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Baseline design of a typical x-ray free electron laser (FEL) undulator assumes a planar configuration

which results in a linear polarization of the FEL radiation. However, many experiments at x-ray FEL user

facilities would profit from using a circularly polarized radiation. As a cheap upgrade, one can consider an

installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to

suppress the powerful linearly polarized background from the main undulator. In this paper we propose a

new method for such a suppression: an application of the reverse taper in the main undulator. We discover

that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically

the same as in the case of a nontapered undulator while the power of linearly polarized radiation is

suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the

afterburner. Considering the SASE3 undulator of the European XFEL as a practical example, we

demonstrate that soft x-ray radiation pulses with peak power in excess of 100 GW and an ultimately

high degree of circular polarization can be produced. The proposed method is rather universal, i.e., it can

be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of

electron beam parameters, and with any repetition rate. It can be used at different x-ray FEL facilities, in

particular at Linac Coherent Light Source after installation of the helical afterburner in the near future.

DOI: 10.1103/PhysRevSTAB.16.110702 PACS numbers: 41.60.Cr

I. INTRODUCTION

Successful operation of x-ray free electron lasers (FELs)
[1–3], based on the self-amplified spontaneous emission
(SASE) principle [4], opens up new horizons for photon
science. One of the important requirements of FEL users in
the near futurewill be polarization control of x-ray radiation.
Baseline design of a typical x-ray FEL undulator assumes a
planar configuration which results in a linear polarization of
the FEL radiation.However,many experiments at x-ray FEL
user facilities would profit from using a circularly polarized
radiation. There are different ideas [5–16] for possible up-
grades of the existing (or planned) planar undulator beam
lines.

As a cheap upgrade, one can consider an installation of a
short helical afterburner. In particular, an electromagnetic
helical afterburner will be installed behind the soft x-ray
planar undulator SASE3 of the European XFEL. However,
to obtain a high degree of circular polarization, one needs
to suppress (or separate) powerful linearly polarized radia-
tion from the main undulator. Different options for such a
suppression (separation) are considered: using achromatic
bend between planar undulator and helical afterburner
[8,9]; tuning resonance frequency of the afterburner to

the second harmonic of the planar undulator [6,10,11];
separating source positions and using slits for spatial
filtering [15].
In this paper we propose a new method for suppression

of the linearly polarized background from the main undu-
lator: application of the reverse undulator taper. In particu-
lar, in the case of SASE3 undulator of the European XFEL,
we demonstrate that soft x-ray radiation pulses with peak
power in excess of 100 GW and an ultimately high degree
of circular polarization can be produced. As for a compari-
son with the other methods, our suppression method is free,
easy to implement, and the most universal: it can be used at
SASE FELs and seeded (self-seeded) FELs, with any
wavelength of interest, in a wide range of electron beam
parameters, and with any repetition rate. It can be applied
at different x-ray FEL facilities, in particular at Linac
Coherent Light Source (LCLS) after installation of the
helical afterburner in the near future.

II. METHOD DESCRIPTION

In a short-wavelength SASE FEL the undulator tapering
is used for two purposes: to compensate an electron beam
energy loss in the undulator due to the wakefields and
spontaneous undulator radiation; and to increase FEL
power (postsaturation taper). In both cases the undulator
parameter K decreases along the undulator length. The
essence of our method is that we use the opposite way of
tapering: parameter K increases what is usually called
reverse (or negative) taper. We discover that in some range
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of the taper strength, the bunching factor at saturation is
practically the same as in the reference case of the non-
tapered undulator, the saturation length increases slightly
while the saturation power is suppressed by orders of mag-
nitude. Therefore, our scheme is conceptually very simple
(see Fig. 1): in a tapered main (planar) undulator the satu-
ration is achieved with a strong microbunching and a sup-
pressed radiation power, then the modulated beam radiates
at full power in a helical afterburner, tuned to the resonance.

Note that reverse undulator taper was considered in the
past to increase saturation efficiency of FEL oscillators
[17], and to produce attosecond pulses in x-ray FELs
[18]. In this paper we discover a new useful feature of
the reverse taper: a possibility to generate a strongly
modulated electron beam at a pretty much reduced level
of the radiation power.

To be specific, in this paper we will concentrate on the
case of a helical afterburner and use the following formula
for the degree of circular polarization:

Dcir ’ 1� Plin

2Pcir

� FA; (1)

where Plin is the power of the linearly polarized radiation
from the main undulator, Pcir is the power of the circularly
polarized radiation from the helical afterburner. A factor of
2 in the denominator is easy to understand since the
linearly polarized wave can be decomposed into left and
right circularly polarized waves, and we consider the case
when Plin � Pcir. Except for a contamination due to line-
arly polarized background from the main undulator, a
decrease of Dcir can be caused by field imperfections of
the helical afterburner as well as by other sources of
radiation of the modulated beam (edge radiation, coherent
synchrotron radiation, etc.) having different polarization
properties. We describe all these possible contributions
with a separate term FA. Note that even in the case of an
ideal undulator, the term FA can be of the order of the
inverse number of periods in the afterburner. Further dis-
cussions on this subject would go beyond the scope of this
paper since our goal is to minimize the term Plin=ð2PcirÞ.
We only notice here that there is not much sense to make it
significantly smaller than the term FA. In most cases it
means that a suppression of the term Plin=ð2PcirÞ to a few
per mil level is sufficient. Then we can state that a sup-
pression scheme provides an ultimately high degree of
circular polarization.

III. SELECTED RESULTS OF THE
ONE-DIMENSIONAL THEORY

A detailed theoretical analysis of the considered effect
will be published elsewhere [19]. Here we present some
selected results.
Let us consider the normalized detuning parameter [20]:

Ĉ ¼
�
kw �!ð1þ K2Þ

2c�2

�
��1: (2)

The following notations are introduced here: kw ¼
2�=�w is the undulator wave number, ! is the frequency
of the electromagnetic wave, K is the rms undulator pa-
rameter, � is relativistic factor, and � is the gain parameter.
The latter can be expressed in terms of the FEL parameter
� [21]: � ¼ 4��=�w.
We start our consideration with the case when a high-

gain FEL is coherently seeded at a given frequency !, and
the undulator is not tapered. The properties of the FEL are
then described by the detuning parameter (see, for ex-
ample, [20] for more details). In particular, in the high-
gain linear regime (i.e. when the normalized undulator
length ẑ ¼ �z � 1), the squared modulus of the bunching
factor jbj2 and the normalized FEL power �̂ ¼
P=ð�PbeamÞ are of the same order when an FEL operates

close to the resonance, jĈj< 1. The normalized growth
rate (inverse field gain length) of the FEL instability,

Re�̂ ¼ Re�=�, is of the order of unity in this regime. At
the same time, the initial problem solution leads to an

interesting result for a large negative detuning, Ĉ < 0 and

jĈj � 1. In this case the bunching factor and the normal-
ized FEL power are connected in the high-gain linear
regime by a simple relation (see the Appendix):

jbj2 ’ jĈj2�̂; (3)

i.e. the power is strongly suppressed with respect to the
squared modulus of the bunching factor. Note that the ten-
dency approximately holds at the FEL saturation. The nor-
malized growth rate in the considered case gets smaller,

Re�̂ ’ jĈj�1=2, with the corresponding increase of the gain
length (and of the saturation length). As it is discussed in the
Appendix, Eq. (3) can be explained by this increase. Indeed,
the proportionality between squared amplitudes of the bunch-
ing and of the field is given by the fourth power of the gain
length, or the squared detuning in the considered limit.
Now let us consider a SASE FEL with linearly tapered

undulator. The normalized detuning parameter changes as
follows:

ĈðẑÞ ¼ �ẑ; (4)

where

� ¼ � �w

4��2

Kð0Þ
1þ Kð0Þ2

dK

dz
; (5)

andKð0Þ is the initial value of the rms undulator parameter.
Note that as a reference frequency we always consider

FIG. 1. Conceptual scheme for obtaining circular polarization
at x-ray FELs.
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the resonance frequency at the undulator entrance. Of
course, in a SASE FEL a finite frequency band is amplified,
and its maximum and width can evolve along the undulator
length [22].

The theory of a high-gain FEL with varying undulator
parameter has been developed in [22] in the limit of a small
taper strength [23], j�j � 1. In particular, the authors of
[22] have derived corrections to the FEL growth rate up to
the second order. Unfortunately, we cannot use the results
of [22] for our purpose because, in the case of small
corrections, the tendency we would like to demonstrate
(small ratio �̂=jbj2) is not seen. For this reason we present
here a result of the theory [19] that is valid in the case of a
large taper strength. For a high-gain linear regime and a
large negative taper strength, �< 0 and 1 � j�j � ẑ, the
relation between the ensemble-averaged squared modulus
of the bunching factor hjbj2i and the ensemble-averaged
normalized FEL power h�̂i can be approximated as

hjbj2i ’ j�j2ẑ2h�̂i: (6)

This equation looks similar to Eq. (3) with the detuning
parameter given by (4). One can see that, indeed, for large
negative � and large ẑ, the squared bunching factor is
much larger than the normalized FEL power. Both quanti-

ties are proportional to expð4 ffiffiffiffiffiffiffiffiffiffiffiffi
ẑ=j�jp Þ, i.e., they evolve

along the undulator length with a decreasing growth rate.
The explanation of Eq. (6) can be done in the following

way. It is known from [22] that in the case of a weak taper,
the central frequency of the amplified band moves half as
fast as does the resonance frequency (corresponding to the
current value of the undulator parameter K). The situation
is quite different in the case of strong taper [19], i.e., when
j�j � 1. In the case of positive � the central frequency
completely follows the changes of K, while in the case of a
reverse taper, �< 0, the central frequency remains to be
close to the resonance at the beginning of the undulator,
i.e., it does not follow the changes of K at all. In other
words, in the latter case the detuning continuously in-
creases along the undulator length. The growth rate re-
duces, and the radiation power is suppressed with respect
to the level one would have expected at a given bunching at
resonance. At the same time the bunching is strong because
the gain length gets longer, see explanations of Eq. (3) and
the Appendix for more detail.

The asymptote of large negative � was considered here
only for illustration of the power suppression effect. For
practical applications we will restrict ourselves to moder-
ate values of � which allow for a significant power sup-
pression at strong bunching and an acceptable increase of
the saturation length. We are interested in the values of
bunching factor and FEL power at saturation, therefore we
have to use a numerical simulation code (a linear analysis
is not valid at saturation). Below we will use a simplified

notation b instead of
ffiffiffiffiffiffiffiffiffiffiffiffihjbj2ip

. To make our results of 1D
simulation closer to practical cases, we also introduce an

energy spread with a value typical for x-ray FELs. The

energy spread parameter is defined as follows [20]: �̂T ¼
��=ð��Þ with �� being the energy spread (in units of the

rest energy). In our simulations we use the value �̂T ¼ 0:2.
The results of simulations with a 1D version of the code
FAST [24] are presented in Figs. 2 and 3.

In Fig. 2 we show the bunching factor and normalized
FEL efficiency at saturation point which is defined here as
the position where the maximum bunching is reached. One
can see that for negative � the power quickly decreases (in
contrast with positive �) although the bunching factor
changes only slightly. From Fig. 3, one can find how the
saturation length depends on the taper strength. A good
range of this parameter for the proposed scheme is

FIG. 3. Relative increase of the saturation length (defined as a
length of the undulator at which maximum bunching is achieved)
versus taper strength parameter. Energy spread parameter is

�̂T ¼ 0:2.

FIG. 2. Ensemble-averaged rms bunching factor (solid) and
normalized FEL efficiency (dash) at saturation point (position
with maximum bunching factor) versus taper strength parameter.

Energy spread parameter is �̂T ¼ 0:2.
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� ’ �0:5–0:3. Indeed, the bunching factor is still high in
this range, there is only moderate increase of the saturation
length, and the power is significantly suppressed.

IV. THREE-DIMENSIONAL SIMULATIONS FOR
THE EUROPEAN XFEL

The results of the previous section were obtained in the
framework of the 1D model. We found that the reverse
taper method also works well in the 3D case. We illustrate
this with the parameters of the soft x-ray SASE3 undulator
of the European XFEL [25]. The main parameters used in
our simulations are presented in Table I. The electron beam
parameters are taken from the table provided by the
European XFEL beam dynamics group [26] for the bunch
charge of 0.5 nC. We consider operation of SASE3 in
‘‘fresh bunch’’ mode [27] when the energy spread of
electron bunches is not spoiled by the FEL interaction in
the upstream SASE1 undulator. The simulations were per-
formed with the 3D version of the code FAST [24].

A gap-tunable permanent-magnet SASE3 undulator
consists of 21 undulator modules, each of them is 5 m
long. One can easily control the active part of the undulator
by opening the gaps of the modules which are not needed.
In our case we use only 11 last modules to adapt an active
undulator length to the saturation length for the given
wavelength (1.5 nm) and electron beam parameters. A
long-period electromagnetic helical afterburner is being
developed [28] for installation behind the SASE3 undula-
tor. The choice of technology is driven by the request of
users to quickly change (between the macropulses, i.e.,

with the frequency of 5 Hz) the polarization of the output
radiation between left and right.
We optimized the taper strength in the main undulator

such that the radiation power is sufficiently suppressed, on
the one hand, and the bunching factor is still close to that in
the case of the untapered undulator, on the other hand. We
ended up with a 2.1% increase of the K parameter over the
undulator length of 55 m. According to (5), this corre-
sponds to the one-dimensional [29] normalized taper
strength of �0:34.
Evolution of the bunching factor along the planar un-

dulator and the helical afterburner is shown in Fig. 4, and
the time dependence of the bunching factor at the exit of
the planar undulator—in Fig. 5. One can see that the
bunching factor reaches a pretty high level and becomes
even larger in the helical afterburner.

TABLE I. Main parameters used in simulations.

Electron beam

Energy 14 GeV

Charge 0.5 nC

Peak current 5 kA

rms normalized slice emittance 0:7 �m
rms slice energy spread 2.2 MeV

Planar undulator

Period 6.8 cm

Krms 5.7

Beta function 15 m

Active magnetic length 55 m

Taper �Krms=Krmsð0Þ 2.1%

Helical afterburner

Period 16 cm

K 3.6

Beta function 15 m

Magnetic length 10 m

Radiation

Wavelength 1.5 nm

Power from planar undulator, Plin 0.4 GW

Power from helical undulator, Pcir 155 GW

1� Plin=ð2PcirÞ 99.9%

FIG. 4. Evolution of the ensemble-averaged rms bunching
factor along the planar undulator SASE3 (dashed) and the helical
afterburner (solid).

FIG. 5. Modulus of bunching factor versus time at the exit of
the planar undulator SASE3 (position 55 m on Fig. 4). A central
part of the electron bunch is shown.
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Radiation power as a function of position in the planar
main undulator and in the helical afterburner is shown in
Fig. 6. One can see that, indeed, linearly polarized radia-
tion from the main undulator is strongly suppressed (it is
about 0.4 GW), and the powerful circularly polarized
radiation quickly builds up in the afterburner. This happens
because the bunching is strongly detuned from the reso-
nance with the last part of the planar undulator, but the K
value of the afterburner is optimized in such a way that it is
close to the resonance, and maximum power is achieved at
the end of the afterburner. A part of the radiation pulse is
shown in Fig. 7 for illustration; ensemble-averaged peak
power reaches 155 GW. Now we can calculate the degree
of circular polarization (not considering the term FA)
due to contamination from the planar undulator:
1� Plin=ð2PcirÞ ’ 0:999. Note that a further suppression
of the linearly polarized background and improvement of
the quantity 1� Plin=ð2PcirÞ is easily possible by going to a
stronger taper at the price of a mild reduction of bunching

factor (and, consequently, the power of circularly polarized
radiation). However, this would probably make no sense
because the degree of circular polarization would be
mainly defined by the term FA, see the discussion above.
Parameters of the helically polarized radiation are

shown in Table I. The pulse duration and the pulse energy
are defined by the chosen bunch charge (set of charges
from 20 pC to 1 nC with different parameters will be
available at the European XFEL). For example, the pulse
duration can be chosen between few femtoseconds and 100
femtoseconds. In all cases the peak power and the degree
of circular polarization will be comparable to those shown
in Table I. Let us also notice that our method will work in a
wide range of photon energies so that one can easily cover
not only L-edges but also M-edges of all interesting ele-
ments. Indeed, in the considered case of lasing at 1.5 nm
the active length of the undulator is 55 m (to be compared
to the saturation length of 45 m for the untapered case, i.e.,
we have only 20% increase in length). The total magnetic
length of the SASE3 undulator is 105 m so that there is a
big reserve for going to shorter wavelength. Generally
speaking, our method can also work at hard x-ray beam
lines if this is requested by users.
We should also comment on the expected stability of the

degree of circular polarization. Since SASE pulse energy
fluctuates shot to shot, the degree of circular polarization is
not going to be perfectly stable. However, the relative
contribution of ‘‘wrong polarization’’ Plin=ð2PcirÞ is on
the order of 10�3, and the SASE fluctuations at saturation
are typically below 10%. Thus, fluctuations of the time-
integrated ratio Plin=ð2PcirÞwould be about 10�4 assuming
that thePlin andPcir are uncorrelated. The latter assumption
is, however, not true since both polarizations are produced
by the same electron bunch with the same realization of
microbunching distribution along the bunch (even though it
slightly evolves at saturation). Thus, we expect strong cor-
relations, and the fluctuations of the considered ratiowill be
further suppressed. Our crude estimate is that the degree of
circular polarization, determined by our suppression
scheme, would fluctuate shot to shot at the level of 10�5

for the parameter set considered in this section.
Finally, let us note that in the case of energy loss along

the undulator due to the wakefields and spontaneous un-
dulator radiation at high energies, the strength of the
reverse taper can be decreased in accordance with formula
(7), see discussion below. In our case both effects are small
corrections, each of them is on the order of 0.1% in the
active part of the SASE3 undulator—to be compared with
about 2% of the K change.

V. DISCUSSION

For simplicity we have considered up to now the case
when only the undulator parameter K changes linearly
along the undulator length. Obviously, the parameter �
can be generalized to the case when, in addition, the mean

FIG. 6. FEL power versus the length of the planar main
undulator SASE3 (dashed) and the helical afterburner (solid).

FIG. 7. Peak power of circularly polarized radiation at the exit
of the afterburner (position 65 m on Fig. 6). A central part of the
x-ray pulse is shown.
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energy of electrons changes due to the wakefields and
spontaneous undulator radiation:

� ¼ � �w

4��2

�
Kð0Þ

1þ Kð0Þ2
dK

dz
� 1

�ð0Þ
d�

dz

�
: (7)

Here �ð0Þ is the gamma factor at the undulator entrance. If
the energy loss is not negligible, one should decrease the
taper strength correspondingly.

It was shown in [18] that the action of an energy chirp on
FEL gain is equivalent to the action of the corresponding
undulator tapering. Here we notice that the effect, de-
scribed in this paper (drastic suppression of FEL power
at a relatively strong microbunching via a reverse taper),
also takes place in the case of a negative chirp parameter. If
the influence of the energy chirp cannot be neglected, the
formula (7) can be easily generalized for inclusion of the
latter effect, see [18] for more details. We would also like
to note here that the use of an energy chirp for suppression
of radiation power while keeping a high level of micro-
bunching can find interesting applications.

We have mainly considered the case of a SASE FEL in
this paper. In the case of seeded (self-seeded) FELs, one
can use two modifications of the suppression method: with
reverse taper or with constant detuning of the K parameter

(so that the detuning parameter Ĉ is negative).
We have simulated the helical afterburner for the SASE3

undulator of the European XFEL. Obviously, as an after-
burner one can also consider a cross-planar undulator with
a phase shifter [5,11] which may give more possibilities for
polarization control (see Fig. 8). In this case the length of
the afterburner should be short enough so that density
modulation stays almost unchanged as the beam propa-
gates in the afterburner (and this is easier in the scheme
with reverse taper since the energy modulation is weak
despite the beam is fully bunched). A more complicated
cascaded crossed undulator [13,14] can be used as well.

Finally, we note that the suppression scheme, proposed
in this paper, can be tested and used soon at the Linac
Coherent Light Source (LCLS) [2]. A fixed-gap planar
undulator is used at LCLS to generate hard and soft-
x-ray radiation. A helical afterburner is going to be
installed in order to provide a circular polarization for
user operation at LCLS [30]. Design of the planar undu-
lator allows for a mild tapering by making use of canted
poles. This option is normally used for compensation of the
beam energy loss along the undulator length, and for the
postsaturation taper—in both cases a standard (positive)

sign of taper is needed. We propose here to use a reverse
taper to obtain powerful x-ray radiation (in soft and hard
x-ray regimes) with a high degree of circular polarization,
in excess of 99%.Our estimates with the help of the formula
(5) suggest that the strength of the reverse taper should
typically be on the order of 1% over active undulator length.
After optimizing the taper strength and active length of the
main undulator, theK value of the helical afterburner should
be scanned in order to obtain maximum power. Such an
experiment can be performed in the near future.
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APPENDIX: FEL POWER AND BUNCHING
ATA LARGE NEGATIVE DETUNING

We consider here the relation between FEL power and
bunching in the 1D, cold beam case. The theoretical de-
scription of a high-gain FEL and the notations are close to
those presented in [20]. The evolution of the electric field
of the amplified electromagnetic wave is governed by the
following equation:

~E 000 þ 2 iĈ ~E00 � Ĉ2 ~E0 ¼ i ~E: (A1)

This equation is valid for the general case of initial con-
ditions for the electron beam and the radiation at the
undulator entrance. The normalized detuning parameter
is given by Eq. (2), and the prime denotes differentiation
with respect to ẑ. Equation (A1) is a linear ordinary dif-
ferential equation with constant coefficients, so its general
solution is given by a superposition of three linearly inde-
pendent solutions:

~E ¼ X3
j¼1

Cj expð�jẑÞ;

where the Cj are constants. The eigenvalues �j are the

solutions of the eigenvalue equation

�ð�þ iĈÞ2 ¼ i: (A2)

The field amplitude and its derivatives at any longitudi-
nal ẑ coordinate are calculated as follows:

~E

~E0

~E00

2
664

3
775

ẑ

¼ Mðẑj0Þ
~E

~E0

~E00

2
664

3
775

0

; (A3)

where

~Eð0Þ; ~E0ð0Þ; ~E00ð0Þ;
are the field amplitude and its first and second derivatives
with respect to ẑ at the undulator entrance at ẑ ¼ 0, and the
transfer matrix Mðẑj0Þ is

FIG. 8. Scheme for obtaining circular polarization in a cross-
planar undulator.
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M ¼
~E1

~E2
~E3

~E0
1

~E0
2

~E0
3

~E00
1

~E00
2

~E00
3

2
664

3
775

ẑ

�
~E1

~E2
~E3

~E0
1

~E0
2

~E0
3

~E00
1

~E00
2

~E00
3

2
664

3
775

�1

0

:

The explicit expressions for the matrix elementsMij are

M11¼�2�3B1þ�1�3B2þ�1�2B3;

M12¼�ð�2þ�3ÞB1�ð�1þ�3ÞB2�ð�1þ�2ÞB3;

M13¼B1þB2þB3;

M21¼�1�2�3M13;

M22¼��1ð�2þ�3ÞB1��2ð�1þ�3ÞB2��3ð�1þ�2ÞB3;

M23¼�1B1þ�2B2þ�3B3;

M31¼�1�2�3M23;

M32¼��2
1ð�2þ�3ÞB1��2

2ð�1þ�3ÞB2��2
3ð�1þ�2ÞB3;

M33¼�2
1B1þ�2

2B2þ�2
3B3; (A4)

where

B1 ¼ expð�1ẑÞ
ð�1 � �2Þð�1 � �3Þ ;

B2 ¼ expð�2ẑÞ
ð�2 � �1Þð�2 � �3Þ ;

B3 ¼ expð�3ẑÞ
ð�3 � �1Þð�3 � �2Þ :

(A5)

The derivatives ~E0ðẑÞ and ~E00ðẑÞ can be expressed in
terms of bunching bðẑÞ and the complex amplitude of the
harmonic of energy modulation (see [20]) that is denoted
here as bPðẑÞ:

~E 0=E0 ¼ �2b; ~E00=E0 ¼ 2iðĈb� bPÞ; (A6)

where E0 is the normalizing factor for the field amplitude
[20].

We are interested in the relation between ~E0ðẑÞ, bðẑÞ, and
bPðẑÞ. In the high-gain linear regime the relation does not
depend on initial conditions. Nevertheless, for the sake of
compactness, we consider a specific kind of the initial
conditions when only a monochromatic density modula-
tion exists at the undulator entrance. The initial conditions
at ẑ ¼ 0 are then written as

~Eð0Þ ¼ 0; ~E0ð0Þ=E0 ¼�2bð0Þ; ~E00ð0Þ=E0 ¼ 2iĈbð0Þ;
(A7)

and the radiation field and its derivatives at any position ẑ
are given by the expressions

~EðẑÞ=E0 ¼ �2M12ðẑj0Þbð0Þ þ 2iĈM13ðẑj0Þbð0Þ;
~E0ðẑÞ=E0 ¼ �2M22ðẑj0Þbð0Þ þ 2iĈM23ðẑj0Þbð0Þ;
~E00ðẑÞ=E0 ¼ �2M32ðẑj0Þbð0Þ þ 2iĈM33ðẑj0Þbð0Þ:

(A8)

It is well known that a solution of the eigenvalue equa-

tion (A2) with Re� > 0 exists if Ĉ < 1:89. We denote this
solution with �1. In the high-gain linear regime, �1ẑ � 1,
the term B1 is much larger than the terms B2 and B3. The
equations (A8) can then be simplified as follows:

~EðẑÞ=E0 ¼ 2B1ð�2 þ �3 þ 2iĈÞbð0Þ;
~E0ðẑÞ=E0 ¼ �1

~EðẑÞ=E0;

~E00ðẑÞ=E0 ¼ �2
1
~EðẑÞ=E0:

(A9)

Using (A6), we can obtain

~EðẑÞ=E0 ¼ 2B1ð�2 þ �3 þ 2iĈÞbð0Þ;
bðẑÞ ¼ � 1

2
�1

~EðẑÞ=E0;

bPðẑÞ ¼ i

2
�1ð�1 þ iĈÞ ~EðẑÞ=E0:

(A10)

Now let us consider the case of a large negative detun-

ing: Ĉ < 0 and jĈj � 1. The asymptotic solution for the
growing root of Eq. (A2) is

�1 ’ 1ffiffiffiffiffiffiffi
jĈj

q þ ijĈj; (A11)

and the relations between the field, the density bunching,
and energy modulation amplitude become particularly

simple (we keep here only leading terms in jĈj):

bðẑÞ ’ �ijĈj ~EðẑÞ
2E0

; bPðẑÞ ’ �
ffiffiffiffiffiffiffi
jĈj

q ~EðẑÞ
2E0

: (A12)

We can also present here the relations between squared
amplitudes. The normalized FEL power (see Sec. III) is
connected with the field amplitude as [20]

�̂ ¼ 1

4

j ~Ej2
E2
0

:

Then we obtain compact relations:

jbj2 ’ jĈj2�̂; jbPj2 ’ jĈj�̂: (A13)

When a high-gain FEL operates close to the resonance

(Ĉ < 1), the normalized field, bunching, and amplitude of
energy modulation are of the same order. In the case of a
large negative detuning, however, the field is suppressed.
This should not be considered as a paradox. Indeed, ac-
cording to a mechanism of a high-gain FEL, the field
modulates the beam in energy on the scale of the gain
length. In other words, the amplitude of energy modulation
in the exponential gain regime must be proportional to the
product of the gain length and the field. The energy mod-
ulations are converted into the density bunching through
the R56 of the undulator also on the scale of the gain length
(i.e. the integration over ẑ is done once more), so that the
density bunching is proportional to the product of the field
and the squared gain length. The normalized field gain
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length Lg� ¼ ðRe�1Þ�1 is on the order of unity when

FEL operates close to the resonance, but in the considered

limit it equals

ffiffiffiffiffiffiffi
jĈj

q
. So, Eqs. (A12) are in agreement with

the qualitative considerations given above. At the same
time, due to a strong detuning from resonance, the
modulated beam radiates a weaker field. Thus, the self-
consistency of the FEL model is preserved in the consid-
ered limit, and there is no paradox. If one then considers
the proportionality between squared amplitudes of the
bunching and of the field, it is given by the fourth power
of gain length, or the squared detuning in the considered
limit.
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(Max-lab, Sweden, 2010), p. 123 [http://www.jacow.org].

[12] E. A. Schneidmiller and M.V. Yurkov, in Proceedings of
the 32nd Free Electron Laser Conference, Malmö, Sweden
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