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We describe theoretically and numerically the interaction of a laser- or LINAC-accelerated beam of

relativistic electrons with a high intensity optical lattice, resulting from the superposition of two transverse

laser pulses. The bunch is trapped and guided within the potential channels of the optical lattice, leading to

betatron oscillations. We describe the emission from individual particles and from the bunch, and analyze

its spectrum, considering the dominant incoherent radiation as well as possible effects of partial

coherency. Analysis of the emitted radiation should provide useful information on the characteristics

of the electron beam, and its interaction with the optical lattice.
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I. INTRODUCTION

Numerous processes in laser-plasma interactions lead to
generation of short wavelength radiation—from ultraviolet
up to the gamma-ray range. Among these processes, in-
creased attention is currently paid to the interaction be-
tween relativistic electron bunches, issued either from
conventional accelerators, or from laser wakefield accel-
eration (LWFA) [1], and an intense laser light, that plays
the role of an undulator.

Thomson, or inverse Compton scattering (ICS) is a
well-known example, which leads to several technologies
of fully polarized, quasimonochromatic x-ray beams, al-
beit with modest peak powers. For a typically short wave-
length of the pump radiation, even moderately relativistic
electrons scatter photons with the energies up to hundreds
of kiloelectronvolts. This mechanism was observed in
the scattering experiments of an infrared or free-electron
laser off a bunch from a storage ring [2–5], head-on or 90�
scattering from a linear accelerator (LINAC) [6–8] or from
LWFA electrons [9], coupling between a low-energy stor-
age ring and a high finesse Fabry-Perot resonator [10–12].

In 2002, an alternative process was observed, when an
ultrarelativistic bunch of electrons propagates through
an underdense plasma and creates an ion channel.
Relativistic electrons, oscillating in the focusing electro-
static field of this channel, emit short wavelength radia-
tion [13]. The process was soon extended to the case of an
ultrashort intense laser pulse as used in LWFA, which,
propagating in a gas medium, creates a plasmawave, which
copropagates with the pulse and is used to trap and to
accelerate the electrons [14–16]. A strong incoherent

extreme-ultraviolet-radiation/x-ray emission was observed
along the propagation direction of the accelerated electrons
bouncing in the focusing electrostatic field of the plasma
wave or ion channel [17,18]. By similarity with the betatron
radiation from electrons in a guiding potential of linear
accelerators [19], this radiation can be referred to as ion
channel betatron emission (ICBE).
The spectral properties of emitted light are defined by

the wiggler (undulator) strength parameter K, which is a
ratio of electron trajectory angular deviation to the angular
divergence of emitted light [20]. In ICS schemes, undula-
tors are typically linear (wiggling the particle with a line-
arly polarized laser) and have a small strength K � 1, so
that the emitted light is linearly polarized, and quasimo-
nochromatic on axis. In contrast, recent studies of betatron
emission in the LWFA [18,21] have demonstrated that in
the bubble regime of LWFA, the strength parameter may
reach high values K � 10, which corresponds to a wiggler
regime. The resulting x rays are nonpolarized, or partially
polarized and have a broad synchrotron-type spectrum
[22]. The axial and transverse accelerations in ICBE are
intrinsically entangled, which leads to a time dependence
of theK parameter associated with each electron trajectory.
We have recently proposed another process of x-ray

generation coupling relativistic electrons and intense laser
pulses: the Raman x-ray free-electron laser [23,24]. The
conceptual scheme is shown in Fig. 1. It implies over-
lapping of two identical laser pulses of the same frequency
and polarization state to create an optical lattice at laser
intensities high enough to induce the so-called strong
field Kapitza-Dirac effect [25]. In these conditions, the
laser ponderomotive potential forms a series of parallel
valleys that can trap electrons in their transverse motion
[26], and induces a bouncing along the optical lattice wave
vector. The electrons emit light at two distinctively differ-
ent frequency ranges: high frequency (x-ray) light by
scattering the laser photons and low frequency light from
the transverse bounce motion in the light lattice. The latter
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scheme has been considered before for a low intensity
light and low-energy electrons emitting in the infrared
range [27,28].

In the present study, we propose to inject relativistic
electrons in these high intensity transverse light wells,
and examine the properties of the Doppler-shifted photon
beam induced by the optical lattice betatron emission
(OLBE). The radiation produced is typically in the UV
domain, and its characteristics may provide useful infor-
mation for the properties of the electron bunch and its
interaction with the lattice.

After a summary of the typical laser and electron parame-
ters expected to be used in this scheme, we first present a
study of the dynamics of a single electron in the intense
optical lattice, and, concentrating on the betatron emission,
propose approximate formulas for the photon flux, spec-
trum, and the far field profile. Assuming a purely incoherent
emission of the electron beam, we compare these results
with the known characteristics of ICS and ICBE. We then
turn to the analysis of a coherent radiation emission by a
small size electron bunch. A general discussion and our
concluding remarks are presented in the last section.

II. INTERACTION PARAMETERS IN A HIGH
INTENSITY OPTICAL LATTICE

We first present a prospective setup that could generate
betatron radiation from an electron beam with a relativistic
factor �b � 102 in an intense optical lattice created
with available lasers of a 101–102 TW power range.
Higher energy electrons can also be considered with higher
power lasers.

As shown in Fig. 2, we consider an electron bunch,
issued either from a laser wakefield or a conventional
linear accelerator, with kinetic energies of several tens of
MeV and a normalized emittance ranging from 1 to a few
mmmrad. The bunch impinges onto an optical lattice
formed by the superposition of two identical laser pulses,
synchronized in time and overlapping in space over the
path of the electron bunch, in a line focus geometry, using
either a homogeneous wave geometry [29,30] or a grazing
incidence (GRIP) geometry [31]. In the former case, the
two laser pulses are normally incident onto the interaction

axis; in the latter, they are incident onto the interaction axis
with an angle �, usually around 10�. This angle does not
modify the depth of the ponderomotive potential channels,
but allows one to vary the lattice period and thus to control
the period of electron oscillations. We consider laser
intensities in the line focus in the range from 1015 to
1018 W=cm2 for near infrared lasers, resulting in nonrela-
tivistic electron wiggling.
The necessary condition for the laser ponderomotive

potential to trap a significant fraction of electrons was
shown to read [26]

�? <

ffiffiffi
2

p
a0

�b

; (1)

where v? ¼ �?c is the root mean square (rms) transverse
velocity of electrons in the interaction region, c is the speed
of light, a0 is the normalized vector potential of either of
the two transverse lasers, and �b the average Lorentz factor
of the relativistic electrons. The transverse velocity can be
derived from the normalized bunch emittance �N as v? ¼
�N=�b�r, where �r is the rms cross section of the bunch.
From (1), the laser intensity to be used is henceforth

directly related to the average transverse velocities of the
bunch in the interaction region. However, the typical val-
ues supplied by the two main technologies for electron
acceleration, namely, conventional linear accelerators and
laser wakefield acceleration, are clearly different, as are
those of several basic parameters: bunch duration, cross
sectional diameter, and total charge. In Table I, we present
typical figures of such bunch parameters from the setups of
the laser wakefield accelerator [32], and of the Thomson-
scattering oriented linear accelerator in the X-band [34].
Linear accelerators provide typically pulses of picosecond
durations that can be compressed down to below 1 ps. Such
durations should be matched with picosecond intense laser
technologies, based on amplifying media such as Nd:glass,
or YAG. However, their typical divergence is low, allowing
for moderately intense driving lasers. In contrast, electron
bunches from the laser wakefield acceleration are ex-
tremely short, down to a few femtoseconds [32], and
come out from the accelerating plasma with transverse

FIG. 2. Prospective experimental setup, with twin inhomoge-
neous laser beams impinging onto an interaction axis, and
creating an intense optical lattice on the path of a relativistic
electron bunch.

FIG. 1. The conceptual interaction scheme.
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sizes in the micrometer range, implying much higher
laser intensities to trap and wiggle the electrons. We can
readily calculate the total laser energy, required to trap and
wiggle the electron bunch over a characteristic distance
L ¼ 1 mm. We assume that the laser is focused at normal
incidence onto a line, whose width is equal to 2�r, readily
attainable with f=10 focusing optics. Table I shows that
this amount is typically at the Joule level. It is lower for the
titanium:sapphire technology, thanks to its short (femto-
second) pulse duration, better suited to the very short
bunches of LWFA, than with picosecond pulses. However,
ytterbium laser technologymay also reach that energy level
with compact laser systems.

It can be noted that the transverse dimension of the
interaction region along the lattice axis is approximately
c�L=2 sin�, where �L is the laser pulse duration; typical
value ranges are c�L ’ 10 �m for titanium sapphire tech-
nology, and ’ 300 �m with Yb technologies. Both trans-
verse directions are therefore large enough to ensure the
robustness of the process with respect to fluctuations of the
pointing of either electrons or photons. Another experi-
mental issue is the timing fluctuations between the electron
bunch and laser waves. In LWFA technology, the bunch
duration and temporal jitter are clearly less than that of the
driving LWFA laser; having both LWFA and optical lattice
lasers derived from the same system should therefore grant
a good synchronization. In LINAC technology, electron
and photon durations should be approximately matched,
and the timing jitter kept smaller than this value. The laser
pulse duration can be increased to improve robustness with
respect to this jitter, at the expense of increased laser
energy. All these considerations will have to be revisited
depending on each specific experimental implementation.

III. SINGLE ELECTRON DYNAMICS IN THE
OPTICAL LATTICE

For the electron beam parameters in Table I, effects of
space-charge can be considered as negligible, so that the
orbit of each electron is defined by its initial phase coor-
dinates and by the electromagnetic field. The two interfer-
ing laser beams, polarized along the y axis and crossing
with the angle 2� (see Fig. 2), produce the following
electromagnetic field potential:

ay ¼ a1 þ a2 ¼ 2a0 sinð!0t� kkzÞ sinðk?xÞ; (2)

where !0 ¼ 2�c=	0 is the laser field frequency, and
ðkk; k?Þ ¼ !0=cðcos�; sin�Þ represent the longitudinal

and transverse projections of laser wave vector onto the
electron beam axis. The field amplitude is expressed as a
vector potential, normalized in units of mc2=e and is

defined numerically as a0 ¼ 0:85� 10�9 � 	0

ffiffiffi
I

p
, where I

is the laser intensity measured in W=cm2, and 	0 is the
laser wavelength in �m.
The transverse distribution of electromagnetic field fol-

lows a standing wave pattern, with a wave number k?; the
ponderomotive potential due to this optical lattice has a
sinusoidal dependence, and confines the electrons to a
series of potential channels with the half-widths
	0=ð4 sin�Þ. As was demonstrated in [23,28], in the pon-
deromotive potential of the interference of two laser waves,
the small-amplitude electron oscillations have a bounce
frequency:

�0 ¼
ffiffiffi
2

p
a0k?c
�b

: (3)

At the same time relativistic electrons oscillate along the
laser polarization with a frequency!0

0 ¼ !0ð1� �z cos�Þ,
which is down-shifted due to the electron propagation at
relativistic velocities along the laser wave (see Fig. 3).
For an arbitrary amplitude of electron oscillations,

the frequency depends on the excursion xmax ¼
k�1
? arcsinð�x0�b=

ffiffiffi
2

p
a0Þ, where �x0 is a maximum trans-

verse velocity of the trapped particle. Defining the

normalized excursion as 
 ¼ �x0�b=
ffiffiffi
2

p
a0, we can find

the frequency as

� ¼ �0

�

2Kð
2Þ ’ �0

�
sin�


�


�
1=6

; (4)

FIG. 3. Typical electron trajectory in an optical lattice.

TABLE I. Examples of system parameters.

Accelerator LWFA [32,33] LINAC [34]

Electron beam

Energy 84 MeV 45 MeV

Charge 15 pC 0.7 nC

Spot size rms 3 �m 27 �m
Duration rms 1.5 fs 1 ps

Emittance 1 mmmrad 1.41 mmmrad

Proposed laser specifications

Laser technology Ti:sapphire Yb:YAG [35]

	0 0:8 �m 1:03 �m
Pulse duration 30 fs 900 fs

Intensity 1:2� 1017 W=cm2 2� 1015 W=cm2

Laser energy over

L ¼ 1 mm
0.21 J 0.9 J

Wavelength of scattered light for � ¼ 90�

	s 35 nm 67 nm

Wavelength of scattered light for � ¼ 10�
	s 204 nm 384 nm
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where KðmÞ ¼ R�=2
0 d�ð1�msin2�Þ�1=2 is an elliptic in-

tegral of the first kind, and the approximate expression has
a high precision, >99%, for 
 2 f0; 0:99g.

In order to compute the electron orbit, we make the
assumption of a nonrelativistic transverse motion of elec-
tron, a0=�b, �x0 � 1, which is justified for the parameters
discussed in the previous section. In what follows, we
neglect the second order terms resulting from the variations
of electron energy / a2=�b, from the coupling of high and
low frequency oscillation / �0=!

0
0, and we approximate

the sinusoidal lattice potential with a parabolic one,
sin2k?x ’ ðk?xÞ2. Considering the electron as initially
located in the center of potential r0 ¼ ð0; 0; 0Þ with a
velocity v0 ¼ cð�x0; �y0; �z0Þ, we derive its approximate

trajectory as

�x ¼ �x0 cosð�tÞ; xe ¼ ð�x0c=�Þ sinð�tÞ;
�y ¼ �y0 þ ð ffiffiffi

2
p

�0=cÞxe sin!0
0t;

ye ¼ �y0ct� ð ffiffiffi
2

p
�0=!

0
0Þxe cos!0

0t;

�z ¼ �z0 � ð�2
x � �2

x0 þ �2
y � �2

y0Þ=2�z0;

ze ¼ �z0ct:

(5)

Following the orbit Eq. (5), shown in Fig. 3, the electron
emits two different electromagnetic waves. The first
one, polarized along the y axis, has a typical frequency
!s � 2�2

b!
0
0 and represents the inverse Compton

(Thomson) scattered laser light. The x-polarized field cor-
responds to the betatron emission and may be interpreted
as the Doppler-shifted electron oscillation frequency,
!� � 2�2

b�0. Introducing the wiggler strength as in [20],

K ¼ �b�x0=�z0, one may see that in the optical lattice
this parameter is limited by the trapping condition Eq. (1),

K &
ffiffiffi
2

p
a0. In the present study we assume moderate laser

intensities, required to trap the majority of electrons, so
that K � 1.

The angular-spectral distribution of emitted electromag-
netic energy can be calculated using Lienard-Wiechert
potentials [17,20]:

dE
dod!

¼ e2

4�2c

��������
Z 1

�1
dt
n� ðn� �Þ � _�

ð1� n�Þ2 ei!ðt�nre=cÞ
��������2

;

(6)

where re, �, and _� are the position, velocity, and accel-
eration of the particle and n is a unit vector pointing in the
observation direction. In terms of the spherical coordinates
a unit vector to the observer reads

n ¼ ðsin� cos�; sin� sin�; cos�Þ:
Considering a finite length L of the optical lattice, we

may assume that the particle experiences no acceleration
except for the interval 0< z < L. Thus, we may replace
the integral with infinite limits in Eq. (6), by the integration

over the interval t 2 ½0; t0�, where t0 ¼ L=c is the total
interaction time.
The second factor in the integrand of Eq. (6) represents

the emitted electromagnetic wave with a phase:

!ðt� nre=cÞ ¼ !̂t� ðk̂xxe þ k̂yyeÞ;
where the first term defines the frequency of the wave in the
electron frame, !̂ ¼ !ð1� �z cos�Þ, and the second one
accounts for its diffraction due to the electron motion along
x and y axes, and is characterized by the transverse wave

vector k̂ ¼ ð!=cÞn. The phase factors proportional to the
initial particle coordinate are discarded for a single particle
case, but they are important for analysis of the coherence
properties of the betatron emission of an electron beam
(see the next section).
We consider only the betatron radiation, defined by the x

component of the integrand in Eq. (6) and assume the
diffraction for this wave to be weak. Neglecting electron
oscillations in the laser field and the second harmonic term
�x

_�x / sinð2�tÞ, one may simplify Eq. (6):

dE
dod!

’ e2�2
x0

4�2c

J20ð2a0 sin� cos�Þ
ð1� n�Þ2

�
�
1� sin2�cos2�

1� n�

�
2
G

�
N�;

!

!�

�
; (7)

where we define the betatron radiation frequency !� ¼
�=ð1� n�Þ, and N� ¼ t0�=2� is the number of oscil-
lations performed by the electron during the interaction
time t0. Here we denoted the Bessel function with J0 and
the function

Gðn; wÞ ¼
��������
Z 2�n

0
d� sinð�Þei�w

��������2

can be simplified to trigonometric functions and calculated
exactly.
Function GðN�; !=!�Þ defines a peak in the emitted

spectrum at the frequency! ¼ !� with a full width at half

maximum (FWHM) �!=!� ’ 0:9N�1
� . This peak will be

observed if the interaction parameters provide the condi-
tion N� � 1, which we consider satisfied in the further
study. Considering the radiation emitted close to propaga-
tion axis � � 1, one may derive a simplified factor of the
relativistic Doppler shift:

1

1�n�
’ 2�2

b

1þK2=2þ�2
b½�2

y0cos
2�þð���y0 sin�Þ2� ;

where the terms / �y0 correspond to the shift along the y

axis of emission direction in the case of oblique propaga-
tion of the electron. For simplicity, in this section we put
�y0 ¼ 0, but this will be important for the study of emis-

sion from the bunch in Sec. IV. The central frequency
emitted at � ¼ 0 reads
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!�0 ¼ 23=2a0�b!0 sin�

1þ K2=2

�
sin�K=

ffiffiffi
2

p
a0

�K=
ffiffiffi
2

p
a0

�
1=6

:

The angular dependence in Eq. (7) integrated over the
frequency describes the shape of the spot of emitted
radiation. It is easy to show that, in the limit K � 1, the
y profile (� ¼ �=2) of emission intensity distribution
is / ð1þ �2�2

b þ K2=2Þ�3, and the one along the x axis

(� ¼ 0) is /ð1þ�2�2
bþK2=2Þ�7. Thus, the light is emit-

ted into the elliptic spot stretched along the y axis with the
rms angular sizes:

��x ¼
ffiffiffi
2

p
=ð5�bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2=2

q
; ��y ¼ ð5=3Þ��x: (9)

Note that the increase of the emission angular size with the
wiggler strength is accounted here by averaging over the
betatron oscillations. A more accurate description, with
account for the terms of higher infinitesimal order, may
differ from Eq. (9), and it will be considered numerically.

Function GðN;wÞ can be integrated in the spectral
domain:

Z 1

0
dwGðN�; wÞ ¼ �2N�

�
1� sinð4�N�Þ

4�N�

�
’ �2N�;

where the approximate expression stands for N� � 1. The
further integration of Eq. (7) over the angles gives the full
energy of betatron radiation. The result defines the number
of photons with a frequency Eq. (8) emitted by a single
electron as

Nph ¼ ð7�=24ÞfK
2ð1þ K2=2ÞN�; (10)

where f ’ 1=137 is the fine-structure constant. The ob-

tained expression is consistent with the result of a direct
integration of Larmor’s formula [17]. It is also useful to
write emitted energy as a function of electron excursion for
a given propagation length z:

Eð
Þ ’ 8e2k0a
4
0sin

2�
z

	0


2

�
sin�


�


�
1=3

: (11)

The formulas [Eqs. (10) and (11)] are in a very good
agreement, to within 2%, with the result of numerical
integration of Eq. (7).

A more rigorous verification of the presented findings
may be performed by comparing them with the results of
numerical simulations. In our analysis we use the numeri-
cal toolkit WIGGLER3D, which includes a three-dimensional
particle tracker with electromagnetic pusher, various mod-
els of electromagnetic fields, including an optical lattice,
and the module for calculation of coherent and incoherent
spectra, using the formula given by Eq. (6).

We model the dynamics of an electron with �b ¼ 100 in
an optical lattice formed by two laser beams with ampli-
tudes a0 ¼ 0:23 directed with the angle �¼10� to electron
propagation. The particle is injected into the center of the
lattice channel at various initial angles, and it propagates

during a time of 6500	0=c, which provides about N� ’ 3
betatron oscillations (exact number depends on excursion).
In Fig. 4(a), we compare the total energy, in units of
e2!0=c, as a function of particle excursion 
, calculated
numerically as an integral of the angular-spectral distribu-
tion (red dots), and the analytical estimate given by
Eq. (11) (blue curve). Analytical and numerical estimates
demonstrate a good agreement for a low excursion, while
for 
� 1 the electron oscillations become nonharmonic,
which results in a slightly lower energy of emitted light.
A three-dimensional representation of emitted

x-polarized spectrum and its integral projections (
R
d!,R

dnx, and
R
dny) are shown in Fig. 4(b), for the excursion


 ¼ 0:8. The bandwidth of the on-axis radiation (� ¼ 0),
measured as a FWHM of the spectrum, agrees with the
derived estimate �!�=!� ¼ 0:9=N� ¼ 0:3.

(a)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

Energy

(b)

FIG. 4. Energy of x-polarized emission in the units of e2!0=c
as a function of electron excursion 
 ¼ �x�b=

ffiffiffi
2

p
a0 (a), calcu-

lated analytically (solid curve) and in numerical simulations
(dots). Three-dimensional representation of emitted spectrum
and its integral projections (b).
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As expected, the angular profile of emitted light is
stretched in the plane� ¼ �=2. The dependences of emis-
sion angular sizes on the wiggler strength were studied by
performing the series of simulations for a different�x0, and
the results can be fitted as

��x ’
ffiffiffi
2

p
=ð5�bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
;

��y ’
ffiffiffi
2

p
=ð3�bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3=4ÞK2

q
:

(12)

These functions agree with Eq. (9) in the limit K ! 0,
but demonstrate a faster growth of radiation divergence
with K.

IV. BETATRON EMISSION FROM A BUNCH OF
RELATIVISTIC ELECTRONS

Let us now study the radiation produced by a macro-
scopic bunch of relativistic electrons trapped in an optical
lattice, and find the relations between the characteristics of
the bunch itself and those of the emitted light. Initially the
bunch is characterized by the macroscopic parameters:
duration �b, transverse size �b, mean electron energy �b,
and its normalized emittance �N ¼ �b�b�?, where�? is a
rms width of the distribution of electron transverse veloc-
ity. Interaction of the beam with the front edge of the
optical lattice—the injection and trapping of the electrons
in the ponderomotive potential channels—significantly
modifies the electron distribution in the phase plane
ðx; vxÞ, while the beam characteristics in the Y and Z phase
planes are practically not affected.

The injection process is mainly defined by the length of
the lattice ramp lramp and the ratio �b�0?=a0, and it was

qualitatively described in [26]. It was shown that in the
case of ‘‘fast’’ injection most of the particles with x veloc-
ities satisfying the trapping condition [Eq. (1)] will become
trapped in the lattice channels. The trapped particles will
be distributed in the phase space ðx; �xÞ region within the
ellipse described by the energy conservation:

�2
x þ 2a20=�

2
bsin

2k0?x < 2a20=�
2
b: (13)

The condition of fast injection here means that, on average,
the electrons cross the ramp faster than they cross the
channel half-width, which in our terms reads

lramp & 	0�x�b=4�
N sin�: (14)

Since the electron energy is mainly defined by its motion
along the z axis, the energy spread ��=� may be consid-
ered as constant during the interaction.

One may calculate the radiation emitted by the electron
bunch by considering the sum of Lienard-Wiechert vector
potentials of each particle. The angular-frequency distri-
bution of emitted energy can be described by Eq. (6), with
the integrand presented as a sum of contributions from
each electron. Neglecting the diffraction of emitted elec-
tromagnetic waves, we can write the distribution as

dEtot

dod!
¼ e2

4�2c

��������XNe

j

�0j

Z t0

0
dtAj

��������2

; (15)

where the factor,

Aj ¼
n� ðn� �jÞ � _�j

ð1� n�jÞ2
ei!̂t;

defines the amplitude of emitted field. The phase of emitted

wave reads �0j ¼ expðik̂ � r0j � jÞ, where r0j is the ini-
tial position of electron, andj is a phase of its oscillations.

Factor Aj only depends on the maximum of oscillating

velocity of the jth electron �x0, and the frequency of its
betatron oscillations �. To find the sum over the particles
approximately, one may replace the amplitude of the field
emitted by each particle by its average value hAji and

factor it out of the sum. Then, the expression for the total
emitted energy reads

Etot ¼
��������X�0j

��������2�hEi; (16)

where hEi is an average total energy emitted by a single
electron.
To calculate the average of the energy emitted by elec-

tron in a beam, we need to consider the distribution of
excursions of the trapped electrons and the dependence
of electron emission energy on its excursion [Eq. (11)].
In a typical case, when trapped electrons occupy the full
width of the lattice potential channel, their excursions are
spread with a half-normal distribution 
�N ð0; �
Þj
>0

with a deviation �
 ’ 0:5. Therefore, the density of

energy distribution as a function of excursion is Pð
Þ /
Eð
ÞN ð0; 0:5Þj
>0. This allows one to calculate hEi by

integral averaging of Pð
Þ and it estimates

hEi ’ 2e2k0a
4
0ðL=	0Þsin2�: (17)

The presented findings are derived in a qualitative fashion,
but they were verified by the numerical modeling and
demonstrate good agreement for the wide range of inter-
action parameters. It is often convenient to characterize the
scattering process with a value of its cross section ��,

which is a ratio of the total emitted energy to a total flux
of incident radiation. From Eq. (17), one may see that
average power emitted by an electron in the lattice does
not depend on the particle energy and can be estimated as

P� ’ ðe2!2
0=�cÞa40sin2�: (18)

Considering the energy flux of two laser beams I ¼
2� ðcE2

0=4�Þ, we obtain the average cross section:

�� ’ ð3=4�Þa20sin2��T; (19)

where �T ¼ ð8�=3Þðe2=mc2Þ2 ’ 6:6� 10�25 cm2 is the
Thomson cross section.
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Note that OLBE is defined by the trapping and wiggling
of electrons in the ponderomotive potential in such a way
that both oscillation frequency and excursion length are
proportional to the amplitude of the lattice potential. The
value of �� depends therefore on the laser field, and is

typically smaller than the Thomson cross section. It should
be stressed that Eq. (19) does not incorporate any geomet-
rical overlap factors, which have to be taken into account in
each specific prospective experimental setup.

Function Pð
Þ also defines the weighted average excur-
sion as h
iE ¼ h
EihEi�1 ’ 0:6 and its FWHM spread
h�
iE ’ 0:6. Physically, this means that most of the energy
is emitted by the electrons with excursions 0:3< 
< 0:9.
This parameters will be important for the following study
of emission bandwidth.

A. Macroscopic incoherent emission from a bunch

In the general case, when the electron oscillations can be
considered as randomly phased, and/or the electron bunch

is large enough lx;y;z � 2�=k̂x;y;z, the contributions of elec-

trons can be considered as fully independent. Therefore,
the sumEq. (16) takes itsminimal value and the total energy
emitted incoherently estimates as

E incoh
tot ’ X j�0jj2hEi ¼ NehEi: (20)

The macroscopic parameters of the electron bunch
(spatial profiles, emittance, and energy spread) define the
angular-spectral characteristics of the emitted light, and its
duration. Since emission frequency depends on the particle
energy and excursion as described by Eq. (8), the emissions
bandwidth is defined by variation of these parameters in
the bunch and the number of electron oscillations. The total
bandwidth may be approximately calculated as

�!�

!�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:81

N2
�

þ
�
@!�

@�b

��b

!�

�
2 þ

�
@!�

@


�


!�

�
2

s
; (21)

where the first term is due to the broadening of a single
particle spectrum. Assuming a quasiadiabatic injection, we
consider the second term to be only defined by the initial
energy spread of the particles, and it may be estimated as
��b=�b.

The last term in Eq. (21) results from the spread of
excursions of individual particles. From Eq. (8), one may
write this term in a form

@!�

@


�


!�

¼
�
�
 cot�
� 1þ 12a20


2

1þ a20

2

�
�


6

; (22)

where for the trapped electron bunch, one may consider the
values of h
iE and h�
iE estimated earlier.

As we have shown in Sec. III, each electron emits
into the spot with the sizes ��x, ��y, which is shifted

along the y axis by the angle �shift ¼ �y0. In the case of a

macroscopic electron beam, the finite emittance along the
y axis increases the angular size of emitted light as

h��yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2y þ �2

y

q
: (23)

The spot of emitted light is also ‘‘flattened’’ in the region
� < �?=�b, so that the central frequency does not depend
on � . With help of Eq. (23), one may estimate the y
component of electron divergence from the measured an-
gular size of emittance, thus, using OLBE as a beam
diagnostic. This result is very important for the experimen-
tal realizations of OLBE.
Let us consider a beam of electrons with �b ¼ 100, rms

values of cross-section radius and length 1:5	0, initial
energy spread ��b=�b ¼ 0:03, and beams angular diver-
gence 2 mmmrad. We study the bunch propagation in a
lattice of length 6500	0, with an injection ramp lramp ¼
20	0, angle � ¼ 10�, and a0 ¼ 0:23. We can model
such an electron bunch numerically with a large number
2:5� 103 of test particles. In Fig. 5(a) we show the particle
trajectories during the injection and propagation phases.
The observed fraction of the particles trapped in the central
channel is around 43%.
In Fig. 5(b), we present the angular-spectral distribution

in the� ¼ �=2 plane of x-polarized light, where the white
curve outlines the spectrum on axis, � ¼ 0. The spectral
distribution displays a peak at !� ¼ 8:7 with a FWHM

bandwidth �!�=!� ¼ 0:48. The analytical estimate of

the central frequency [Eq. (8) agrees with the calculated
value for the h
i ¼ 0:77, which is slightly different from
the qualitative estimate h
iE ¼ 0:6. Comparing the ob-
served bandwidth with an estimate [Eq. (22)], one may
find the value of excursion spread h�
i ’ 0:4. With these
values one may write the practically useful expression for
the partial broadening of emitted spectrum due to the
excursion spread:

�!�=!� ’ 0:32þ 0:66a20: (24)

The angular distribution of emission is affected by the
bunch emittance: the spectrum is flattened in a region
� < �?=�b. The angular distribution of emission, inte-
grated over the frequency, is shown in Fig. 5(c); it presents
an elliptic shape, stretched along the y axis similarly to the
one produced by a single particle. Considering the series of
initial velocity spreads �y we may verify the formula

Eq. (23). In Fig. 6, the angular size of OLBE for �¼�=2,
calculated from the simulations, is compared to the analyti-
cal expression and it demonstrates a good agreement.
The average energy emitted by a single electron in

the simulations is hEi ¼ 1:1e2k0, which agrees with the
estimate Eq. (17). The corresponding average number of
emitted photons estimates as Nph ’ 1:4� 10�3=e�. For
the parameters proposed for LWFA electrons, this estimate
results in the emission of �105 photons of 93 nm wave-
length, which is well within reach of experimental detec-
tion techniques.
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B. Partial coherence effects

Most photon scattering processes in intense electromag-
netic fields exhibit not only an incoherent, but also a
coherent emission regime. Coherent inverse Compton

scattering has been considered as a prospective implemen-
tation of a laser-undulator free-electron laser. A similar
situation is also well known in the physics of synchrotron
radiation, with the process of coherent synchrotron radia-
tion (CSR). If the bunch length is short enough to be
comparable to the wavelength of part of the synchrotron
spectrum, then the individual emissions interfere construc-
tively, and the total emitted radiation results from the
coherent superposition of all electron contributions, imply-
ing a major flux enhancement at those wavelengths.
Coherent synchrotron radiation was observed for the first
time by Nakazato and co-workers in 1990 [36] in the far
infrared domain. It since proved very rich of information
on the bunch dynamics, providing evidence of multiple
bunches, or of microbunching phenomena [37], and has to
be taken into account in the design of modern light sources.
In [38], Chubar has provided a comprehensive survey of
the basic formula and numerical methods of CSR.
One may note an analogy between CSR and betatron

emission in an optical lattice, in the case of a short electron
bunch, as issued from laser wakefield. The bunch duration
of a few femtoseconds is comparable or smaller than the
typical period of betatron oscillations, so that a collective
displacement of the bunch appears possible. Let us inves-
tigate therefore the situation when the contributions to
betatron emission in the optical lattice of all individual
electrons may become partially or fully coherent. For this,
assuming a large number of particles, we write the phases
term in Eq. (16) as

XNe�1

j

�0j ’
Z

drneðrÞ exp½ik̂r� ðrÞ�; (25)

where neðrÞ is an electron density distribution and ðrÞ is a
distribution of the phase of betatron oscillations. The
transverse components of the emitted light wave vector

are small and may be neglected, k̂x;y � k̂z ’ 2�2
b�=c.

FIG. 6. Angular divergence of betatron emission in the
nontrapped direction as a function of initial beam divergence.
Blue dots show the simulation data and dashed curve corre-
sponds to Eq. (23).

(a)

(b)

(c)

FIG. 5. Trajectories of electron propagation in the optical
lattice, the length of injection zone is 20 wavelengths
(a). Angular-spectral distribution of emitted radiation in the
� ¼ �=2 plane and its on-axis spectrum (white curve)
(b), and the frequency-integrated angular distribution (c).
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Considering a modulation of electron density or oscil-

lation phase with a wavelength kmod ’ k̂, the sum in
Eq. (25) is equal to the number of electrons Ne, and the
total emitted energy is Ecoh

tot ’ N2
ehEi. This corresponds to

the free-electron-laser–type coherent emission, which is
realized in the free-electron laser facilities either by inject-
ing a copropagating resonant ‘‘seed’’ wave, or in the regime
of self-amplified spontaneous emission (SASE), due to the
parametric instabilities.

CSR-type coherency is also possible, if two conditions
are met: (i) the longitudinal size of the bunch is small

zk̂z < 1, and (ii) if electrons oscillate in a synchronized
fashion, so thatðrÞ ’ const. For synchronized oscillations
the phase in Eq. (25) can be discarded, and it represents the

Fourier image of the particle density distribution at k ¼ k̂.
For a beam with a Gaussian temporal profile, the emitted
energy is

Esync
tot ’ hEiN2

e expð�!2
��

2
bÞ; (26)

where �b is the rms bunch duration. One may further
evaluate Eq. (26) to obtain the amplification condition,
Esync
tot =hEiNe > 1, which leads to

�bc=	0 &
0:1

a0�b sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log10Ne

p
: (27)

For the case of the optical lattice designed for the scattering
of LWFA electrons (see Table I), the electron bunch is of
the charge of a few tens of pC and mean energy �b ¼ 100.
Then, Eq. (27) indicates a possible coherent emission from
the electron current inhomogeneities at the subfemtosec-
ond or attosecond level & 0:08	0=c. This condition shows
that ultrashort substructures within LWFA bunches might
be detected by this method, if their duration is of the order
of one-tenth of the bunch duration diagnosed by Lundh
et al. [32], which, while challenging, is within the range of
physical possibilities.

Condition (i) on the bunch, or sub-bunch, duration is not
however sufficient: condition (ii) requires a collective be-
tatron oscillation. In practice, such a collective oscillation
can be imposed by inducing optically a kick on the bunch
by side shifting the lattice axis during the beam propaga-
tion, or by changing its direction—both methods needing
only to control the spatial phase of one of the twin laser
beams. Injecting the bunch into the lattice with an angle
also results in a collective excitation, if the ramp-up region
is short enough—in the opposite case, a long ramp would
simply result in an adiabatic adaptation of the electron
beam to the lattice, with a higher temperature and zero
mean transverse values.

An important effect, related to the collective particle
oscillations in a potential of a sinusoidal shape, is a kinetic
mixing of electron orbits due to the fact that the oscillation
frequency depends on the excursion length, according to
Eq. (4). In [26] it was shown that kinetic mixing leads to a
damping of the collective oscillations during the time

tdamp ¼ h�2osc=ð2L@x�oscÞi: (28)

For a high excursion of trapped electrons, this period
is estimated as tdamp ’ 0:84�osc, which means that in order

to maintain the coherent emission regime one should

(b)

(a)

(c)

FIG. 7. Propagation of electrons injected obliquely into the
optical lattice, followed by a KICK (a). Angular-spectral distri-
bution of coherently emitted energy in the � ¼ �=2 plane (b)
and its angular distribution integrated over the frequency (c).
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introduce the synchronization approximately every period
of oscillations.

As a numerical confirmation, we calculate the spectrum
of coherent emission using a large number of test particles,
Ne � 103–104. The beam is modeled with the same pa-
rameters as in the previous section and duration �b ¼
0:057	0=c, which nearly satisfies Eq. (27). The electrons
are injected and propagate in a lattice of length 6500	0,
with a ramp of 50	0 and amplitude a0 ¼ 0:23. The elec-
tron synchronization is induced by the oblique injection of
electrons at the angle 1.5 mrad, and by the kick placed at
the distance of one oscillation period, 2300	0, from the
lattice entrance. The kick of the 15	0 z length is modeled as
a linear side shift of the lattice channels by the distance
0:7�=2k? along the x axis.

In Fig. 7(a), one may see the particle trajectories for
the case, where synchronization is first due to the oblique
injection of the beam and is later enhanced by the kick.
The fraction of particles, which are trapped in a central
potential channel is around 25%. Animated dynamics of
the particle oscillations in ðz; xÞ and ðx; pxÞ phase
planes is presented in the supplemental materials [39].
Note that both synchronization mechanisms provide only
partial phasing of electron oscillations, which results in a
partial coherency, also affected by the spread of particle
energy and excursion. Thus, a theoretical estimate of the
coherent amplification can hardly be performed accu-
rately, and the formula Eq. (26) should be taken
qualitatively.

The angular-spectral distribution of coherent emission
from the twice synchronized electrons is presented in
Fig. 7(b) for � ¼ �=2. The distribution has two distinc-
tive peaks, where the one at � ¼ 7 mrad is due to the
oblique injection (dashed ellipse) and the second one at
� ¼ �1:4 mrad (dot-dashed ellipse) results from the kick.

The latter peak is more intense and it results into the peak in
the angular distribution shown in Fig. 7(c).
If compared to the case of nonsynchronized electron

oscillations, the emitted energy is enhanced by the
factor Ecoh=hEi ’ 16, around 80% results from the kick.
The frequency of the peaks is down-shifted by the factor
�ð1þ ��bÞ�3, due to the angular dependence of the rela-
tivistic Doppler effect.

V. DISCUSSION AND SUMMARY

Let us now recapitulate the main properties and scaling
laws of the optical lattice betatron emission (OLBE) with
respect to macroscopic parameters of the interaction. It is
instructive to compare qualitatively OLBE with three
similar processes: inverse Compton scattering (ICS), ion
channel betatron emission (ICBE), optical transition radia-
tion (OTR). In Table II we summarize the formulas derived
in our study and present them in a simplified ready-to-use
form.
Similarly to other scattering schemes, the duration of

generated radiation is defined by the duration of driver
electron bunch. Propagating the distance L the scattered
photons overtake the electrons, thus stretching the emitted
pulse as

�� ’ �b þ L=ð2�2
bcÞ: (29)

For a submillimeter interaction length and/or high electron
energies this effect is negligible, however, it may become
significant for the OLBE with the discussed parameters.
Similarly to inverse Compton scattering, OLBE is fully

polarized along the lattice optical axis. In contrast to ICS,
the angular distribution is not isotropic in the transverse
plane; we predict a slightly elliptic angular distribution,
arising from existence of an intrinsic orientation along the

TABLE II. OLBE formulas.

Electron trapping condition �? <
ffiffiffi
2

p
a0=�b

Electron oscillation length L� ¼ 1:1a0 sin�=�b

Emission cross section �� ¼ ð3=4�Þa20sin2��T

Emission wavelength 	� ¼ L�ð1þ 0:6a20Þ=ð2�2
bÞ

Emission angular divergence (rms)

Trapped �� ¼ ffiffiffi
2

p
=ð5�bÞð1þ 1:2a20Þ1=2

Nontrapped ��y ¼ ��1
b ð2=9þ 0:2a20 þ �2

?0�
2
bÞ1=2

Emission bandwidth (FWHM)
�!�

!�
¼ fð0:32þ 0:66a20Þ2 þ 0:81ðL�=LÞ2 þ 5:45ð��b=�bÞ2g1=2

Condition for coherent emission �bc=	0 & 0:24	�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log10Ne

p
Used notations:

Laser amplitude a0 ¼ 0:85	0½�m� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ilas½1018 W=cm2�p

Electron Lorentz factor �b ¼ "e½MeV�=0:511
Number of electrons Ne ¼ Qb=e

Thomson cross section �T ¼ 6:6� 10�25 cm2
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axis of the optical lattice. The angular divergence is of the
order of the inverse Lorentz factor; and the emission
presents the same angular chirp as ICBE, with decreasing
frequencies for increasing angular deviations from the
central axis.

The spectral characteristics put OLBE in an intermedi-
ate position between ICS and ICB. The former usually
displays a rather narrow spectrum on the axis; the latter
yields a very broad spectrum. From our analysis and nu-
merical tests, the relative spectral width of OLBE is ex-
pected to be around 30%, making it a broadband, but not
white, photon source. The major difference between OLBE
and ICS concerns the photon energy. In ICS, the photon
energy scales as the square of the Lorentz factor �b,
whereas it scales linearly with �b in OLBE, resulting in
a typical frequency range extending from the visible (for
grazing incidence geometries) up to the extreme UV. This
�b dependence is typical for the betatron emission [1].

Because of the small cross section, the expected output
photon flux of OLBE is rather low, about 105 photons per
shot. Not being practically interesting as a photon source
by itself, this scheme provides information concerning the
relativistic electron beam and the high intensity optical
lattice. A number of diagnostic techniques based on the
scattering processes have already being developed includ-
ing betatron [40,41] and Compton [6,42] spectroscopy,
transition radiation [32,43], and quadrupole scan [44]. In
particular, the setup for OLBE resembles the Shintake
monitor [42], but is principally different involving the
low-energy emission from the trapped electrons.

In Sec. IVA we have demonstrated how OLBE may be
used to estimate the angular divergence of electron beam
along the selected direction. From the spectral character-
istics of OLBE the bunch duration and the energy spread
may be retrieved similarly to OTR. Moreover, the OLBE
can be very sensitive to small scale substructures within the
bunch, which might lead to a partially coherent emission
and affect the angular distribution of emitting light. This
partially coherent emission can be stimulated by inducing a
kick, or a shift of the optical lattice—namely, modifying
the positions of the intensity minima. From an experimen-
tal point of view, the parameters of such a kick (position,
lateral displacement) can be controlled by optical means,
such as a deformable mirror. The resulting enhancement
was shown to depend on the spatial size of the electron
substructures. This allows one to estimate, for example, the
effect of kinetic mixing, and hence estimate electron beam
phase space distribution and its dynamics.

The OLBE can be implemented with a variety of geo-
metrical or laser conditions, depending on laser intensity,
interaction length, crossing angle � between the optical
lattice twin lasers, etc. Thanks to the flexibility of the
setup, OLBE can complement the existing diagnostics
providing more information on the electron bunch, a cru-
cial point in view of the numerous upcoming applications

of laser-accelerated electron beams. This technique may
also be used to infer the interaction conditions in view of
triggering or optimizing the Raman x-ray free-electron
laser process [24].
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