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A novel optics concept, the achromatic telescopic squeezing (ATS) scheme has been invented in the

context of the Large Hadron Collider (LHC) upgrade studies, and chosen as the baseline scheme for the

optics and layout of the recently approved high luminosity LHC project (HL-LHC). This scheme offers an

extremely powerful and flexible machinery in order to strongly reduce �� in a symmetric or asymmetric

way (i.e. without necessarily imposing the same �� in both planes), while perfectly controlling the

chromatic aberrations induced, namely the linear and nonlinear chromaticities, the off-momentum �

beating, and the spurious dispersion from the large crossing angle which is required at small �� in the

particular case of the (HL)-LHC. The initial motivations of the scheme will be reviewed, followed by a

detailed description of its fundamental theoretical foundations. An effective construction of ATS optics

will be given and its main features illustrated in the case of the LHC and HL-LHC.

DOI: 10.1103/PhysRevSTAB.16.111002 PACS numbers: 29.27.�a, 41.85.�p

I. INTRODUCTION AND MOTIVATIONS

A. The general context

Reducing the beam spot size at the interaction point (IP),
which is acting on�� at constant transverse emittances, is a
key ingredient to boost the performance of any collider.
However, a strong reduction of �� requires in principle
longer final focus systems (FFS) in order to enable a
smooth matching of the optics between the IP and the
regular lattice of the machine, which are the arcs in
the case of a circular machine, or the two facing linacs in
the case of a linear collider. For a machine which is still in
its design phase, this modification is in general feasible, but
a priori far from being neutral in terms of cost and planning.
On the other hand, appropriate solutions, or even acceptable
compromises, might be very hard if not impossible to find,
when strongly relying on this approach for upgrading the
performance of a machine which is already built.

Another prerequisite to reduce �� might also be a re-
duction of L�, which is the distance between the last final
focus quadrupole and the interaction point. This interven-
tion aims at mitigating the inevitable increase of the chro-
matic aberrations due to the larger � functions in the final
focus quadrupoles induced at smaller ��: the momentum
�� acceptance in the specific case of a linear collider, or, in
the case of a circular machine, the linear and nonlinear
chromaticities, the off-momentum � beating, and the spu-
rious dispersion induced by an eventual nonzero crossing

angle imposed at the IP. Sharper modifications might also
consist in a complete redesign of the chromatic correction
system initially foreseen, making it stronger and more
efficient. However, the price to pay might be again in this
case a substantial lengthening of the final focus systems of
the collider or, more specifically for circular machines, a
delicate surgery into the heart of the lattice by replacing the
existing chromaticity sextupoles by new ones, much
stronger, in all the arcs of the ring.
The situation is therefore very complicated for a circular

collider which is already built, with hard constraints im-
posed on L� by the size of the existing experiment detec-
tors, and strictly no flexibility for a possible extension of
the low-� insertions (IRs) which are obviously defined by
the geometry of the existing tunnel. The so-called achro-
matic telescopic squeezing (ATS) scheme is a novel optics
concept which offers a complete solution to the above
issues. After a detailed introduction given in the next
section to discuss the motivations of this work in the case
of the Large Hadron Collider (LHC) [1], the fundamental
principles of the ATS scheme will be presented in detail in
Sec. II, then illustrated in Sec. III in the framework of the
luminosity upgrade program of the LHC (HL-LHC [2]).

B. The LHC with its optics limitations at low ��

1. A rapid description of the LHC ring

As many circular machines, the LHC consists of a
certain number of arcs, forming a periodic lattice which
is interrupted by service and experimental low-� inser-
tions; namely, the momentum and betatron cleaning inser-
tions IR3 and IR7, the rf insertion in IR4 containing as well
most of the beam instrumentation, the dump insertion in
IR6, the low-luminosity insertions IR2 and IR8 housing the
Alice and LHCb experiments (and also used for the beam
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injection), and finally the two high luminosity insertions
IR1 and IR5 for the ATLAS and CMS experiments (see
Fig. 1).

2. The LHC experimental insertions in brief

The two LHC beams circulate in separated apertures in
most of the ring, except in the experimental insertions
where they share the same vacuum chamber between the
IP and a so-called Y-chamber located in between the
separation and recombination dipoles D1 and D2 (see
Fig. 2). The main field of the final focus quadrupoles
therefore impacts in an opposite way on the two counter-
rotating LHC proton beams. Aiming at simultaneous optics
solutions for both beams led to the design of an optics
which is antisymmetric between the left and the right sides
of the IP for a given beam, and between Beam1 and Beam2
on a given side of the IP, and to a layout solution with a
final triplet rather than with a final doublet.

The four experimental insertions of the LHC are based
on the same conceptual layout (see Fig. 2). From the optics
point of view, these IRs contain three main parts: (i) a
region which is shared by the two beams from the interac-
tion point (IP) to the separation dipole D1, with the inner
triplet in between installed at L� ¼ 23 m; (ii) the matching
section, starting at the recombination dipole D2 and con-
taining three individually powered two-in-one quadrupole
magnets Q4, Q5, and Q6; (iii) the dispersion suppressor
starting with Q7 followed by the first arc dipole, and
containing four individually powered two-in-one aperture
quadrupole magnets (Q7 to Q10). Strictly speaking,
the dispersion suppressor extends up to Q13, with the
arc quadrupoles Q11, Q12, and Q13 equipped with three
individually powered trim quadrupoles.
The linear optics becomes strictly periodic as of Q13,

where the arc quadrupoles are arranged into 21 regular
FODO cells (i.e. focusing quadrupole, drift space, defocus-
ing quadrupole, drift space). In practice, as for most of the
modern colliders, matching the optics of an LHC low-�
insertion consists in satisfying a certain number of con-
straints including ��, but not only, and using the quadru-
poles of the matching section and dispersion suppressor,
while the gradient of the inner triplet is kept quasiconstant.
Starting from the periodic optical functions of the arcs on
the left side of the insertion (Q13.L), 14 optics constraints
shall be fulfilled; namely, the horizontal and vertical beta-
tron phase advances from Q13.L to Q13.R, which are kept
constant for any �� for preserving the betatron tunes dur-
ing the optics squeeze, and the Twiss ð�x;y; �x;yÞ and

dispersion ðDx;D
0
xÞ parameters, both at the IP and at the

exit of the insertion (Q13.R), where these parameters shall
again coincide with the periodic conditions of the next arc.
The ATS scheme will complement this concept with the

so-called presqueezed optics which relies on additional
phase matching conditions to be met on several sections
of the ring. Then it will completely modify the standard

FIG. 2. Low-� insertion of the LHC from the interaction point to the entry of the dispersion suppressor [1].

FIG. 1. Schematic layout of the LHC [1].
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approach introducing a second (telescopic) part for the
squeeze, in order to further reduce �� in a somehow
achromatic way (see Sec. II).

3. The LHC chromatic correction system in brief

The chromatic correction system of the LHC is hosted in
the arcs, with two interleaved families of sextupoles, in
each of the two transverse planes and each of the eight
sectors of the ring (see Fig. 3). This makes a total of 32
independent sextupole families per beam for the entire
ring. The nominal LHC optics is matched with betatron
phase advances close, but not exactly equal to 90 degrees in
the arc cells. This induces a phase split of about ��x �
��y � � in each sector of the ring, contributing to about

80% of the overall integer tune split of 5 (Qx;y ¼
64:31=59:32 in collision). This strategy was implemented
in the early design of the machine (see e.g. [4] and refer-
ences therein), and kept unchanged since then. The aim
was indeed to mitigate strong nonlinear resonance driving
terms which could have been driven by large systematic
field imperfections in the LHC main dipoles. A posteriori,
this optics choice is no longer justified, with a field
quality much better than initially anticipated in the main
magnets.De facto this would allow one to go back to phase
advances much closer, if not strictly equal to �=2 in the
LHC arc cells. On the contrary, as will be demonstrated
later, preserving such an optics would prevent one to use
efficiently the flexibility offered by the existing LHC sex-
tupole powering scheme in order to control properly the

chromatic properties of the collision optics at very small
��. The chromatic observables that become critical at low
�� are indeed not only the linear chromaticity, but also
other aberrations, extremely sensitive to the phasing prop-
erties of the linear optics, such as the nonlinear chroma-
ticity, the off-momentum � beating @�=@�, and, in the
case of the LHC, the horizontal or vertical spurious dis-
persion driven by the crossing scheme (crossing angle and
parallel separation) which are implemented in the four
experimental insertions of the ring.

4. The challenge of reducing �� in the LHC

In this context, reducing �� with respect to its nominal
value of 55 cm [1] leads rapidly to a series of limitations.
These limitations are driven on one side by the mechanical
aperture available in the final focus quadrupoles, that is the
inner triplet (IT), but also coming from the rest of the ring.
Concerning the IT aperture-related constraints, it was
shown that long and weak enough quadrupoles (basically
with constant integrated gradient) can always offer more
aperture than actually needed by the beam, regardless of
�� and of the technology chosen for the triplet [5,6].
Indeed, by decreasing the triplet gradient G at constant
�� (but of course making it longer to preserve its integrated
strength), the IT aperture can in principle be increased with
1=G at constant peak field. Under these conditions, the
aperture needed for the beam increases much less rapidly

with a rough scaling like 1=G1=4, or, said differently, the
peak � function reached in the triplet is found to increase

with 1=
ffiffiffiffi
G

p
:

�̂ IT / 1

�� ffiffiffiffi
G

p : (1)

Therefore, the real optics challenge for low �� is else-
where, on the ‘‘nontriplet’’ side of the machine, where a
series of limitations were clearly identified and classified in
the framework of the former upgrade project of the LHC
[7]. While of very different nature, all these limitations can
be quantified by the maximum possible peak � function
which is permitted in the inner triplet, namely,

�̂ IT <�max; (2)

where �max shall be understood as a limit given by the ring
and not by the final focus quadrupoles. Indeed, the peak �
function reached in the triplet shall then be matched to the
regular optics of the arcs within the fixed distance given by
the length the low-� insertions, and within the aperture
and gradient limits of the IR magnets. Finally, a clear
strategy shall be established for the correction of the chro-
matic aberrations induced, and ideally within the available
strength of the existing chromaticity sextupoles. Assuming
an upgrade of the LHC which would only consist of
replacing the existing inner triplet, and no deep conceptual

∆µ ∼∆µ ∼π

∆µ ∼∆µ ∼π/2

∆µ ∼∆µ ∼π/4

∆µ ∼∆µ ∼3π/4

x y

x y

x y

x y

RING 1

RING 2

aDSaDS bDSbDS SDbSDaaFSaFS SFaSFb SFb

SFa SFa SFa aDSaDSaDS SFb SFb SFbbDSbDS

Circuit SDb−Ring1
Circuit SFa−Ring1
Circuit SDa−Ring1

Circuit SFb−Ring1

Circuit SFa−Ring2
Circuit SDa−Ring2
Circuit SFb−Ring2
Circuit SDb−Ring2

QD QF QD QD QD QD QD

QDQDQDQDQD

QF QF QF QF

QF QF QF QF QF QF

FIG. 3. Schematic layout of the LHC arc sextupole powering
scheme [3]. For each beam, and in each arc of the machine, the
focusing and defocusing sextupoles are split into two interleaved
families. For the nominal LHC optics, the horizontal and vertical
betatron phase advances are close to � between two consecutive
sextupoles belonging to the same family. These phases are
matched to exactly � for ATS optics.
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changes in general beam optics for circular colliders,
these limitations can rapidly turn into hard limits driven
by the existing hardware all around the ring; namely, the
mechanical acceptance of the existing low-� insertions
(not only the triplet but also most of the magnets of the
matching section), the gradient limits of the matching
quadrupoles (in particular Q6 and Q7 pushed to very low
and high gradients, respectively), and the strength limits of
the arc sextupoles.

Taking these considerations into account, the maximum
possible�max permitted in any newLHC tripletwas found to
be around 11 km [7], compared to 4.5 km for the nominal
collision optics of the LHC. This defined at that time an
optimal aperture of 120 mm for the next triplet generation,
regardless of the technology chosen. The corresponding
minimum possible �� was then found to be ��

min ¼ 30 cm
for the Nb-Ti technology (120 T=m–120 mm triplet) and,
according to the scaling law given in (1), only �20% less,
that is��

min ¼ 24–25 cm, for theNb3Sn technology a priori
compatible with a 50% higher gradient (180 T=m–120 mm
triplet).

The ATS scheme which was invented and developed
afterward (see [8] for the first description of the basic
concepts) offers the possibility to go well beyond, and
therefore completely modified the above conclusions,
while offering a solid ground to the HL-LHC target of
�� ¼ 10–15 cm [2]. The basic concepts and technical
implementation of the ATS scheme are described in detail
in the next section taking the (HL)-LHC as a unique
example. It is however worth mentioning a certain effort
presently on-going in order to apply or adapt the ATS
concept to other existing or future machines, such as the
LHeC [9] or (e)RHIC [10].

II. THE THEORETICAL FOUNDATIONS
OF THE ATS

A. The basic principles

Concerning the first optics limitation mentioned previ-
ously (aperture limitation), the only solution is to equip the
machine with new magnets of larger aperture whenever
needed. For the HL-LHC, this means that a few magnets
shall be replaced in the matching section of IR1 and IR5,
including of course new inner triplets. Concerning the poor
optics flexibility observed at low ��, one possibility is to
envisage floating matching conditions at the boundaries of
the high luminosity insertions. The idea is to maintain the
dispersion matching constraints at the entry and exit of the
low-� insertions, but to allow the neighboring insertions
on either side (IR8/2 for IR1 and IR4/6 for IR5) to con-
tribute as well to the squeeze, at least below a certain ��.
This�� will be called later the presqueezed��. As a result,
�-beating waves are generated in the arcs which are di-
rectly adjacent to the low-� insertions, namely the arcs 45,
56, 81, and 12 (see the example of arc 45 illustrated in
Fig. 4). Assuming a phase advance per arc cell strictly

matched to �=2 in these arcs, and if correctly phased with
respect to the IP, these waves will reach their maximum at
every other sextupole, i.e. at the sextupoles belonging to
the same electrical circuit (see Fig. 3). Consequently,
the chromatic correction efficiency of these sextupoles
will drastically increase at constant strength, which offers
a definite cure for the third and last optics limitation
mentioned at the end of the previous section.
Implementing the ATS concept means in practice to split

into two parts the transition between the injection and col-
lision optics. First a presqueeze of �� is achieved following
the standard IR matching procedure described in Sec. I B 2,
but with additional matching constraints imposed individu-
ally for the left and right phase advances of the high lumi-
nosity insertions (see Sec. II B 1 for the motivation). The
presqueeze is pushed until reaching certain limits, either
related to the gradient of the matching quadrupoles or to
the strength of the lattice sextupoles. The chromatic limit is
generally the first being reached both for the LHC, andmost
of the new triplet layouts studied so far for the HL-LHC. For
a further reduction of ��, the presqueeze is followed by the
telescopic squeeze, acting only on thematching quadrupoles
equipping the neighboring insertions that are on either side
of each high luminosity insertion (i.e. IR8 and IR2 for
squeezing IR1, and IR4 and IR6 for squeezing IR5). The
telescopic squeeze is therefore operated at strictly constant
settings for the quadrupoles equipping the high luminosity
insertions proper, but also at quasiconstant strength for the
lattice sextupoles (see Sec. II B 2).
This novel approach is particularly well suited to the

LHC for the two following reasons. First, due to the large
dynamic range of the machine in energy, from 450 GeV to
7 TeV, and the reduction in proportion of the transverse
emittances during the ramp, the peak � functions in the
arcs could in principle be increased by a factor of 16
without exceeding any aperture-related limits at flattop
energy. Second, the quadrupole magnets of the supporting
insertions IR8, IR2, IR4, and IR6 are either moderately
pushed, which is the case for the experimental insertions
IR8 and IR2 (assuming a �� of a few meters in proton-
proton collision mode), or not pushed at all in the case of
IR4 and IR6 for which the injection optics is kept
unchanged during the whole cycle of the machine.
Therefore most of the ingredients are in fact already avail-
able in the existing LHC to blow up the � functions in the
arcs 81=12=45=56 at 7 TeV and implement the principles
of the ATS scheme.

B. Chromatic correction

The technical implementation of the ATS scheme
imposes in a first step a detailed analysis of the chromatic
aberrations induced by the final focus quadrupoles at low
��, and of the means that shall be implemented in order to
properly correct them. These chromatic aberrations are
driven by the following quantities:
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IL;Rx;y ¼def�
Z
triplet ðL;RÞ

dsK1ðsÞ�x;yðsÞ; (3)

where the integrals are taken over the final focus quadru-
poles equipping the left (L) or right (R) side of a given high
luminosity insertion, and K1ðsÞ denotes their normalized
gradient (with the convention K1 < 0 for an horizontally
focusing quadrupole). Within a factor 4�, the above quan-
tities simply represent the main contribution of the low-�

insertions to the natural chromaticity of the machine
when the optics is squeezed. These integrals are therefore
negative, with a very accurate scaling at low �� given by

IL;Rx;y / 1=��
x;y; (4)

both for a standard squeeze and the two-stage procedure of
the ATS. For a purely symmetric optics with respect to the
IP, the left and right integrals are identical in each of the

FIG. 4. Modification of the � functions in the arc 45 of the LHC during the telescopic squeeze, starting from a round presqueezed
optics with ��

0 ¼ 40 cm at IP5 and specific phasing properties (a), and reaching two possible collision optics, either round with
~��
x;y ¼ 10 cm (b) or flat with ~��

x ¼ 20 cm and ~��
y ¼ 5 cm (c). The telescopic squeeze is achieved by acting only on the matching

quadrupoles of IR4 on the left (and IR6 on the right), as soon as specific betatron phase advances have been achieved for the
presqueezed optics (see Sec. II B 1). The peak � functions in the arcs are increasing in proportion to the reduction of ��, i.e. by a factor
of 4 in both planes for case (b), and by the factors 2 and 8 in the horizontal and vertical planes, respectively, for case (c). The empty and
full markers indicate the location of the focusing and defocusing sextupoles, respectively, which participate to the chromatic correction
of the LHC inner triplet. These sextupoles can be operated at quasiconstant settings during the telescopic squeeze with the � functions
increasing proportionally with ��

0=
~�� at their respective location (see Sec. II B 2).
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two transverse planes. In the specific case of the LHC, the
triplet powering is actually antisymmetric with respect to
the IP, leading to the following relation:

��
xI

L
x ¼ ��

yI
R
y and ��

xI
R
x ¼ ��

yI
L
y : (5)

In particular, even for round optics (��
x ¼ ��

y), the left and

right integrals IL;Rx;y are not necessarily the same in a given
plane. For the existing LHC triplet operating at 205 T=m,
the two integrals differ by about �I=ð2IÞ � 10% (see e.g.
[3]). This difference tends however to decrease for triplets
operating at lower gradient. It is therefore relevant to
introduce the following average quantities:

Ix;y ¼ 1
2ðILx;y þ IRx;yÞ and �Ix;y ¼ �1

2ðILx;y � IRx;yÞ; (6)

with

Ix ¼
��

y

��
x

Iy and �Ix ¼
��

y

��
x

�Iy; (7)

which hold both for a left/right symmetric or antisymmet-
ric powering configuration for the final focus quadrupoles.

A proper chromatic correction consists of course in
compensating the contribution of the inner triplet to the
linear chromaticity Q0

x;y,

Q0
x;y /

Z C

0
ds½K1ðsÞ � K2ðsÞDxðsÞ��x;yðsÞ � 0; (8)

but also in controlling the chromatic variations of the Twiss
parameters, which are directly connected to the (2,0) and
(0,2) chromatic driving terms:�
@��x;y

�x;y

�j

�
@��x;y��x;y

@��x;y

�x;y

��
s¼s0

/cð2;0Þ;ð0;2Þðs0Þ
¼def
Z s0þC

s0

ds½K1ðsÞ�K2ðsÞDxðsÞ��x;yðsÞe2j½�x;yðsÞ��x;yðs0Þ�

�0; (9)

where C is the ring circumference and the quantities K1;2

represent the normalized strengths of the quadrupoles and
sextupoles of the lattice, respectively. Taking the modulus
of the complex functions occurring in the left-hand side
(lhs) of Eq. (9) leads to the well-known chromatic
Montague functions Wx;y, although the direct connection

with the (2,0) and (0,2) resonance driving terms cð2;0Þ;ð0;2Þ is
generally less familiar.

Fulfilling the condition (9) at specific locations in the
ring (inner triplets, collimation insertion) becomes abso-
lutely necessary when reducing ��, with otherwise strong
nonlinear chromatic variations of the betatron tunes which
reduce the momentum acceptance of the linear optics, and
a large off-momentum � beating all around the ring,
possibly impacting on the collimation hierarchy and se-
verely on the mechanical acceptance of the inner triplet
[see e.g. Figs. 6(b), 7(b), and 7(d)]. On the other hand, the
condition (9) assumes that specific phasing conditions are
met between the source, i.e. the final focus quadrupoles,
and the various correctors involved, i.e. the arcs where the
sextupoles are located, which is not the case for the nomi-
nal LHC collision optics. A dedicated optics rematching
of the entire ring is therefore required as a fundamental
prerequisite for the implementation of the ATS scheme.

1. The proper phasing of the presqueezed
optics and its chromatic correction

In this section the � functions are assumed to be
matched in the arcs (�� � ��

presqueeze). The goal is to

achieve the chromatic correction of each inner triplet by
using one single arc of sextupoles on either side of the IP
[e.g. the arc 45 for the chromatic correction of the triplet on
the left side of IP5, as shown in Fig. 4(a)]. Assuming a
phase advance in the arc cell close to 90 degrees, two
consecutive focusing or defocusing sextupoles, SFa/b or
SDa/b (see Fig. 3) clearly act against each other for the
excitation of the (2,0) or (0,2) driving terms [see the phasor

e2j�ðsÞ occurring in the integrand of Eq. (9)]. Therefore, in
the arcs directly adjacent to the low-� insertions, only one
sextupole family per plane, e.g. the families SFa and SDa,
shall be used for the chromatic correction of the inner
triplet. In the following these families will be referred as
the ‘‘strong’’ sextupole families, by opposition to the
‘‘weak’’ sextupole families for the other two SF and SD
families in a given arc, and the labels ‘‘a’’ or ‘‘b’’ will be
omitted. For a similar reason, since the off-momentum �
beating generated by each strong sextupole goes with twice
the betatron phases, the coherence of wave, and therefore
the efficiency of the correction, will be maximized if the
phase advances in the arc cell are matched to exactly �=2
in both planes. This condition is equivalent to a phase
advance of� in between two consecutive strong sextupoles
of the same family, and to �=4, or 3�=4, between two
consecutive strong sextupoles SF and SD (see Fig. 3):

��cell
x;y � �

2
)

8<
:
��SFðnÞ!SFðnþ1Þ

x;y ¼ ��SDðnÞ!SDðnþ1Þ
x;y ¼ �

��SFðnÞ!SDðnÞ
x;y ¼ �

4

�
or 3�

4

�
and ��SDðnÞ!SFðnþ1Þ

x;y ¼ 3�
4

�
or �

4

�
:

(10)

Under these conditions, and averaging the chromatic correction between the left and the right sides of a given low-�
insertion (in order to balance the sextupole settings on either side of the IP), the conditions (8) and (9) simply read

NL;R
F �xFDxF�K

L;R
2F

þ NL;R
D �xDDxD�K

L;R
2D

� Ix; NL;R
F �yFDxF�K

L;R
2F

þ NL;R
D �yDDxD�K

L;R
2D

� �Iy; (11)
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and

e2jð��
L;R
x ��=2Þ½NL;R

F �xFDxF�K
L;R
2F

þ e2j��
L;R
xFDNL;R

D �xDDxD�K
L;R
2D

� � Ix;

e2jð��
L;R
y ��=2Þ½e�2j��L;R

yFDNL;R
F �yFDxF�K

L;R
2F

þ NL;R
D �yDDxD�K

L;R
2D

� � �Iy;
(12)

where the chromatic quantities Ix;y are defined in Eq. (6),
and the following notations and approximations have been
used. NL;R

F (respectively NL;R
D ) denotes the number of

strong sextupoles SF (respectively SD) which are located
in the arc on the left (L) or right (R) side of the IP, and
�KL;R

2F;D
represents their change of normalized strength with

respect to the injection optics. The quantities �xF;D , �yF;D ,
and DxF;D are the horizontal and vertical � functions, and
the horizontal dispersion, respectively, which are reached
at the strong sextupoles SF or SD. Since the phase advance
per arc cell is assumed to be matched to�=2 in both planes,
we have in particular

�xF ¼ �yD ¼def�F; �yF ¼ �xD ¼def�D; (13)

with �F=D � 175=35 m in the LHC. The phases ��L;R
x

(respectively ��L;R
y ) represent the left and right phase

advances of the low-� insertions, more precisely, the hori-
zontal (respectively vertical) betatron phase advances be-
tween the IP and the first strong focusing (respectively
defocusing) sextupole installed on the left or right of the
IP. The phases ��L;R

xFD (respectively ��L;R
yFD) denote the

horizontal (respectively vertical) betatron phase advance
from the last focusing to the last defocusing strong sextu-
pole in the arc on the left or right side of the IP. According
to the condition (10), this phase can be either �=4 or 3�=4
in both planes, depending on the choice of the strong
sextupole families amongst the families (a) or (b):

e�2j��L;R
xFD ¼e�2j��L;R

yFD ¼�j�L;R with �L;R¼�1; (14)

which does not need to be further specified. Finally, the
above relations assume that the betatron phase advances
are quasiconstant over the inner triplet quadrupoles, then
jump by �=2 at the IP. This is in general a very good
approximation for �� & 1 m.

On each side of the IP, the relations (11) and (12) can be
seen as a set of six real conditions. The two conditions
forming Eq. (11) are related to the correction of the linear
chromaticity Q0. Since the LHC optics is left/right
antisymmetric, these relations taken individually on the
left or right side of the low-� insertion tend to slightly
overcompensate or undercompensate the contribution of
the final focus quadrupoles to Q0, by the amount
��Ix;y=ð4�Þ [see Eq. (6)]. On the other hand, fulfilling

these relations on both sides of the IP guarantees a full
chromaticity correction of the insertion, using only two
arcs of sextupoles. The two conditions in Eq. (12) are
related to the compensation of the (2,0) and (0,2) complex
resonance driving terms, and therefore form a set of four
real conditions. The lhs of these two conditions basically

describes the amplitude and phase of the off-momentum
�-beating wave induced by the strong sextupoles. This
wave shall arrive out of phase by �=2 at the location of
the inner triplet for a proper compensation of the chromatic
betatron kick which is described by the real quantity Ix;y.

Assuming these conditions to be met, the off-momentum
� beating @�� will vanish both in the final focus quadru-
poles and at the IP. On the other hand, the off-momentum
� beating will be slightly overcompensated (or under-
compensated) at these two locations (still due to the
antisymmetric LHC optics), but perfectly compensated
considering globally the full insertion and its two adjacent
sectors.
Only four parameters are available per IP side for the

chromatic correction, namely the settings �KL;R
2F;D

of the

strong sextupoles, and the left (or right) IR phase advances

��L;R
x;y . These four parameters are determined by solving

the second condition (12). After some algebra and using (7),
one gets

�KL;R
2F

¼ 1

NL;R
F �FDxF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2FDð�

�
x

��
y
Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r4FD

q 	 Ix;

�KL;R
2D

¼ � 1

NL;R
D �FDxD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2FDð�

�
y

��
x
Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r4FD

q 	 Iy;

(15)

and

exp½2j��L;R
x � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2FDð�

�
x

��
y
Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r4FD

q

� j�L;RrFD
��

x

��
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2FDð�

�
y

��
x
Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r4FD

q ;

exp½2j��L;R
y � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2FDð�

�
y

��
x
Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r4FD

q

þ j�L;RrFD
��

y

��
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2FDð�

�
x

��
y
Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r4FD

q ; (16)

where the quantity rFD represents the aspect ratio of the �
functions at the strong sextupoles:

rFD ¼def�D

�F

� 1� sin½��cell=2�
1þ sin½��cell=2� ¼ 0:1715 . . . ; (17)

ACHROMATIC TELESCOPIC SQUEEZING SCHEME . . . Phys. Rev. ST Accel. Beams 16, 111002 (2013)

111002-7



for a standard�=2 FODO structure where the lattice sextu-
poles are installed close enough to the main quadrupoles.

Therefore, if the presqueeze is achieved at constant ��
aspect ratio, not only the overall IR phase shall be kept
constant in order to work at constant tune, but also the left

and right phase advances ��L;R
x;y . The latter are defined in

Eq. (16) within a integer multiple of �, as soon as the
strong sextupole families have been chosen amongst the
available families (a) and (b), which, in practice, will be
driven by the limited flexibility in phase of the high lumi-
nosity insertions at low ��. The existence of the solutions
(15) and (16) depends however on the �� aspect ratio,
which shall be larger than the aspect ratio rFD:

rFD 
 min

�
��

x

��
y

;
��

y

��
x

�
: (18)

For the sake of simplification however, but without
losing too much in generality, we will assume in the
following that the presqueezed optics is matched with the
same �� in both planes. Under these conditions, the solu-
tions (15) and (16) take the following simple form:

�KL;R
2F

¼ 1

NL;R
F �FDxF

	 I0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2FD

q ;

�KL;R
2D

¼ � 1

NL;R
D �FDxD

	 I0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2FD

q ;
(19)

and

exp½2j��L;R
x � ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2FD

q � j
�L;RrFDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2FD

q ;

exp½2j��L;R
y � ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2FD

q þ j
�L;RrFDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2FD

q ;

(20)

with

Ix ¼ Iy ¼def I0 when ��
x � ��

y ¼def��
0: (21)

Note that Eq. (20) is also equivalent to the following
relation:

cot½��L;R
x;y ��� �L;RrFDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr2FD

q
þ1

or ��L;R
x;y ��

2
mod ½��� tan�1

2
64 �L;RrFDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr2FD

q
þ1

3
75; (22)

where the � sign in the second relation stands for the
horizontal and vertical plane, respectively.

The optimal left and right IR phases are then relatively
close, but not exactly equal to �=2, with a deviation
amounting to about �rFD=2¼�1:6	10�2	2���6�.
This phase shift may look small, but has been found
fundamental in order to preserve the quality of the

chromatic correction during the telescopic part of the
squeeze towards very low ��.
Finally, the sextupole settings obtained in Eq. (19) can

obviously not warrant at the same time an exact compen-
sation of the linear chromaticity. Nevertheless, as can be
seen by inserting (19) into (11), the contribution of the
inner triplets to the linear chromaticity is then strongly
reduced, by a factor close to 6 (� 1=rFD) after the off-
momentum �-beating correction. The strategy is then to
apply a global chromaticity correction, keeping constant
the sextupole settings in the arcs which are directly adja-
cent to the low-� insertions (namely the arcs 45, 56, 81,
and 12), and using all the focusing and defocusing sextu-
poles located in the other arcs (namely the arcs 23, 34, 67,
and 78), with the families (a) and (b) powered in series in
this case. As a result, if the betatron phase advances per cell
are also relatively close to �=2 in these arcs, the correction
of the off-momentum � beating formerly established will
be rather insensitive to the final adjustments of chromatic-
ity. This ‘‘impurity’’ of the presqueezed optics will how-
ever rapidly disappear during the telescopic part of the
squeeze (see Appendix A).

2. The construction of the telescopic optics
and its chromatic correction

One of the most remarkable features of the ATS scheme
is that the second (telescopic) part of the squeeze can be
performed at quasiconstant settings in all the sextupoles of
the lattice. In order to understand this property, the machi-
nery deployed during this process shall first be presented in
detail. Starting from a round presqueezed optics (��

x �
��

y ¼ ��
0) fulfilling the phasing conditions given in

Eqs. (10) and (22), and targeting a smaller �� for the
collision optics, round or flat, and defined with a new set

of IP parameters ( ~��
x;y, �

�
x;y � 0, Dx ¼ D0

x � 0), the tele-

scopic squeeze consists in the two following operations.
First, the new IP parameters are backtracked through the
arc on the left side of the IP (e.g. from IP5 through arc 45),
until reaching the first insertion upstream of the IP (e.g.
IR4 for squeezing IR5). This ‘‘left supporting IR’’ is then
rematched to the new boundary conditions on its right,
preserving in addition the overall betatron phase advances
from its entry to the IP (e.g. from Q13.L4 to IP5 in Fig. 4).
This technique is repeated on the right side, tracking the
new IP parameters until reaching the next insertion down-
stream of the IP (e.g. IR6 for squeezing IR5), and rematch-
ing the ‘‘right supporting’’ insertion to the new boundary
conditions on its left, still keeping constant the betatron
phase advances over the full section (e.g. from IP5 to
Q13.R6). In this process the settings of the matching
quadrupoles in the high luminosity insertions proper are
kept strictly constant, together with the arc quadrupoles (as
for any standard squeeze). While the horizontal dispersion
function remains clearly periodic in the arcs during the
telescopic squeeze, the � functions are mismatched in the
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two arcs on either side of the IP, in fact increasing roughly

as 1= ~�� at the location of the strong sextupoles (see
Appendix A):

~�Fx

�Fx

� ��
0

~��
x

and
~�Dy

�Dy

� ��
0

~��
y

; (23)

where, from now on, any quantity marked with a tilde
keeps the same meaning as before, but will refer to the
perturbed (telescopic) optics. Therefore, the efficiency of
the strong sextupoles increases at constant strength during
the telescopic squeeze, and exactly in proportion with the
increase of the chromatic aberrations induced by the final
focus quadrupoles [see Eq. (4)]. As a result, for any

collision ~�� which of course can be matched by the left
and right supporting IRs, the chromatic correction of the
inner triplet only requires a small readjustment of the
strong sextupole families with respect to the settings
established previously in Eq. (19) for the presqueezed
optics (see Appendix A for more details):

� ~KL;R
2F

¼�	�KL;R
2F

¼ �

NL;R
F �FDxF

	 I0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr2FD

q ;

� ~KL;R
2D

¼�	�KL;R
2D

¼� �

NL;R
D �FDxD

	 I0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr2FD

q ;
(24)

where all the quantities in the right-hand side (rhs) refer
to the unperturbed (presqueezed) optics, and the scaling
factor � is given by

�� 1

1� �½1� ð ~��
��
0
Þ2�

� 1; (25)

with

�¼def 1
2

2
641� 1� rFDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2FD

q
3
75� rFD

2
: (26)

3. Nonlinear chromaticity

One important remaining item concerns the nonlinear
chromaticity, and in particular the second order chroma-
ticityQ00. The latter may not be automatically compensated
by the chromatic correction strategy discussed in the pre-
vious sections. Neglecting the contribution of the second
order dispersion induced by the strong sextupoles in
the arcs, which is a valid approximation for �=2 lattices,
the second order chromaticity can be written as follows
(see for instance [3]):

Q00
x;y � � 1

4�

Z
Ring

ds½K1ðsÞ � K2ðsÞDxðsÞ�ð@��x;yÞð�¼0;sÞ;

(27)

where the first order chromatic derivative of the �
functions is given by

ð@��x;yÞð�¼0;sÞ

¼� �x;yðsÞ
2sinð2�Qx;yÞ

Z C

0
ds1½K1ðs1Þ�K2ðs1ÞDxðs1Þ�

	�x;yðs1Þcos½2j�x;yðs1Þ��x;yðsÞj�2�Qx;y�: (28)

Since the off-momentum � beating, @��x;y, induced by the

strong sextupoles arrives out of phase by�=2 at the location
of the final focus quadrupoles (K1@��� 0), the contribu-
tion of the low-� insertions to Q00 is expected to be rather
small. Therefore, neglecting the contribution of the other
quadrupoles and of the weak sextupole families of the ring,
the integral definingQ00 can be seen as a double sum over the
strong sextupoles only, involving cross talks between the
off-momentum� beating induced by one strong SFor SD of
the lattice and interacting with the chromatic quadrupole
error �K2Dx induced by another strong sextupole. These
cross talks only concern the strong sextupoles installed in the
same arc since, by construction of ATS optics, the off-
momentum �-beating wave induced by one full arc of
sextupoles is vanishing after its passage in the final focus
quadrupoles. In addition, there are no cross talks between
two strong sextupoles of the same family (SF or SD), since
the latter are spaced by 0mod ½�� in betatron phase (both for
the presqueezed and the telescopic optics). Indeed, the off-
momentum � beating induced by a given strong sextupole
arrives always out of phase by �=2 in all the strong sextu-
poles of its own family, and therefore cannot contribute to
Q00. The only potential source of Q00 is therefore expected
from the cross talks between the strong SFs and strong SDs.
On the other hand, most of these cross talks are in fact self-
compensated two by two, both for the presqueezed and the
telescopic optics. Indeed, let us consider first the pre-
squeezed optics, and assume for example that the left arc
starts with a strong SF, with ��FD ¼ �=4 for the betatron
phase advance until the first SD. The first SF will generate a
horizontal off-momentum � beating which will reach its
maximum at �=4 downstream in phase, which is at the
location of the first strong SD. This cross talk will contribute
to Q00

x as follows:

�Q00
x ¼ ��

1

4�
�KL

2F
�KL

2D
�F�DDxFDxD; (29)

with �¼sinð2��FDÞ¼1 in this example [see also Eq. (14)
for the general case]. Thefirst strong SDwill in turn generate
a horizontal off-momentum� beatingwhich, contrary to the
SF of above, will reach its minimum at the location of the
second SF, at 3�=4 downstream in betatron phase. Its con-
tribution in terms of Q00 will therefore exactly compensate
the first one, and so on and so forth. The situation can then be
analyzed in a similar way, and the same conclusions can be
drawn for the telescopic optics, although the�=4 (or 3�=4)
phase advance between two consecutive SF and SD is
broken in this case, but not the phase advance of� between
two strong sextupoles belonging to the same family. As a
result, only end effects might give a systematic contribution
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to Q00, due to the finite number of strong SFs and SDs in
each arc, even if their number is the same in a given arc
(NF � ND ¼ N). Indeed coming back to the above example
of an arc starting with a strong focusing sextupole, the latter
will contribute N times toQ00 via its consecutive cross talks
with the N defocusing sextupoles located downstream. On
the other hand, the first strong SD of this arc will only
interact N � 1 times with the strong SF family, preventing
consequently an exact compensation of the first contribu-
tion. Although marginal for the presqueezed optics, this
contribution to Q00 nevertheless grows quadratically with
1=�� during the telescopic squeeze. An elegant solution
consists in a very fine-tuning of the left and right phase
advances of the low-� insertions for a global correction of
Q00, at a cost of regenerating a small off-momentum �
beating in the final focus quadrupole and at the IP, but not
exceeding the percent level aswewill see in the next section.

4. Final remarks

The situation might be slightly more complicated in a
real machine, for various reasons, and in particular for the
LHC, with some of the strong sextupoles installed in
the dispersion suppressors where the � functions and the
betatron phase advances do not coincide exactly with those
of the regular arc. Moreover, some contributions to the
chromaticity and off-momentum � beating are expected
from the matching quadrupoles equipping the low-� in-
sertions (not only the inner triplet), and also from those of
the other IRs which are involved in the telescopic squeeze.
However, as it will be illustrated in the next section, all
these contributions have been found marginal for the LHC,
even pushing �� down to extreme values with the ATS,
such as ��

x;y ¼ 10 cm for round telescopic optics, or even

��
x;y ¼ 5=20 cm for flat optics, which is a factor of 5 to 10

below the 55 cm nominal �� of the LHC [1]. More pre-
cisely, as soon as proper MADX [11] tools were built to
properly implement the ATS principles, and finally fine-
tune the chromatic properties of the telescopic optics in
terms of chromaticityQ0

x;y or Montague functionsWx;y, the

numerical results obtained have always perfectly met the
expectations derived analytically in the previous sections.

Finally, mismatching the � functions in the arcs is of
course not completely without any risk, not so much in
terms of mechanical acceptance at flattop energy as already
mentioned, but possibly in terms of dynamic aperture. This
point will be briefly discussed in the next section and
relevant references provided accordingly.

III. ATS OPTICS IN PRACTICE ILLUSTRATED
WITH THE (HL)-LHC

A. The development of the ATS scheme over
the past few years

The basic principles of the achromatic telescopic
squeezing scheme were first established in 2010, together

with a series of new MADX tools in order to build accord-
ingly a full set of presqueezed and telescopic collision
optics for the LHC ring [8]. The first ATS optics were
constructed assuming the new 120 mm aperture Nb-Ti
triplet (120 T=m) which was proposed for the former
upgrade project of the LHC, the so-called LHC upgrade
project phase I [12]. The phase I project was then replaced
later by the wider scope HL-LHC project [2]. During this
transition period, the ATS principles were demonstrated
with the effective construction and chromatic correction of
flat telescopic optics, where �� was squeezed down to
30 cm in the crossing plane and pushed to 7.5 cm in the
order plane [8]. The well-known strategy behind flat optics
was to mitigate the loss of luminosity in the presence of a
nonzero crossing angle. The feasibility of such low-��
optics was however not at all expected at that time for
the LHC. In parallel a full set of specifications was also
established for the list and the mechanical aperture of the
magnets to be replaced in order to fully exploit the new
possibilities offered by ATS optics: not only the inner
triplet, where the new target aperture of 150 mm was
derived [8] (and recently adopted in the baseline of the
HL-LHC Project), but also the separation-recombination
dipoles D1 and D2, and the first two quadrupoles of the
matching section Q4 and Q5 (see Fig. 2). Then, round
telescopic optics with a �� squeezed down to 15 cm in
both planes [13] were also made available, still based on
the phase I triplet layout, but in an upgrade scenario relying
on the presence of crab cavities [14] which became as well
a key ingredient of the HL-LHC project.

1. ATS and dynamic aperture

A potential severe limitation to the ATS scheme was
however its negative impact onto the dynamic aperture,
driven by the increase of the peak � functions in the arcs
during the telescopic squeeze, the nonlinear field imper-
fections of the arc magnets, and the third order resonance
driving terms excited by the lattice sextupoles involved in
the chromatic correction. On the other hand, thanks to the
tremendous efforts which were deployed for the LHCmain
magnets during the construction and installation phases of
the machine, both in terms of field quality specifications
[15] and monitoring [16,17], and in terms of sorting strat-
egy (see e.g. [18] and reference therein), the existing
machine was found compatible with the ATS scheme for
this aspect, although not designed for it. Indeed, (i) within
the limits reported in Figs. 4(b) and 4(c) for the increase of
the peak � functions in the arcs (i.e. a factor of 4 in both
planes for round telescopic optics, and 2=8 in the H/V or
V/H planes for flat optics), (ii) considering only in a first
step the field imperfections of the arc magnets as measured
and installed in the existing LHC ring, (iii) and ensuring
that the strong sextupole families do contain an even
number of magnets (for a two-by-two compensation at �
of their contribution to the third order resonance driving
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terms), the (HL)-LHC dynamic aperture was found to be
about 40 beam 	 for the presqueezed optics, then dropping
to 15	 and 11	 for the telescopic round and flat optics
corresponding to Figs. 4(b) and 4(c), respectively [13,19].
On the other hand, assigning realistic field imperfections to
the new HL-LHC magnets, the HL-LHC dynamic aperture
was found to be driven anyway by the field quality of the
new triplets [20,21] (reaching about 10–11	 and 6–7	 for
typical round and flat ATS telescopic optics, with ��

x;y ¼
15 cm and ��

x;y ¼ 30=7:5 cm, respectively). This aspect

will therefore no longer be addressed in all the rest of the
paper, but keeping in mind that item (iii) above implies the
installation of an additional sextupole at Q10 in the IR1
and IR5 insertions of the LHC.

2. Modularity of the ATS versus triplet layout

With the exception of the Q5 matching quadrupoles of
IR6 which would need to be made 20% stronger or longer
in order to achieve the telescopic squeeze of IR5 at 7 TeV,
and provided heavier interventions in IR1 and IR5 to
maximize the mechanical acceptance of the new high
luminosity insertions, the ATS scheme was then found to
be fully compatible with the existing hardware and layout
of the LHC [8]. Step by step, this scheme was pushed in
order to produce and ensure the chromatic correction of
collision optics with extremely small ��, round or flat,
down to ��

x;y ¼ 10 cm or ��
x;y ¼ 5=20 cm, respectively.

ATS optics were built in practice assuming several pos-
sible triplet layouts for the new high luminosity insertions,
with an operating gradientG ranging from 100 to 200 T=m
[8,22–24]. Amongst these various cases, a completely new
version of the LHC optics was also developed based on the
ATS scheme, and compatible with the existing layout of the
machine, until an energy of about 6 TeV per beam (limited
by the strength of the Q5 quadrupoles in IR6). The aim was
to prepare dedicated machine experiments and achieve a
series of validation tests with beam of the ATS principles,
until successively demonstrating the feasibility of a 10 cm
�� collision optics for the HL-LHC (in very specific con-
figurations, of course not suitable for nominal operation).
The results of these beam experiments have been docu-
mented in a series of CERN technical notes [25–28] and
will form the content of a separated publication.

As expected, the difference between all these cases was
found really minor in terms of optics, but of course not in
terms of layout. It concerns essentially the minimum pos-
sible presqueezed ��, which was found limited by the
maximum strength available in the arc sextupoles, ranging
in between 36 and 50 cm with again a rough scaling like

��
presqueeze / 1=

ffiffiffiffi
G

p
[see also Eq. (1) in another context].

In order to reach smaller��, the telescopic techniques of
the ATS were then deployed, with some modularity prop-
erties which are important to emphasize. Indeed, for two
different possible operating gradients G1;2 (and therefore

layout and aperture) for the new triplets in IR1 and IR5,

and two corresponding presqueezed optics matched to
��

presqueeze1;2 at IP1 and IP5, any settings assigned to the

matching quadrupoles of IR2, IR8, IR4, and IR6 in order to
produce a telescopic optics with �� ¼ �col1 for the first

layout could then be directly reused in order to generate a
perfectly matched telescopic optics for the second layout
also, with

��
col1

��
col2

� ��
presqueeze1

��
presqueeze2

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2=G1

q
: (30)

The only condition was to match these various presqueezed
optics with always the same left and right phase advances
in IR1 and IR5, as prescribed in Eq. (22). This modularity
facilitated substantially the study and the design of the
HL-LHC optics and layout.
Consequently, and unless specified differently in the

following, the existing LHC layout, and in particular the
existing inner triplet with a nominal gradient of 205 T=m,
will be used as reference in order to illustrate the ATS
presqueezed and telescopic optics, together with their
chromatic properties. The situation would indeed not
change qualitatively for the HL-LHC or any other triplet
layout operating at lower gradient G (compatible with
larger aperture), only quantitatively in terms of minimum
possible presqueezed ��, or relative increase of the peak �
functions in the arcs for a given �� in collision, which

would slightly increase with 1=
ffiffiffiffi
G

p
.

B. ATS optics for the (HL-)LHC

1. The injection optics

Generally speaking, an injection optics is an optics which
provides a certain number of functionalities in the various
insertions of the ring (e.g. the injection ofBeam1andBeam2
through IR2 and IR8 as shown in Fig. 1), while being
compatible with the physical emittances of the injected
beams in terms of mechanical acceptance. Concerning the
experimental insertions in particular, the injection �� shall
therefore be relaxed with respect to its value at collision,
typically by a factor corresponding to the dynamic energy
range of themachine.On the other hand, keeping inmind the
ATS schemewhich will be deployed at flattop energy, some
specific additional constraints shall already be taken into
account when preparing the injection optics.
(a) Arc optics.—First of all, as explained in Sec. II B 1,

the phase advances per cell need to be matched to �=2 in
the arcs on either side of the high luminosity insertions:

��cell
x;y � �

2
in the arcs 81; 12; 45; and 56: (31)

(b) High luminosity insertions.—The phase advances
over the low-� insertions proper are kept constant during
the presqueeze (as for any standard squeeze) in order
to keep the overall tune unchanged during this process
(see Sec. I B 2). Combining this request with the phasing
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properties of the presqueezed optics [see Eq. (22)], it is
clear that the low-� insertions shall be matched with an
overall phase advance of about �mod ½�� in both planes at
injection, more precisely in between the last strong SF
(respectively SD) sextupole on the left side of the IP, and
the first one on the right side. For the LHC conventions,
this requirement corresponds to

��IR 1
x;y � ��IR 5

x;y � �

4

�
�

2

�
; (32)

since the horizontal and vertical phase advances over the
insertions are defined from Q13.L to Q13.R (see Sec. I B 2),
with Q13.L/R being of opposite polarity (antisymmetric
optics). The above conditions are actually defined within a
multiple integer of �=2, which just illustrates the fact that
the strong sextupole families can a priori be arbitrarily
selected amongst the available families ‘‘a’’ and ‘‘b’’
(see Fig. 3). In practice, this choice might however be
strongly limited by the tunability in phase of the low-�
insertions at small ��. As a result, all the ATS optics
developed so far for the LHC were matched with an overall

phase advance of about ��IR1;IR5
x;y � 2:625	 2�, corre-

sponding to the following left and right phase advances
for the presqueezed optics:

��Q13:L!IP
xBeam1;yBeam2

�1:125	2�; ��IP!Q13:R
xBeam1;yBeam2

�1:5	2�;

��Q13:L!IP
yBeam1;xBeam2

�1:5	2�; ��IP!Q13:R
yBeam1;xBeam2

�1:125	2�;

(33)

which are compatible with the condition (22) provided that
the first strong SFs (respectively SDs) for Beam1 on either
side of the IP are selected at Q10.L/Q11.R, then Q14.L/
Q15.R, . . . (respectively Q11.L/Q10.R, then Q15.L/Q14.R,
. . .), and conversely for Beam2 (see Fig. 4 illustrating the
case of Beam1 on the left side of IP5).

(c) Other insertions.—In view of the telescopic part of
the squeeze, the injection optics shall also reserve enough
provision for the normalized strength of the matching
quadrupoles equipping the left and right supporting inser-
tions (IR8, IR2, IR4, and IR6), but without compromising
their other (non-ATS) functionalities, and of course
preserving their mechanical acceptance at injection.
Within the exception of the Q5 quadrupoles of IR6 (see
Sec. III A 2), this request does not require any additional
hardware modifications in the LHC ring. It was also not
found to be a serious constraint for redefining the injection
optics, thanks to the rather generous number of individu-
ally powered quadrupoles which equip the eight insertions
of the ring.

(d) Betatron tunes.—Finally, the fractional part of the
betatron tunes can be easily recovered by retuning accord-
ingly the settings of the main quadrupoles located in the
arcs which do not participate to the telescopic squeeze
(namely the arcs 23, 34, 67, and 78). In the end of this
process, the integer tunes are not necessarily preserved

(e.g. Qx;y ¼ 64:28=59:31 for the nominal injection

optics of the LHC, compared to 62:28=60:31 for the ATS
injection optics developed so far).

2. The presqueezed optics

One of the keystones of the ATS scheme is the pre-
squeezed optics, with specific matching conditions given
for the left and right phase advances of the high luminosity
insertions [see the relations (33)]. The LHC low-� inser-
tions were however not designed for these two additional
matching constraints. As a result the presqueezed �� can
only be chosen within a relatively tight interval. This
interval depends on the detailed layout and gradient of
the final focus quadrupoles, on the maximum operating
current of the lattice sextupoles and on the beam energy. At
nominal energy (7 TeV=beam) and for the existing LHC
triplet (205 T=m), the presqueezed �� shall satisfy the
following conditions:

36–40 cm & ��
presqueezed & 2–3 m: (34)

Indeed, the IR phasing conditions mentioned above cannot
be sustained for a presqueezed �� larger than 2–3 m,
because of strength limitations which are observed in
some quadrupoles of the matching section, in particular
Q6 approaching its nominal current. Moreover, a �� of
only 2 m would already be too small for the injection
optics, because it would be incompatible with the aperture
requirements at injection energy, both for the existing LHC
triplets and the new triplets of larger aperture foreseen for
the HL-LHC. This limitation is however a nonissue since
the chromatic aberrations are completely marginal above a
�� of a few meters in the LHC. On the other hand, this
somehow complicated the optimization process of ATS
optics, imposing a kind of iterative process between the
injection and the presqueezed optics.
On the opposite side, below a presqueezed �� of about

40 cm, some matching quadrupoles of IR1 and IR5 start to
be pushed to rather low gradients (in particular Q6) while
others, like Q7 in the dispersion suppressor, are approach-
ing their nominal field. Moreover, for a too low pre-
squeezed ��, some strong defocusing sextupole families
would need to be powered beyond their maximum current
of 600 A. With the existing sextupole layout of the LHC,
the minimum possible presqueezed�� has then been found
to be 40 cm for the existing inner triplet. Assuming the
installation of an additional arc sextupole at Q10 in IR1
and IR5, as requested for the HL-LHC for preserving the
dynamic aperture of the telescopic optics (see Sec. III A 1),
the minimum possible presqueezed�� can be pushed down
to 36 cm. This value can be directly compared with a
minimum possible presqueezed �� of 44 cm which is
obtained for the baseline (140 T=m–150 mm) inner triplet
of the HL-LHC [24], which exactly follows the scaling law
formulated in Eq. (30).
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These various cases are summarized in Table I,
and the corresponding presqueezed optics illustrated in
Figs. 5(a)–5(c). These optics can then be compared to an
extreme case where the nominal squeeze sequence of the
LHC has been pushed down to �� ¼ 35 cm at IP1 and IP5
[29] [see Fig. 5(d)], with some matching quadrupoles
already slightly beyond the limits, and a ‘‘minimal’’

chromatic correction limited to a global correction of the
linear chromaticity. In all cases, the peak � functions �max

reached in the triplets follow rather precisely the scaling
law given in Eq. (1). In the case of the ATS presqueezed
optics [Figs. 5(a)–5(c)], the slope of the � functions at the
triplet exit is however more pronounced in the defocusing
plane of Q3, leading in particular to substantially smaller�

TABLE I. Minimum possible presqueezed �� in various cases for the LHC and HL-LHC at an energy 7 TeV=beam
(aperture requirements not included in the case of the existing LHC triplets).

Case 1 2 3

Triplet LHC (205 T=m) LHC (205 T=m) HL-LHC (140 T=m)

Sextupole layout Nominal (11 strong SDs/arc) New (12 strong SDs/arc) New (12 strong SDs/arc)

Sextupole current [A] 600 600 600

Minimum presqueezed �� [cm] 40 36 44

Peak � in triplet [km] 6.0 6.6 7.0

FIG. 5. Presqueezed ATS optics for Beam1 zoomed in the CMS experimental insertion for the three cases summarized in Table I
[(a)–(c)], and compared with a nominal-like LHC collision optics (d), which has been already pushed beyond the gradient limits of
some IR quadrupoles in order to reach �� ¼ 35 cm. The crossing scheme is assumed to be switched off in order to preserve the
dispersion matching (see also Sec. III C).
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functions at Q4 for the same �max reached in the inner
triplet. This feature is the signature of the additional
matching constraints which are imposed on the left and
right phase advances of the low-� insertions in the ATS
case (and are achieved in practice by acting on a small trim
power supply feeding Q1 in the LHC).

The difference between ATS presqueezed and nominal-
like collision optics is even more striking when comparing
their chromatic properties at very similar �� (�� ¼ 36 cm
and �� ¼ 35 cm in the first and second case, respectively).
As illustrated in Fig. 6(a), the chromatic variations of the
betatron tunes are very linear for ATS optics, following the
slope of the linear chromaticityQ0 which has been matched
to two units in this case. Under the same conditions, a
strong nonlinear chromaticity shows up in the second case
[see Fig. 6(b)]. Then, in the first case, the chromatic

Montague functions Wx;y are nicely vanishing beyond the

two arcs on either side of the low-� insertions, in particular
in the collimation insertions IR3 and IR7 [see Fig. 6(c)].
Still for the ATS case, the W functions reach their maxi-
mum in the triplet, while they are minimal at the IPs of the
two high luminosity experiments, corresponding to the
quantities Ix;y and �Ix;y, respectively, defined in Eq. (6).

Indeed, by construction of the presqueezed optics, a wave
of off-momentum � beating is coherently excited by the
strong sextupoles of the arcs on either side of IP1
and IP5. This wave arrives out of phase by �=2 at the
location of the inner triplets for an in-phase compensation
of the chromatic kick induced by the low-� quadrupoles.
After its passage in the triplet, this wave is then strictly
vanishing at the IP in terms of (first order) off-momentum
� beating, but not completely in terms of off-momentum

FIG. 6. Chromatic variations of the betatron tunes (top) and Montague functions (bottom) along the LHC ring (cycled from IP3).
The left pictures stand for an ATS optics presqueezed down to �� ¼ 36 cm at IP1 and IP5 (see case 2 of Table I), which is compared to
a nominal-like LHC collision optics with �� ¼ 35 cm (right pictures).
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� beating (�Ix;y � 0 for the antisymmetric LHC optics).

The situation is qualitatively and quantitatively very
different for the nominal-like collision optics, as shown
in Fig. 6(d).

Lookingmore into the details of the chromatic behavior of
theTwiss parameters at specific locations in the LHC ring, in
particular at the interaction point of the CMS experiment
(IP5) or in the betatron collimation insertion (IR7), varia-
tions of the� functions by up to 100% can be observed over
a momentum window of �1:5 10�3 for the nominal-like
collision optics with �� ¼ 35 cm. This can be directly
compared to the few percent variations obtained for the
ATS optics presqueezed down to �� ¼ 36 cm (see Fig. 7).

According to the experience gained during the first run
of the LHC, the aperture of the existing triplet may still be
compatible with a �� of 40 cm in collision [30], which is

already sensibly smaller than the design value of 55 cm [1].
Therefore the 40 cm ATS presqueezed optics is presently
considered as a very good candidate for running the LHC
after its restart in 2015. Also, a careful validation and
detailed measurements of this optics [27] have already
been carried out during the ATS beam experiments which
were conducted in 2011 and 2012. The telescopic part of
the squeeze is then described below starting from the
presqueezed optics corresponding to case 1 in Table I,
i.e. with ��

presqueeze ¼ 40 cm.

3. The telescopic collision optics

The matching procedure of the telescopic squeeze has
already been described in Sec. II B 2. Additional optics con-
straints, more specific to the left and right supporting inser-
tions, shall also be taken into account during this process.

FIG. 7. Chromatic variations of the � functions [%] at IP5 (top) and IP7 (bottom), shown on the left for an ATS optics presqueezed
down to �� ¼ 36 cm at IP1 and IP5 (see case 2 of Table I), and compared to a nominal-like LHC collision optics with �� ¼ 35 cm
(right pictures).
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A first example concerns the Twiss parameters at IP4 which
are kept constant during the telescopic squeeze, in order to
minimize the variations of the � functions in the core of the
IR4 insertion which houses the rf equipments and most of
the beam diagnostic systems. A second example is related to
the choice of �� at the IPs of the two low-luminosity in-
sertions IR2 and IR8. In the context of theATS, these two IRs

shall indeed be seen as the left and right supporting insertions
for the ATLAS experiment (see Fig. 1).
In the two examples shown in Fig. 8, �� has been kept

equal to its injection value of 10 m at IP2 and IP8, while a
�� of 2–3 m is in principle within reach at these two
IPs, without impacting on the telescopic squeeze of IR1
(see e.g. [31]). Starting from a presqueezed optics matched

FIG. 8. Round (left pictures) and flat (right pictures) telescopic optics zoomed in IR8, IR1, and IR2, with ��
x;y ¼ 10=10 cm and

��
x;y ¼ 5=20 cm at IP1, respectively. The peak � functions reached in the triplets of IR1 amounts to about 25 km in the first case (b),

and up to 50 km in the second case (e). All these optics are shown with the crossing scheme switched off in IR1, IR2, IR5, and IR8 in
order to preserve the dispersion matching (see also Sec. III C).
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to ��
presqueeze � 40 cm [see Fig. 5(a)], the matching quad-

rupoles of IR2, IR8, IR4, and IR6 are then used in order to
gain an additional squeeze factor from 4 to 8, leading to a
round telescopic optics with ��

x;y ¼ 10 cm in both planes

at IP1 and IP5, or to a flat optics with ��
x;y ¼ 5=20 cm at

IP1, and conversely at IP5 (��
x;y ¼ 20=5 cm). In the case of

IP1, and keeping �� constant at IP2 and IP8, a �-beating
wave is initiated in arc 81, as clearly visible on the right

FIG. 9. Typical round (left pictures) or flat (right pictures) telescopic optics for the HL-LHC, with ��
x;y ¼ 10 cm in both planes at IP1

and IP5, or ��
x;y ¼ 5=20 cm (respectively 20=5 cm) at IP1 (respectively IP5). The machine is cycled from IP3: comparison in terms of

� and dispersion functions [(a) and (b)], Montague functions [(c) and (d)], and chromatic variations of the betatron tunes [(e) and (f)].
The crossing scheme has been switched off in the four experimental IRs in order to preserve the dispersion matching (see also
Sec. III C).
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side of IR8 [see Figs. 8(a) and 8(d)], which contributes to
the telescopic squeeze of IR1, before being closed thanks to
the matching quadrupoles of IR2 [see Figs. 8(c) and 8(f)].
In this process, the horizontal and vertical betatron phase
advances from Q13.L8 to IP1 and from IP1 to Q13.R2 are
also kept unchanged with respect to the presqueezed optics
in order to preserve the betatron tunes.

The corresponding overall optics are showed in Figs. 9(a)
and 9(b) together with the associated Montague functions
Wx;y [Figs. 9(c) and 9(d)], and the chromatic variations of

the betatron tunes [Figs. 9(e) and 9(f)]. A zoom of these two
optics in arc 45 was already given in Figs. 4(b) and 4(c).
Even for the flat optics with a �� as small as 5 cm in one of
the two transverse planes, and a corresponding �max of
almost 50 km reached in the inner triplets of IR1 and IR5,
the W functions remain perfectly under control, and a very
modest third order chromaticity Q000 starts to show up.
These results can be directly compared with the situation
shown in Figs. 6(b) and 6(d) for a nominal-like LHC
collision optics where �� was still almost 1 order of
magnitude higher.

In order to reach such a quality for the chromatic correc-
tion, in particular for the nonlinear chromaticity, a fine-
tuning of the left and right phase advances of the low-�
insertions is needed, as explained in the endof the Sec. II B 3.
This final numerical optimization is first performedusing the
two telescopic optics mentioned above, and is then used to
rephase accordingly the presqueezed optics, and finally the
injection optics. One single iteration is generally sufficient,
back and forth between the telescopic and the presqueezed
optics, in order to reach a very good quality for the chromatic
correction. For the extreme �� values of 5–10 cm under
consideration, the chromatic correction is sensitive to varia-
tions of the order of 0.5–1 degrees (2–3	 10�3 in tuneunits)
for the left and right phase advances of the low-� insertions.
This requirement is challenging, but actually not far from
what has been already demonstrated in the LHC where the
�-beating correction is actually based on the measurement
of the betatron phase advances and on the minimization of
their deviation with respect to the model [32].

Finally, as for the presqueezed optics, and both for the
round and flat telescopic optics under consideration,
the chromatic variations of the � functions do not exceed
the percent level in the collimation insertions IR3 and IR7
[see Figs. 10(c) and 10(d) for IP7]. The situation is quali-
tatively and quantitatively different when inspecting these
variations at the interaction points of the high luminosity
insertions, as illustrated in Figs. 10(a) and 10(b) in the case
of IP5. A first order off-momentum � beating @�� shows
up, which comes from the final optimization of the chro-
matic correction in terms of second order chromaticityQ00.
On the other hand, this term alone does only contribute to a
very small fraction of the total chromatic variations of the
� functions at the IP. The main contribution comes from a
second order off-momentum � beating @2��. The latter is

always positive at the IP and therefore negative in the final
focus quadrupoles, which means that it does not degrade
the off-momentum aperture of the inner triplet. The exis-
tence of this term is intrinsic to the strategy which has been
adopted for the correction of the W Montague function.
More precisely, the off-momentum � beating is not strictly
vanishing at the IP, and given by

��
x;yð�Þ � �Ix;y�; (35)

where the quantities �Ix;y are defined in Eq. (6). Then,

since the Twiss parameters are linked by the usual relation
�
 ¼ 1þ �2 for any momentum errors, this residual off-
momentum �� contributes as follows to the second order
off-momentum � beating at the IP:�

@2��
x;y

@�2

�
ð�¼0Þ

� 2
ð�Ix;yÞ2

�
x;yð0Þ / ð�IprequeezeÞ2

��
x;y

; (36)

which would be vanishing for a symmetric optics, but is
increasing as 1=�� during the telescopic squeeze of the
LHC antisymmetric optics. On the other hand, with a rms
energy spread of1–2	 10�4 for the (HL)-LHCbeamat high
energy [1,2], this term has still a very marginal impact onto
the performance of the machine, and remains really small
compared to nominal collision optics of much larger ��.

C. Spurious dispersion from the crossing angle
and its efficient correction for ATS optics

Contrary to other existing colliders like RHIC [33], the
LHC has this particularity that the beams collide with a
nonzero crossing angle at the IP. For reasons related to
beam-beam effects, the crossing planes are alternated in
the two high luminosity insertions of the machine, with
presently a vertical crossing angle in IR1, and horizontal in
IR5 (see e.g. [34]). When reducing ��, the crossing angle

shall also be increased with 1=
ffiffiffiffiffiffi
��p

in order to keep con-
stant the normalized separation between the two beams at
the long-range (LR) beam-beam encounters where the
beams still interact with each other. The LHC counts 15
LR encounters on either side of IP1 or IP5, until reaching
the separation dipole D1 located on the non-IP side of the
triplet (see Fig. 2). This number is typically increased to
about 20 for triplet quadrupoles of larger aperture, there-
fore operating at lower gradient, and then being longer
in proportion compared to the existing low-� quadrupoles
of the LHC. For the HL-LHC, the minimum normalized
separation at the long-range encounters has been estimated
to be about dbb � 12:5	 for round telescopic optics,
corresponding to a half-crossing angle of

�c � dbb
2

	
ffiffiffiffiffiffi
�

��

s
; (37)

that is �c ¼ 360 �rad for �� ¼ 10 cm [23], at an energy
of 7 TeV=beam and assuming a normalized emittance of

� ¼ 2:5 �m for the HL-LHC beam [2]. With such a
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crossing angle, the peak horizontal or vertical beam excur-
sion, namely �ẑIT, is as high as 15 mm in the inner triplets
of IR1 and IR5 [see the two highest peaks of closed orbit in
Fig. 11(a)]. This in turn induces a wave of horizontal and
vertical spurious dispersion all around the ring, which can
reach up to 10–20 m in the final focus quadrupoles of the
high luminosity insertions [see Fig. 11(b)], to be compared
for instance with a nominal horizontal dispersion of maxi-
mum 2 m in the arcs. The spurious dispersion induced by
the crossing angle in one of the two high luminosity
insertions of the LHC, and then exported in the inner
triplets of the second IR, depends obviously on the betatron
phase advances between these two insertions. For
alternated crossing scheme, however, the horizontal and
vertical spurious dispersions cannot be vanishing simulta-
neously in the two high luminosity insertions, unless an
active correction is deployed.

Indeed, without corrective action, the following scaling
law is expected for the normalized amplitude of the

spurious dispersion wave induced by the crossing angle
in a given low-� insertion:���������DðsÞffiffiffiffiffiffiffiffiffiffi

�ðsÞp ��������/�ẑIT

ffiffiffiffiffiffiffiffi
�̂IT

q
� ffiffiffiffiffiffi

��p
�̂IT	�c/ 1ffiffiffiffi

G
p dbb

�� ; (38)

where the relations (1) and (37) have been used. Therefore,
reducing the gradient G to maximize the triplet aperture
makes again the situation slightly worse in terms of optics.
While this spurious dispersion is of the order of 1–2 m for
the nominal collision optics of the LHC (�� ¼ 55 cm), it
can then be 1 order of magnitude higher for the HL-LHC,
and therefore have very detrimental effects in terms of
performance: reducing the mechanical acceptance of the
inner triplet (and therefore the minimum possible ��),
contributing to an increase of the effective spot sizes at
the IP, but also leading to more subtle effects as a shift of
the linear chromaticity in the end of the squeeze induced
by the sextupole-like component of the long-range

FIG. 10. Chromatic variations of the � functions [%] at IP5 (top) and IP7 (bottom) for the telescopic round (left) and flat (right)
optics considered in Fig. 9.
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beam-beam interaction, and leading as well to variations
by up to �Q0

bb ��10 units along the HL-LHC bunch

trains since different bunches do not necessarily experience
the same number of LR beam-beam encounters.

The problem could in principle be solved in the hori-
zontal plane, without the ATS scheme, by keeping the
crossing angle switched on when matching the collision
optics of a given low-� insertion. This approach is how-
ever relatively costly in terms of optics flexibility, and
therefore minimum possible ��. It is in any case not
suitable for the ATLAS experimental insertion where the
crossing angle is vertical, and therefore is not used in
practice. Actually, the LHC was (a priori) not designed
to control properly the spurious dispersion in the vertical

plane, at least not a spurious dispersion of the magnitude
expected for the HL-LHC. Indeed, a method of correction
tried out in the past was to generate vertical (or horizontal)
orbit bumps in the LHC arcs [35]. This analysis performed
on the nominal collision optics demonstrated that this
strategy could work, but leading to a peak closed orbit of
up to �6:5 mm in the arcs. This would mean at least 5
times more for the low �� targeted for the HL-LHC [see
Eq. (38)], and therefore well beyond the mechanical ac-
ceptance of the arcs (and capability of the orbit correctors
to generate the bumps at flattop energy). In fact, this
strategy does work when combined with the ATS scheme,
essentially thanks to the phasing properties of the
presqueezed optics. More quantitatively, assuming that

(a): H and V closed orbit [m] (b): H and V dispersion [m]

(c): H and V closed orbit [m] (d): H and V dispersion [m]

FIG. 11. Horizontal and vertical closed orbit (left pictures) and dispersion (right pictures) around the LHC ring for the round ATS
optics considered in Fig. 9(a) with �� ¼ 10 cm and a crossing angle of 720 �rad. The machine is cycled from IP3 for the clockwise
rotating Beam1. The highest orbit excursions shown in (a) result from the crossing angles at IP5 (horizontal) and IP1 (vertical), while
the smaller peaks on either side of the second highest peak are due to the H and V crossing angles at IP8 and IP2, respectively. The
dispersion is fully mismatched in the first case (top pictures). In the second case (bottom picture), horizontal (respectively vertical)
orbit bumps are generated in the arcs 45 and 56 (respectively 81 and 12), reducing the dispersion mismatch by more than 1 order of
magnitude [note the change of vertical scale between (b) and (d)].
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relatively modest horizontal (respectively vertical) orbit
bumps, not exceeding �4 mm peak to peak, are generated
in the two arcs on either of IP5 (respectively IP1) where the
crossing angle is horizontal (respectively vertical), the
horizontal (respectively vertical) dispersion can be very well
controlled all around the ring [see Figs. 11(c) and 11(d)]. In
particular, the negative dispersion needed in IR3 for mo-
mentum collimation is fully restored as shown on the left
side of Fig. 11(d), the spurious dispersion does not exceed
50 cm in the inner triplets of IR1 and IR5 (which means
less than 1 mm at the IP), and remains as well very small in
the betatron collimation insertion IR7. This correction
leaves however a small residual due to the crossing angles
in IR2 (Alice experiment) and IR8 (LHCb).

The fundamental reasonwhyATSoptics are very efficient
for the correction of the spurious dispersion via orbit bumps
is a direct consequence of their intrinsic properties, in terms
of betatron phase advances, chromatic correction, and tech-
niques used for the telescopic squeeze (see Secs. II B 1 and
II B 2, respectively). The detailed analysis is reported in
Appendix B, leading in particular to a very simple expres-
sion for the normalized amplitude of the orbit bumps which
is needed in the two arcs on either side of the IP:

dco � dbb
2

: (39)

For a minimum required beam-beam separation of dbb ¼
12:5	, the above relation leads to a peak closed orbit of
about 2 mm in the arcs for a typical (HL)-LHC presqueezed
optics with �� ¼ 40–50 cm, and only 4 mm for typical
HL-LHC telescopic optics, where the peak � functions
would be increased by a factor of 4 in the arcs in order to
further reduce �� in proportion at the IP.

Finally, to first order in the amplitude of the orbit bumps
in the arcs, the above correction strategy has no impact on
tune shift, � beating, and linear coupling, since the normal
or skew quadrupole field errors induced by feed-down
effects in the strong sextupoles change of sign from magnet
to magnet. Indeed the strong sextupoles are spaced by � in
betatron phase, and each family contains an even number of
magnets. Furthermore, this strategy is also orthogonal to the
chromatic correction (linear and nonlinear chromaticity,
off-momentum � beating), since the dispersion wave in-
duced by the strong sextupoles is out of phase by �=2 with
respect to the peak � functions reached in the arcs, which
also means that it is vanishing at the strong sextupoles.

IV. SUMMARYAND CONCLUSIONS

The achromatic telescopic squeezing scheme represents
a real evolution with respect to the standard concept of a
low-� insertion, where the reduction of �� is generally
achieved by using a certain number of matching quadru-
poles, confined in a rather small fraction of the ring on
either side of the IP. In order to overcome a series of optics
limitations which are driven at low �� either by the

gradient limits imposed to the matching quadrupoles or
by the strength available in the lattice sextupoles, the ATS
scheme extends the physical limits of the low-� insertion
(from the optics point of view), and splits the new corre-
sponding insertion into three well-identified blocks: (1) two
supporting insertions playing the role of left and right
matching sections (located several km upstream and down-
stream of the ATLAS and CMS experimental insertions in
the case of the LHC); (2) two arcs of machines on either
side of the IP playing the role of two interleaved horizontal
and vertical chromatic correction sections, for compensat-
ing the chromatic aberrations and eventually the spurious
dispersion induced by the final focus quadrupoles; (3) and
the low-� insertion proper, playing the role of a final tele-
scope which becomes strictly passive below a certain ��
(the presqueezed ��). The reduction of ��, basically with-
out any chromatic limits, and a proper chromatic correction
are intimately connected in the ATS scheme. This makes
this scheme already very attractive for the existing LHC
machine, bringing in particular a definite solution for the
long-standing problem of correcting the off-momentum �
beating, but also the horizontal or vertical spurious disper-
sion induced by the crossing angle in the four experimental
insertions of the ring. While magnets of larger aperture are
obviously a prerequisite for a further reduction of ��, this
condition combined with the ATS scheme is not only
necessary but becomes also sufficient to reach very low
��. With its universality versus triplet layout and technol-
ogy, its flexibility, in particular to deliver round or flat
collision optics at constant layout, and mainly its unprece-
dented potential �� reach thanks to an optimal usage of the
entire ring in terms of matching quadrupoles, sextupoles,
but also aperture available in the arcs at flattop energy, the
ATS scheme opens the path towards the performance
targeted by the HL-LHC project. Consequently, it certainly
strongly influenced the hardware direction which was
taken by the project, in particular with magnets of the
largest possible aperture, and became rapidly a vital ingre-
dient for the luminosity upgrade program of the LHC.
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APPENDIX A: FINE-TUNING OF
THE SEXTUPOLE SETTINGS DURING
THE TELESCOPIC SQUEEZE AND

RESIDUAL CHROMATICITY

This Appendix will analyze in more detail the evolution
of the arc optics during the telescopic squeeze, the fine-
tuning of the strong sextupoles which is needed for a
precise control of the off-momentum � beating during
this process, and the residual linear chromaticity which is
left uncorrected and shall be compensated by the other
sextupoles of the lattice. Most of the notations used below
have been already defined in the Secs. II B 1 and II B 2.

Since �� is kept equal to zero, the following relation
holds during the telescopic part of the squeeze:ffiffiffiffiffiffiffiffiffiffi

~�ðsÞ
q

ej�~�ðsÞ �
ffiffiffiffiffiffi
~��

q
R22ðsÞ þ j=

ffiffiffiffiffiffi
~��

q
R12ðsÞ; (A1)

where ~�ðsÞ is the new (mismatched) � function at a given
position s in between the left and right supporting inser-
tions, �~�ðsÞ the new phase advance from this position to
the IP, and R12;22ðsÞ are the ðx; x0Þ and (x0; x0Þ coefficients of
the corresponding Rmatrix. The quadrupole settings being
kept constant both in the low-� insertion and in the neigh-
boring arcs, this R matrix is invariant during the telescopic
squeeze. Therefore, its coefficients can also be described
by the unperturbed � function �ðsÞ and phase advance
��ðsÞ of the presqueezed optics:

R12ðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðsÞ��

0

q
sin½��ðsÞ�; R22ðsÞ¼

ffiffiffiffiffiffiffiffiffiffi
�ðsÞ
��

0

s
cos½��ðsÞ�:

(A2)

Combining the two above relations, and after some
algebra, one gets

~�ðsÞ ¼ 1

2
�ðsÞ

�
f1� cos½2��ðsÞ�g

þ f1þ cos½2��ðsÞ�g
� ~��

��
0

�
2
��

��
0

~��

�
; (A3)

and

~�ðsÞe2j�~�ðsÞ ¼1

2
�ðsÞ

�
cos½2��ðsÞ�

� ~��

��
0

þ��
0

~��

�

þ
� ~��

��
0

���
0

~��

��
þj�ðsÞsin½2��ðsÞ�: (A4)

The imaginary part of the phasor ~�e2j�~� is therefore
invariant during the telescopic squeeze, contrary to the

real part which depends on the new �� value, namely ~��.
This simple fact has a direct consequence on the (2,0) and
(0,2) chromatic driving terms which are generated by the
strong sextupoles. Indeed these driving terms will be kept
in phase with respect to the final focus quadrupoles if
and only if the new settings of the strong sextupoles
remains collinear to the ones previously established for
the presqueezed optics [see Eq. (19)]:

� ~KL;R
2F

¼ �

NL;R
F �FDxF

	 I0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2FD

q ;

� ~KL;R
2D

¼ � �

NL;R
D �FDxD

	 I0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2FD

q ;

(A5)

where all the quantities in the rhs refer to the unperturbed
(presqueezed) optics, and the multiplicative factor � de-
pends on the new��. In order to determine the � factor, the
achromaticity conditions (11) and (12) need to be rewritten
for the perturbed optics,

NL;R
F

~�Fx
DxF�

~KL;R
2F

þ NL;R
D

~�Dx
DxD�

~KL;R
2D

� ~Ix;

NL;R
F

~�Fy
DxF�

~KL;R
2F

þ NL;R
D

~�Dy
DxD�

~KL;R
2D

� �~Iy;
(A6)

and

e2jð�~�L;R
x ��=2Þ½NL;R

F
~�Fx

DxF�
~KL;R
2F

þ e2j�~�L;R
xFDNL;R

D
~�Dx

DxD�
~KL;R
2D

� � ~Ix;

e2jð�~�L;R
y ��=2Þ½e�2j�~�L;R

yFDNL;R
F

~�Fy
DxF�

~KL;R
2F

þ NL;R
D

~�Dy
DxD�

~KL;R
2D

� � �~Iy; (A7)

where the chromatic betatron kicks ~Ix;y given by the inner

triplet at the new ~�� can be deduced from the relation (4)

~I x;y � ��
0

~��
x;y

	 I0: (A8)

At this stage the only parameter which is left free is
the multiplicative constant � introduced in Eq. (A5).
Therefore, a priori only one of the four previous conditions
can be solved exactly. Considering one after the other the
two conditions related to the cancellation of the (2,0) and
(0,2) chromatic driving terms [Eq. (A7)], and using the
relations (10), (13), (14), (20), (A4), and (A5) to determine

the new contributions ~�e2j�~�� ~K2 of the strong sextupoles,
one finds

�� �x;y ¼def 1

1� �½1� ð ~��
x;y

��
0
Þ2�

; (A9)

with
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�¼def 1
2

2
41� 1� rFDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2FD

q
3
5: (A10)

The relation (A9) implicitly tells that the (2,0) and
(0,2) chromatic driving terms cannot be compensated
simultaneously, except in the case of round telescopic

optics ( ~��
x� ~��

y), or asymptotically at extremely low ��

( ~��
x;y ~��

0). On the other hand, for intermediate flat optics

( ~��
x � ~��

y) where the largest�
� has already been reduced by

a factor of 2with respect to the presqueezedoptics, it is easy to
see that the (2,0) and (0,2) driving terms can both be corrected
within a precision of 1% or better:

j�x � �yj
�x þ �y

� �

2

jð ~��
xÞ2 � ð ~��

yÞ2j
ð��

0Þ2
&

�

8
� 1%: (A11)

Finally, the coefficient �, of the other of rFD=2� 10%, gives
the very modest variation range which is expected for the
sextupole settings during the telescopic squeeze, regardless of

the final collision ~��.
The locality of the chromaticity correction [see Eq. (A6)]

is also greatly improved in comparison with the situation
described in Sec. II B 1 for the presqueezed optics. Coming
back to the relations (10), (13), (14), and (20) which char-
acterize the presqueezed optics, and inserting these rela-
tions into (A3), the perturbed � functions at the strong
sextupoles can be written as follows:

~�Fx;Dy
¼�F	

�
�Fþð1��FÞ

� ~��
x;y

��
0

�
2
�
	
�
��

0

~��
x;y

�
;

~�Dx;Fy
¼�D	

�
�Dþð1��DÞ

� ~��
x;y

��
0

�
2
�
	
�
��

0

~��
x;y

�
;

(A12)

with

�F ¼def 1
2

2
41þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2FD

q
3
5 � 1;

�D ¼def 1
2

2
41� rFDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2FD

q
3
5 � 1� rFD

2
:

(A13)

By inserting the above relations into the chromaticity
correction condition (A6), and using Eqs. (A5) and (A9)
which give the settings of the strong sextupoles
during the telescopic squeeze [within the approximation
(A11)], the residual uncorrected chromaticity is of the
order of

4��Q0
x;y � 4rFDI0�

1� rFD þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2FD

q �
2

� ~��
x;y

��
0

�
þO

� ~��
x;y

��
0

�
3
:

(A14)

This chromaticity is not only bounded, but in fact

even tends to zero at low ~�� thanks to the phasing

properties of the presqueezed optics, and can be easily
compensated by the other sextupoles of the lattice
(see also Sec. II B 1 for the presqueezed optics).

APPENDIX B: SPURIOUS DISPERSION
CORRECTION

Similarly to Eq. (9) which links the off-momentum �
and � beating to the (2,0) and (0,2) chromatic driving
terms, the spurious dispersion and angular dispersion in-
duced by a nonzero closed orbit are directly connected to
the following quantities:�

�Dx;yffiffiffiffiffiffiffiffiffi
�x;y

p þ j

� ffiffiffiffiffiffiffiffiffi
�x;y

q
�D0

x;y þ �x;y

�Dx;yffiffiffiffiffiffiffiffiffi
�x;y

p ��
s¼s0

/ cð1;0Þ;ð0;1Þðs0Þ
¼def

Z s0þC

s0

ds½K1ðsÞ � K2ðsÞDxðsÞ�

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x;yðsÞ

q
�zx;yðsÞej½�x;yðsÞ��x;yðs0Þ�; (B1)

where �zx;yðsÞ denotes the horizontal and vertical closed

orbits around the machine.
The contribution of the inner triplet is rather easy

to establish. Indeed, when the optics is squeezed, the
betatron phase advances between the IP and the final focus
quadrupoles is very close to �=2. As a result, the evolution
of the beam orbit in the left and right inner triplets is simply
given by

�zL;RðsÞ ¼ ��c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðsÞ��

q
¼ �dbb

2

ffiffiffiffiffiffiffiffiffiffiffiffi
��ðsÞ

q
; (B2)

where the suffixes x and y have been omitted for the sake of
clarity, dbb represents the normalized beam-beam separa-
tion introduced in Eq. (37), � is the physical transverse
emittance of the beam, the � sign stands for the left and
right sides of the IP, respectively, when the crossing angle
is positive, and conversely when it is negative. Under these
conditions, the normalized kick of angular dispersion
induced by each inner triplet is directly connected to the

integral IL;Rx;y previously introduced in Eq. (3):ffiffiffiffi
�

�

s
�D0 ¼

Z
triplet ðL;RÞ

dsK1ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðsÞ=�

q
�zL;RðsÞ

¼ �IL;R 	 dbb
2

; (B3)

where the� sign depends on the sign of the crossing angle,
on the transverse plane (H or V), and on the triplet (L or R)
under consideration, but does not need to be specified
further.
Concerning the contribution of the orbit bumps in the

arcs, it is first important to notice that the quantity K1ðsÞ �
K2ðsÞDxðsÞ [see the rhs of Eq. (B1)] is marginal in the main
quadrupoles which are equipped with a sextupole belong-
ing to one of the weak families. This comes from the fact
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that the chromaticity induced by each of these quadrupoles
is corrected very locally by the weak sextupole which is
directly attached to it, and keeping in mind that the
weak sextupole families are operated at strictly constant
normalized strength as of the injection optics until the end
of the telescopic squeeze (see Sec. II B 1). For the other arc
quadrupoles, equipped with a strong sextupole, this quan-
tity is reduced to ��K2ðsÞDxðsÞ where, as in Sec. II B 1,
�K2ðsÞ denotes the additional strength which is given to
the strong sextupoles for the chromatic correction of the
inner triplet. In a given arc and a given plane, the orbit
bump �zcoðsÞ is then achieved by acting on two orbit
correctors upstream of the first strong sextupole of that
arc, and closed downstream of the last one before reaching
the IP. This offers the possibility to adjust both the nor-
malized amplitude, namely dco, and the phase �co of the
bumpwith respect to the sextupole families participating to
the chromatic correction of the triplet:

�zcoðsÞ ¼ dco

ffiffiffiffiffiffiffiffiffiffiffiffi
��ðsÞ

q
cos½�co þ�ðsÞ�: (B4)

Combining Eqs. (B1), (B3), and (B4), the conditions to be
satisfied for the correction of the spurious dispersion are
then very similar to the ones established in Eq. (12) for the
correction of the off-momentum� beating. Using the same
notations, one gets

dL;Rxco e
jð��L;R

x ��=2Þ 	NL;R
F �xFDxF ½cosð�L;R

xco Þ�KL;R
2F

þej��
L;R
xFDNL;R

D �xDDxD cosð�L;R
xco þ��L;R

xFDÞ�KL;R
2D

�

�dxbb
2

IL;Rx ;

dL;Ryco e
jð��L;R

y ��=2Þ 	½e�j��L;R
yFDNL;R

F �yFDxF

	cosð�L;R
yco ���L;R

yFDÞ�KL;R
2F

þNL;R
D �yDDxD cosð�L;R

yco Þ�KL;R
2D

���dybb
2

IL;Ry ; (B5)

where the � sign which was left unspecified in Eq. (B3)
has been implicitly absorbed in the definition of the phases

�L;R
xco;yco of the orbit bumps (i.e. by eventually shifting them

by �).
First of all, assuming that the presqueezed optics is set

up with a crossing angle which is already dimensioned for
the collision optics (i.e. overdimensioned by the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

presqueezed=�
�
squeezed

q
), the telescopic squeeze can be

achieved at constant crossing angle. Under this condition,
if the correction of the spurious dispersion is set up for the
presqueezed optics, it will still be valid all along provided a
(slight) reduction of the bump amplitude by the scaling
factor � introduced in Eq. (24). Indeed, the dispersion can
be seen as a dispersive orbit which, if corrected locally, is
strictly insensitive to the optics manipulations which are
performed by the left and right supporting insertions during
the telescopic part of the squeeze. The same observation

stands for the crossing bumps and orbit bumps in the arcs if
the latter do not overlap with the supporting insertions. On
the other hand, any potential dispersion or orbit leakage
due to machine imperfections will of course be further
amplified during the telescopic squeeze. Finally, since the
strength of the strong sextupoles shall be (slightly) in-
creased by the � factor during the telescopic squeeze
(see Sec. II B 2), the bump amplitude in the arcs shall
even be reduced accordingly during this process.
It is then sufficient to inspect the solution of Eq. (B5) for

the presqueezed optics only, for which the � functions
�xF;D;yF;D at the strong sextupoles SF and SD are linked

by the relations (13), the betatron phase advances

��L;R
xFD;yFD between two consecutive strong SF and SD are

discussed in Eq. (14), the settings of the strong sextupoles
have been established in Eq. (19), and the left and right IR

phase advances ��L;R
x;y are defined in Eq. (22). By replac-

ing each occurrence of cosð�Þ in Eq. (B5) by its equivalent
expression ½ej� þ e�j��=2, and since the lhs of the achro-
maticity conditions (12) is real by construction of the
presqueezed optics, one can immediately connect the left

and right phase advances ��L;R
x;y of the high luminosity

insertions to the phases �L;R
xco;yco which are appropriate for

the orbit bumps in the arcs:

�L;R
xco;yco � ��L;R

x;y � �

2
mod ½�� � ��L;R rFD

2
mod ½��;

(B6)

where the aspect ratio rFD is defined in Eq. (17), and the
quantities �L;R ¼ �1 depend on the choice of the strong
sextupole families [see Eq. (14)]. Inserting (B6) into (B5),
and using the sextupole settings given in Eq. (19), the
normalized amplitude of the bumps then follows immedi-
ately for the presqueezed optics:

dL;Rxco;yco ¼
1

1� �|ffl{zffl}
¼def �0

�
1�

���������I0
I0

��������
�
	 dbb

2
; (B7)

where the � constant was already introduced in Eq. (26),
the average triplet-related quantities I0 and �I0 are the
same in the two planes for a round presqueezed optics [see
Eq. (6), with j�I0=I0j � 10–20% for typical (HL)-LHC
triplets], and the � sign shall flip from the left to the right
of the IP in a given plane, and between the H and V planes
on a given side of the IP. For instance, a rapid inspection of
Fig. 11 shows that for the LHC triplets in IR1 and IR5
(which are of same polarity), and the clockwise rotating
Beam1, this sign shall be positive both on the left side of
the IP for horizontal crossing (IP5), and on the right side of
the IP for vertical crossing (IP1), and negative in the other
two cases. The opposite rules would stand for the counter-
clockwise rotating Beam2.
As mentioned previously, the amplitude of the bumps

shall then be reduced during the telescopic squeeze, in

STÉPHANE FARTOUKH Phys. Rev. ST Accel. Beams 16, 111002 (2013)

111002-24



proportion with the increase of strength of the strong
sextupoles by the scaling factor � defined in Eq. (25).
Surprisingly enough, this factor � converges also quite
rapidly at low �� towards the constant �0 defined above
in Eq. (B7). Consequently, for telescopic optics of suffi-
ciently low ��, and neglecting the left-right imbalance
j�I0=I0j, the normalized amplitude of the bumps is given
by the very simple following expression:

dco � dbb
2

; (B8)

which varies very smoothly with the choice of gradient of
the final focus quadrupoles, only via the minimum normal-
ized beam-beam separation needed, which shall be slightly
increased for weaker and longer quadrupoles of larger
aperture.
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[6] O. Brüning, R. De Maria, and R. Ostojic, CERN Report
No. CERN-LHC-Project-Report-1008, 2007.

[7] S. Fartoukh, CERN Report No. CERN-ATS-2010-026,
2010, pp. 262–290.

[8] S. Fartoukh, CERN Report No. sLHC-Project-Report-
0049, 2010.

[9] M. Korostelev, E. Cruz-Alaniz, D. Newton, A. Wolski, O.
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