the cathode size [7]. Figure 6 plots the Bmax⊥
as function of cathode size for two different cases. Per
definition of long and short bunches adopted, the short and
long bunch brightness curves cross for values of the radius
given by Eq. (3), for whichΔze ∼ R. To the left of this point
we are in the cigar aspect ratio regime and the dashed curve
should be used. To the right, we are in the pancake regime
and the dotted curve holds.
Even if it is not a fully conserved quantity as properly

designed beam lines can effectively manipulate the 6D
phase space beam distribution [16], B⊥ is here considered
the most appropriate parameter for source characterization.
A generalized comparison between electron sources should
be done on the basis of the 6D brightness, taking into
account also bunch length and uncorrelated energy spread.

Indeed the evolution of the longitudinal emittance is not
very well understood in the process of electron beam
creation (for example the beam slice energy spread
increases by 3 orders of magnitude and its dependence
on the beam current needs further studies). Many different
mechanisms may play an important role in the evolution of
the longitudinal phase space, as rf nonlinearities or intra-
beam scattering [17], and the study of the interplay of such
effects is beyond the scope of this paper.
Our model provides a description in the region close to

the cathode and space-charge effects in the propagation
must be taken into account in the evaluation of the beam
brightness. It has been shown that in cigar aspect ratio
beams some of the space-charge induced emittance growth
can be controlled [18]. Nevertheless, as the beam
approaches the virtual cathode condition it will become
more difficult to preserve the initial brightness [7], there-
fore an accurate knowledge of the dependence of such
condition on beam parameters is essential in the optimi-
zation of electron sources.
While Eq. (7) suggests to decrease the beam radius in

order to increase the brightness, this is done at expenses of
beam current and, therefore, total extracted charge (Fig. 2).
If a given output charge Q0 is needed, the same equation
can be used to obtain a scaling relation between the bunch
length and the emittance out of the gun:

Δt ∝
1

ðE0ϵnÞ3=2
: (8)

In conclusion, a physically transparent expression for the
maximum space-charge saturated current density achiev-
able from an electron source has been proposed, valid for
beams with dimensions much smaller than the accelerating
gap and different aspect ratios, extending the C-L theory to
regimes where its assumptions fail. A unified expression,
independent of the beam aspect ratio, has been found for
the maximum peak current. The different charge scaling for
cigar vs pancake beams has been elucidated, leading to
different functional forms for the beam brightness. In
particular, the maximum transverse brightness for long
bunches shows a dependency on the initial pulse length,
which could be used as further knob in the source
optimization. A smaller transverse emittance for a given
charge can be achieved by starting with longer beams. Peak
current can be retrieved by longitudinal compression
downstream in the accelerator, where the beam is already
relativistic. This can be seen as an effective way of trading
longitudinal with transverse emittance, shaping the 6D
phase space volume.
Our analysis focuses on the dynamics of beam extrac-

tion, which takes place within a short region called the
“effective diode.” The study of such initial dynamics is of
great interest as it determines the minimum transverse and
longitudinal phase space volumes of the beam. Further
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downstream manipulation of the beam (including beam
compression in the gun itself) will only be able to reshape,
ideally without increasing, such initial volume. In the
hypothesis of constant accelerating field during extraction
(wavelength much longer than the pulse length), the
treatment is valid for any type of electron source, from
DC to rf guns.
The equations reported in this paper give a quantitative

tool for the determination of the electron source parameters.
This work opens the door to quick and accurate prediction
of injector performances in new regimes of operation of
electron sources that are of interest to a variety of
applications ranging from advanced light sources to
time-resolved electron diffraction and microscopy.
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APPENDIX: ANALYTICAL DERIVATION
OF THE STEADY STATE CURRENT

LIMIT IN THE 2D CASE

As is explained in the main text, for long bunches we can
seek a steady state solution, assuming that the current
quickly reaches an equilibrium and then does not depend
on time. This allows us to use electrostatic potential ϕ to
represent the electric field inside the bunch in the steady
state regime.
Consider a round spot of radius R illuminated by a laser

on the cathode. We will use the cylindrical coordinate
system r, θ, z that has the origin at the center of the circle
with coordinate z directed to vacuum perpendicular to the
surface. Constant electric field Ez ¼ −E0 (E0 > 0) is
applied to the cathode. Assume that the illumination is
so strong that the emissivity of the surface becomes
extremely large, and the current from the surface is limited
by the space-charge effects. Denote by ϕ the electrostatic
potential of the emitted electrons in free space. The total
potential ϕtot is the sum of ϕ and the potential of the
vacuum electric field Ez, ϕtot ¼ ϕ − Ezz ¼ ϕþ E0z.
Because of the axisymmetry of the problem ϕ does not
depend on θ, ϕðr; zÞ. It satisfies the Poisson equation

Δϕ ¼ − 1

ϵ0
ρðr; zÞ; (A1)

where ρ is the charge density.
We assume that electrons are moving in z directions only

[that is electron’s velocity is v ¼ ð0; 0; vzÞ], then from the
charge continuity equation ρ can be expressed through
the current density jz on the surface of the cathode,

ρðr; zÞ ¼ jzðrÞ=vzðr; zÞ. The velocity vz can be found from
the energy conservation (we assume nonrelativistic motion)

vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2eϕtot

m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eðϕþ E0zÞ

m

r
; (A2)

where we used the fact that ϕ ¼ 0 at the cathode and
neglected the initial energy of the emitted electron.
Substituting the expression for ρ into (A1) and using (A2)
we obtain

Δϕ ¼ − 1

ϵ0
jz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2eðϕþ E0zÞ
r

: (A3)

Since we assume an infinite emissivity of the cathode,
this equation should be solved with the boundary condition

∂ϕ
∂z

����
z¼0;r≤R

¼ −E0; (A4)

which means that the space-charge electric field of the
beam fully compensates for the applied vacuum field −E0

on the surface of the cathode. Of course, we also require
equipotentiality of the cathode

ϕðr; 0Þ ¼ 0: (A5)

Let us now introduce dimensionless variables

ξ ¼ r
R
; ζ ¼ z

R
; ψ ¼ − ϕ

E0R
;

J ¼ − jz
ϵ0

ffiffiffiffiffiffiffi
mR
2e

r
E−3=2
0 ; (A6)

which transforms (A3) in the following one for the function
ψðξ; ζÞ:

1

ξ

∂
∂ξ ξ

∂ψ
∂ξ þ ∂2ψ

∂ζ2 ¼ −JðξÞ 1ffiffiffiffiffiffiffiffiffiffiffiffi
ζ − ψ

p : (A7)

This equation should be solved with the boundary
conditions

∂ψ
∂ζ

����
ζ¼0;ξ≤1

¼ 1; ψðξ; 0Þ ¼ 0: (A8)

The signs of ψ and J in (A6) are chosen in such a way that
they are positive.
Equation (A7) with the boundary condition (A8) define a

mathematical problem whose solution gives the unknown
functions ψðξ; ζÞ and JðξÞ. Unfortunately, the system (A7)
and (A8) cannot be solved analytically, and one has to rely
on numerical methods to obtain the solution. The numerical
solution of this system is beyond the scope of this paper.
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Note that Eq. (A7) and the boundary conditions (A8) are
all dimensionless, hence we expect that the solution of the
equation will be such that the function J is of order of 1,
J ∼ 1. The total current of the beam is obtained by
integration of jz over the cross section of the beam,

I ¼ 2π

Z
R

0

rdrjjzj ¼ 2πϵ0

ffiffiffiffiffiffiffiffiffiffi
2eR3

m

r
E3=2
0

Z
1

0

ξdξJ: (A9)

This result agrees with (2) with Cc ¼ 9
2

R
1
0 ξdξJ.
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