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The spatiotemporal response of crystals in x-ray Bragg diffraction resulting from excitation by an

ultrashort, laterally confined x-ray pulse is studied theoretically. The theory presents an extension of the

analysis in symmetric reflection geometry [R. R. Lindberg and Y.V. Shvyd’ko, Phys. Rev. ST Accel.

Beams 15, 050706 (2012)] to the generic case, which includes Bragg diffraction both in reflection (Bragg)

and transmission (Laue) asymmetric scattering geometries. The spatiotemporal response is presented as a

product of a crystal-intrinsic plane-wave spatiotemporal response function and an envelope function

defined by the crystal-independent transverse profile of the incident beam and the scattering geometry.

The diffracted wave fields exhibit amplitude modulation perpendicular to the propagation direction due to

both angular dispersion and the dispersion due to Bragg’s law. The characteristic measure of the

spatiotemporal response is expressed in terms of a few parameters: the extinction length, crystal thickness,

Bragg angle, asymmetry angle, and the speed of light. Applications to self-seeding of hard x-ray free-

electron lasers are discussed, with particular emphasis on the relative advantages of using either the Bragg

or Laue scattering geometries. Intensity front inclination in asymmetric diffraction can be used to make

snapshots of ultrafast processes with femtosecond resolution.
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I. INTRODUCTION

The spatiotemporal response from crystals in symmetric
x-ray Bragg diffraction in reflection (Bragg) geometry has
been studied in our recent publication [1]. Here, we extend
the analysis to the generic case of asymmetric Bragg dif-
fraction, both in reflection (Bragg) and transmission (Laue)
geometries. ‘‘Asymmetric’’ means that the Bragg reflecting
atomic planes are not parallel to the crystal surface.

Understanding the time dependence of x-ray Bragg
diffraction in crystals has attracted much attention since
the 1990s, as the advent of ultrafast (femtosecond short)
x-ray pulses becomes a close reality. The temporal and
spatial dependence of diffraction was first calculated using
the time dependent Takagi-Taupin equations. In particular,
an analytical solution for the Bragg reflected wave from an
infinitely thick crystal was derived by Chukhovskii and
Förster [2]. Numeric calculations of the time dependence
of Bragg diffraction from a crystal heated by a laser pulse
was performed in [3]. Calculations of the time dependence
by Fourier transforming the known monochromatic plane-
wave solutions from the classical dynamical theory [4–11]
have been considered in several publications [12–19]. In
particular, Shastri et al. [12,13] performed numerical cal-
culations, which have revealed signature features of time

dependences of Bragg diffraction from crystals both in the
Bragg-case and in the Laue-case geometries. Graeff and
Malgrange [15,16] obtained analytical solutions for the
time dependence of Bragg diffraction in the Laue geome-
try, with the refraction effects at the crystal exit surface
taken into account. Bushuev [20] used Fourier transforma-
tion of the plane-wave solutions both in the frequency
and momentum space, with the second order corrections
included to more accurately account for the refraction
effects, to obtain solutions in time and space and analyzed
specific cases using numeric calculations.
The present paper is focused on the development of

the theory and on the analysis of the spatiotemporal
response of crystals in Bragg diffraction to the excitation
by an ultrashort in time and spatially confined x-ray pulse
in the general case of asymmetric reflection (Bragg) and
transmission (Laue) scattering geometries. The primary
goal of the present study is to understand the general
phenomenology of the spatiotemporal response by uncov-
ering the dominant underlying physics and identifying the
key physical parameters that determine the characteristic
time and space scales involved. For this purpose, we derive
comprehensive solutions that can be written in the general
case as a product of two independent envelope functions:
the first is a spatiotemporal plane-wave response function
that depends only on the crystal and scattering geometry,
while the second is an envelope that is specific to the initial
conditions of the incident field. We derive analytical solu-
tions for the response functions under several representa-
tive conditions, which clearly identifies the key physical
parameters and makes possible a relatively simple inter-
pretation of the general solution.
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When an ultrashort x-ray pulse instantaneously excites a
perfect crystal, the output field is delayed and spread
in time and space. The underlying reason behind this
phenomenon is that each frequency component excites a
monochromatic eigenwave field in the crystal that propa-
gates along its own direction with its associated group
velocity. As a consequence, the time response is intrinsi-
cally connected to the lateral spatial distribution of x rays
leaving the crystal upon Bragg diffraction both in the
reflection or forward directions.

The paper is organized as follows. Comprehensive
solutions for the spatiotemporal dependences of Bragg
diffraction in reflection (Bragg) and transmission (Laue)
asymmetric geometries are derived in Sec. II. In particular,
in Sec. II B the solutions are derived for incident ultrashort
x-ray pulses with an unbounded plane-wave front, and
in Sec. II C for incident ultrashort x-ray pulses with a
bounded wave front. The solution for the bounded wave
front is a product of a crystal-intrinsic and geometry-
specific plane-wave spatiotemporal response function and
an envelope function defined by the crystal-independent
transverse profile of the incident beam and the scattering
geometry. The response functions in the asymmetric Bragg
geometry are derived analytically in Sec. III in the approxi-

mation of a nonabsorbing and thick d � ��ðsÞ
H crystal (the

crystal thickness d being much larger than the character-

istic extinction length of Bragg diffraction ��ðsÞ
H to be more

precisely defined below). The response functions in the
asymmetric Laue geometry are derived in analytical form
in Sec. IV for a nonabsorbing crystal of arbitrary thickness.
Applications of the theory for self-seeding of x-ray free-
electron lasers (XFELs) and for ultrafast time measure-
ments are discussed in Sec. V.

II. COMPREHENSIVE SOLUTIONS FOR
SPATIOTEMPORAL CRYSTAL RESPONSE

We study here the spatiotemporal dependence of Bragg
diffraction of ultrashort, laterally bound x-ray pulses from
a system of parallel atomic planes in a flat crystal plate.
Generic solutions are derived in three consecutive steps.
First, well-known solutions of the dynamical theory of
x-ray Bragg diffraction in crystals [4–11,18] for incident
monochromatic plane waves are briefly summarized in
Sec. II A. In Sec. II B, we derive solutions for an initially
ultrashort incident pulse with boundless plane-wave front.
Finally, solutions are obtained in Sec. II C for an ultrashort
incident pulse with confined wave front.

A. Monochromatic plane-wave solutions

One of most fundamental results of the dynamical the-
ory of x-ray diffraction in perfect crystals is the concept of
monochromatic eigenwave fields in crystals introduced by
Ewald almost 100 years ago [4]. A similar concept in the
electron theory of solids was introduced later by Bloch in

1928, which are therefore generally known as Bloch waves.
In the simplest case, a linearly polarized incident mono-
chromatic plane wave Ei expðiK0r� i!0tÞ, with a fre-
quency !0, and wave vector K0 ¼ ð!0=cÞû0, propagating
along the optical axis û0, excites in the crystal a wave field

D ðr; tÞ ¼ Ei expð�i!0tÞ
X
H

R0H exp½iðK0 þHÞr�; (1)

which is a sum of plane-wave components with wave
vectors K0 þH [21]. In the general case this sum involves
all the reciprocal crystal lattice vectors H of the crystal.
For each H there is a set of parallel atomic planes in the
crystal perpendicular to H with an interplanar distance
dH ¼ 2�=Hwhich actually composes the grating on which
x rays diffract.
In the following wewill consider the so-called two-wave

case, where only two plane-wave field components are
taken into account: the wave associated with forward
Bragg diffraction H ¼ 0, and one Bragg diffraction com-
ponent with nonzeroH, for which jK0 þHj ’ jK0j � K0,
and for which therefore the relative difference

� ¼ ðK0 þHÞ2 � K2
0

K2
0

¼ 2K0HþH2

K2
0

; (2)

has a very small magnitude. In particular, if � ¼ 0 we
obtain Bragg’s law 2K0HþH2 ¼ 0, which can be also
written as

2K0 sin� ¼ H: (3)

Here, � is the glancing angle of incidence to the atomic
planes, which equals the angle between K0 and the atomic
planes such that K0H ¼ �K0H sin�. The quantity � (2)
is an important parameter of the theory known as the
deviation parameter, since it represents the deviation
from Bragg’s law.
We take the atomic planes associated with the recip-

rocal crystal lattice vector H to be oriented at an arbi-
trary (asymmetry) angle � with respect to the crystal
surface, as shown schematically by white parallel lines in
Figs. 1(a) and 1(b). Figure 1(a) represents diffraction in the
reflection or Bragg scattering geometry, which is charac-
terized by the diffracted wave field exiting the crystal on the
same side as the incident wave, while the forward diffracted
wave field propagates along the incident wave direction
and exits the crystal on the opposite side. Figure 1(b)
represents diffraction in the transmission or Laue scattering
geometry, for which both the diffracted and forward dif-
fracted wave fields exit the crystal from the surface oppo-
site that of the incident wave. The crystal surfaces are
defined by the unit normal vector ẑ internal to the entrance
surface. We restrict our theory to the case in which K0 is
directed in the plane composed by H and ẑ, hereafter
referred to as dispersion plane.
The dynamical theory of x-ray diffraction allows one to

calculate for each incident monochromatic plane-wave

YURI SHVYD’KO AND RYAN LINDBERG Phys. Rev. ST Accel. Beams 15, 100702 (2012)

100702-2



component expf�i½!0t�K0r�g both the monochromatic
wave field of forward Bragg diffraction

D ðmÞ
0 ðr0; tÞ ¼ Eie

�i½!0t�K0r0�R00ð!0Þ (4)

at any point r0 on the rear surface of the crystal, and the
monochromatic wave field of Bragg diffraction

D ðmÞ
H ðrH; tÞ ¼ Eie

�i½!0t�ðK0þHÞrH�R0Hð!0Þ: (5)

The Bragg diffracted field (5) is determined at any point on
the entrance surface rH in the case of Bragg geometry
shown in Fig. 1(a), or at any point on the rear surface rH
for the Laue geometry shown in Fig. 1(b). Here, R0H ð!0Þ
are diffraction (H ¼ H) or forward diffraction (H ¼ 0)
crystal amplitudes which are functions not only of !0

(whose dependence we explicitly indicate since it is most
relevant to the discussion of the time behavior), but are also
functions of the crystal thickness d, the direction and
magnitude of K0, the asymmetry angle �, etc. At this point
we are concerned with deriving general expressions for the
spatiotemporal response of the crystal in x-ray Bragg
diffraction, and so do not yet specify these reflection
amplitudes; explicit expressions for the amplitudes R0H
are presented in Secs. III and IV.

The in-crystal monochromatic wave field components

DðmÞ
H

ðrH ; tÞ given by Eqs. (4) and (5) can also be used to

calculate the field at any point r outside of the crystal.
Using the continuity of the wave fields at the crystal-
vacuum interface determined by the extremities of the
vectors rH , the forward diffracted and diffracted wave
fields in an arbitrary point r in vacuum can be written as

E ðmÞ
H

ðr; tÞ ¼ DðmÞ
H

ðrH ; tÞeiKH ðr�rH Þ; (6)

where KH is the wave vector of the forward diffracted
(H ¼ 0) or diffracted (H ¼ H) field in vacuum. To
match phase fronts, the components of the in-crystal
wave vectors can differ from the vacuum wave vectors
only by a component along the crystal normal ẑ. Since
we assume that the crystal entrance and exit surfaces are
parallel, this component is zero for the wave vectorK0, and
makes it equivalent to the vacuum wave vector K0 of the
incident plane wave. However, this component is not zero
for the vacuum wave vector of the diffracted wave. In the
general case it can be written as

K H ¼ K0 þHþ�Hẑ: (7)

The component �Hẑ can be understood as an additional
momentum transfer due to refraction at the crystal-vacuum
interface, and Eq. (7) as momentum conservation in
scattering from the crystal. Since Bragg diffraction is an
elastic scattering process and the vacuum is homogeneous,
the magnitude of the vacuum wave vector KH of the
diffracted wave should be equal to the vacuum wave vector
of the incident plane wave: jKHj ¼ jK0j � K0. From

this condition and Eqs. (7) and (2), we find �H ¼
K0ð�~�H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
H � �

q
Þ (see [18] for details), where ~�H ¼

ẑðK0 þHÞ=K0. For small �, the additional momentum
transfer can be closely approximated by a Taylor expansion
in �:

r

FIG. 1. Schematic presentation of two-beam x-ray Bragg diffraction from crystals (a) in the reflection (or Bragg) scattering
geometry, and (b) in the transmission (or Laue) scattering geometry. The glancing angle of incidence to the reflecting atomic planes is
�, and the angle between the reflecting planes and the crystal surface (the asymmetry angle) is �. The propagation direction ûH of the
Bragg reflected beam composes an angle c H with the internal normal ẑ to the crystal surface. The angle c 0 between ẑ and the
direction û0 of propagation of the incident beam is defined by the relationship c 0 þ c H ¼ 2�. For the scattering configurations shown
in (a) and (b) c H ¼ �=2þ �� �, and therefore c 0 ¼ �þ �� �=2. The permitted range of the asymmetry angle � in the Bragg-
case geometry is �� < �< �, while in the Laue-case geometry it is � < �< �� �. Negative � in the Bragg-case geometry
corresponds to a configuration complimentary to that shown in (a) with the incident and reflected beams reversed. Pink and light blue
areas indicate regions where the forward diffracted and diffracted beams can propagate. See text for other details and definitions.
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�H ¼ �K0

�

2~�H

� K0

�2

8~�3
H

þ � � � : (8)

Now from Eqs. (4)–(7) we can write for the monochro-
matic forward diffracted and diffracted wave fields:

E ðmÞ
0 ðr; tÞ ¼ Eie

�i½!0t�K0r�R00ð!0Þ; (9)

E ðmÞ
H ðr; tÞ ¼ Eie

�i½!0t�ðK0þHÞr�ei�Hðr�rHÞẑR0Hð!0Þ: (10)

Here ðr� rHÞẑ is the shortest distance from the observa-
tion point r to the crystal surface. Since ẑ is perpendicular
to the crystal surface, it is actually independent of rH, and
ðr� rHÞẑ ¼ rẑ if the extremity of rH is on the entrance
surface, and ðr� rHÞẑ ¼ rẑ� d if the extremity of rH is
on the rear surface. Here d is the crystal thickness.

B. Ultrashort incident pulse with boundless
plane-wave front

To study the spatiotemporal dependence of x-ray dif-
fraction, in the next step we investigate the response to an
initially ultrashort (instantaneous) x-ray pulse. We assume
that the x-ray pulse propagates along the direction of the
unit vector û0 which is in the dispersion plane built by
vectors H and ẑ, and that the propagation direction û0
makes a glancing angle of incidence � with respect to the
reflecting atomic planes.

The x-ray pulse is ultrashort, has a vector amplitude Ei,
and has an infinite extent in the transverse direction
v̂0 ? û0. In this case, the pulse at time t and spatial point
r can be presented by the delta function �ð�Þ of the argu-
ment � ¼ t� û0r=c, with c the speed of light in vacuum.
The latter is equivalent to an infinite sum of monochro-
matic plane-wave components given by

E ie
�i!��ð�Þ ¼ Ei

Z 1

�1
d�

2�
e�ið!þ�Þ�; (11)

� ¼ t� û0r

c
; !þ� ¼ !0; K0 ¼ !0

c
û0:

(12)

Here, we single out one plane-wave component with a
frequency ! (we assume ! � �), which we define to
satisfy the condition � ¼ 0 defined in Eq. (2). In other
words, we are selecting out the frequency for which
Bragg’s law (3) is fulfilled. For the frequency ! Bragg’s
law reads ! sin� ¼ Hc=2. With this convention, the
deviation parameter � (2) can be presented as

� ¼ �4
�

!
sin2�

�
1� 2

�

!
þ � � �

�
; (13)

and the additional momentum transfer �H (8) as

�H

!=c
¼ 2sin2�

�H

�

!

�
1��

!

�
bþ sin2�

�2
H

�
þ � � �

�
; (14)

where

b ¼ �0

�H

; �0 ¼ ẑû0;

�H ¼ ẑûH; ûH ¼ û0 þ H

!=c
(15)

are the so-called asymmetry factor b, and direction cosines

�0 � cosc 0; �H � cosc H:

In almost all of what follows we retain only the terms linear
in the small quantity �=! for the expressions for � (13)
and �H (14), but we also present in Sec. II B 2 a brief
description of the physics of the quadratic terms and how
they can be included.

1. Linear approximation

Time t ¼ 0 is defined hereafter as the moment when the
wave front hits the point r ¼ 0 on the crystal. Similar to
(11), the spatiotemporal response of the crystal in Bragg
diffraction EH ðr; tÞ, both for diffracted (H ¼ H) and
forward diffracted (H ¼ 0) components, can be calcu-
lated as an integral (in fact, a Fourier integral):

E H ðr; tÞ ¼
Z 1

�1
d�

2�
EðmÞ
H

ðr; tÞ (16)

over the monochromatic components (9) and (10). A simi-
lar procedure was also applied in the previous publications
[12–20,22]. Using (9) and (10), we obtain

E H ðr; tÞ ¼ Eie
�i!�HG0H ð�H Þ; (17)

G0H ð�H Þ ¼
Z 1

�1
d�

2�
e�i��HR0H ð!þ�Þ; (18)

where

�H ¼ t� ûH r

c
; (19)

�H ¼ t� û0r

c
� 2sin2�

ðr� rHÞẑ
c�H

�HH: (20)

Here, �HH is the Kronecker delta, which equals one only
if H ¼ H, otherwise it is zero.
The plane-wave crystal response functions G0H ð�H Þ

in (18) represent the spatiotemporal dependence of
Bragg diffraction (H ¼ H) or forward Bragg diffraction
(H ¼ 0) to the excitation by a �-function-short incident
radiation pulse with boundless transverse wave front.
Two spatiotemporal variables are introduced in

(17)–(20). The variable �H (H ¼ 0, H) (20) is the argu-
ment of the response function (18). The spatiotemporal
variable �H (H ¼ 0, H) (19) is in the argument of the
exponential function of Eq. (17).
The spatiotemporal variable �H (H ¼ 0,H) represents

the difference between the absolute time t and the time
ûH r=c the plane-wave front, propagating along the optical
axis ûH from r ¼ 0, would need to reach an arbitrary point
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r outside of the crystal, assuming the propagation is in
vacuum and the wave front is perpendicular to the optical
axis ûH . In other words, �H is the time delay for the
radiation field at point r we are interested in, as compared
to the trivial propagation of the pulse in vacuum along ûH .

The variable �0 is equivalent to �0, while the meaning of
�H may not be immediately evident. To gain more insight,
we rewrite �H in an equivalent form using (19), (20), and
(15), and Bragg’s law ! ¼ Hc=ð2 sin�Þ (3):

�H ¼ �H þ 2 sin�

�
H

H
� sin�

�H

ẑ

�
r

c
þT d�BL

T d ¼ 2dsin2�

cj�Hj ;

�BL ¼
(
0 in Bragg geometry

1 in Laue geometry:

(21)

The parameter T d is a characteristic measure of time in
Bragg diffraction associated with the crystal thickness d. In
the Laue-case geometry, T d is equal to the total duration
of forward Bragg diffraction, which is given by the differ-
ence in path lengths for the wave to propagate along 0BA0
and 0A, as shown schematically in Fig. 2. The total dura-
tion of Bragg diffraction in Laue-case geometry is deter-
mined by the difference in path lengths 0AB0 and 0B,
which equals T d=b as can be derived from schematic in
Fig. 2. Although the last term in (21) vanishes in the Bragg-
case geometry, the parameter T d continues to play an
important role. Unlike the Laue-case geometry, diffraction
in Bragg-case geometry is not limited in time, because
multiple reflections from the front and rear surfaces take
place [7,10,11,23] as shown schematically in Fig. 3.
Accordingly, the parameter T d is a characteristic measure
of time associated with crystal thickness in the Bragg-case
geometry, where it measures the time between multiple
reflections as explained in the caption to Fig. 3.

Using Fig. 1, we can express ẑ andH=H in (21) in terms
of the unit vector ûH along the diffraction optical axis,

and the unit vector v̂H perpendicular to the axis as follows:
ẑ¼cosc HûHþsinc Hv̂H, and H=H¼sin�ûH�cos�v̂H.
With these, the third term in (21) can be presented as

2 sin�

�
H

H
� sin�

�H

ẑ

�
¼ Dv̂H;

D ¼ � 2 sin� sin�

�H

� �ð1þ bÞ tan�:
(22)

Equation (21) for �H thus can be now written as

�H ¼ �H þD
v̂Hr

c
þT d�BL; (23)

where �H ¼ t� ûHr=c (19).
The quantity D in (22) and (23) is the normalized

angular dispersion rate. It is a measure of the variation of
the propagation direction K=K0H of the diffracted wave
(7) as a function of the incident photon energy @K0=c,
assuming a fixed direction K0=K0 of the incident wave
vector. Indeed, using (7) we obtain

�ðKH=K0Þ ¼ �Dv̂Hð�K0=K0Þ;
see [18] for details. We note that the normalized angular
dispersion rate D is zero only in Bragg-case symmetric
scattering geometry with � ¼ 0. In all other cases, includ-
ing the ‘‘symmetric’’ Laue geometry (� ¼ 90�), it is
nonzero. Depending on the sign of �, D can take positive
or negative values in the Bragg-case geometry. In the Laue-
case geometry �> � and D is therefore always negative.
From Eq. (23) we conclude that the spatiotemporal

variable �H ¼ �H þDv̂Hr=cþT d contains in addition
to �H an important term Dv̂Hr=c which describes a spa-
tially lateral (perpendicular to the diffraction axis ûH)
amplitude modulation G0Hð�HÞ of the diffracted radiation
field (18). The amplitude modulation occurs due to
interference of different spectral components propagating
in different directions, which arise from the angular
dispersion due to the additional momentum transfer

FIG. 2. Schematic presentation of plane-wave front paths
(solid vector lines) in Laue-case Bragg diffraction and forward
diffraction from a crystal plate. The total duration of forward
diffraction ð0BA0 � 0AÞ=c ¼ T d (21), while total duration
of diffraction is ð0AB0 � 0BÞ=c ¼ T d=b. The lateral spread of
forward Bragg diffraction is AA0 ¼ d sin2�=�H , and the lateral
spread of Bragg diffraction is BB0 ¼ d sin2�=�0.

FIG. 3. Schematic presentation of plane-wave front paths
(solid vector lines) with possible multiple internal reflections
from the rear and front crystal surfaces in Bragg-case Bragg
diffraction and forward Bragg diffraction from a crystal plate.
The forward diffracted wave 0ABC originating from the front
surface reflection in B is delayed by ð0AB� 0B00Þ=c ¼ T d (21),
as compared to the primary forward diffracted wave 0B00. The
diffracted wave 0AB originating from the rear surface reflection
in A is delayed by ð0AB� 0B0Þ=c ¼ T d=jbj compared to the
primary diffracted wave 0B0.
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�H—Eqs. (7) and (14). The effect is very generic and
vanishes only in one case, in symmetric Bragg geometry
when � ¼ 0—Fig. 1(a). We will refer to this effect as the
angular dispersive lateral spatial modulation of the dif-
fracted wave field (here by angle we mean the angle of
reflection rather than the angle of incidence).

2. Nonlinear phase

In our preceding discussion we have focused on the
phase contributions that are linear in the frequency differ-
ence �. While this is a very good approximation for the
wave fields in vacuum close to the crystal surface, the
nonlinear (��2) contributions inherent in the additional
momentum transfer�H give rise to additional physics over
the potentially large propagation distances between the
crystal surface and any experimental sample/detector.
Here, we briefly quantify this effect and summarize its
physical origin.

Using Eq. (15), the definition of c 0 and c H given in the
caption of Fig. 1, along with the definition of D (22), the
expression for the additional momentum transfer (14) can
be rewritten as

�H

!=c
¼ 2sin2�

�H

�

!
� D2

2�H

�
�

!

�
2 þ � � � : (24)

Including the quadratic phase dependence in Eq. (24), the
wave fields (17) and (18) can be presented as

E H ðr; tÞ ¼ Eie
�i!�HX0H ð�H Þ; (25)

X0H ð�H Þ ¼
Z 1

1
d�

2�
e�i��HR0H ð�ÞSð�Þ; (26)

Sð�Þ ¼ exp

�
� iD2	

2c!�H

�2

�
; (27)

where 	 ¼ ðr� rHÞẑ is the shortest distance from the
observation point to the crystal surface, so that 	=�H is
the propagation distance along the optical axis. We note
that the expression for the nonlinear in � phase factor
Sð�Þ in (27) is in agreement with that obtained earlier by
Bushuev in [20], despite the different approaches used.
With the help of the Fourier convolution theorem we obtain
for X0H ð�H Þ:

X0H ð�H Þ ¼
Z 1

0
d�G0H ð�ÞFð�H � �Þ; (28)

Fð�H ��Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c!�H

iD2	

s
exp

�
ic!�H

2	

ð�H��Þ2
D2

�
: (29)

Here G0H is the crystal response given by Eq. (18), while
Fð�Þ is the Fourier transform of Sð�Þ. The convolution is
similar in form to that associated with paraxial evolution
for the field G0H ð�Þ, with the Fourier transform of S
serving as the associated Green function, 	=�H the

propagation distance along the optical axis, and �=D play-
ing the role of the ‘‘transverse’’ coordinate.
In fact, the factor 1=D gives the amount the inclined

intensity front will spread in time due to natural vacuum
diffraction broadening along the transverse coordinate ûH.
In symmetric Bragg (reflection) geometry the reflected
intensity and phase fronts are parallel, D ¼ 0 and the
time structure remains invariant, while in all other cases
D � 0 and the separated, inclined intensity fronts will tend
to smear together as the distance from the crystal 	 in-
creases. The maximum distance over which the linear
approximation holds and we can ignore this spreading
can be estimated as

	 	 2c�H

D2!

�
!

�B

�
2
; (30)

where �B is the typical frequency range of Bragg diffrac-
tion, i.e., the range in � over which R0H ð�Þ is appre-
ciable. For example, if �B=! ’ 10�4, the radiation

wavelength 
 ¼ 2�!=c ’ 1 �A, and �H=D
2 
 1, the lin-

ear approximation breaks down at the rather small distance
	 
 1 cm from the crystal. The smaller the bandwidth of
the Bragg reflection�B, the larger is the distance from the
crystal over which the linear approximation holds.
In the following we will neglect these nonlinear effects

due to vacuum diffraction upon propagation away from the
crystal. If they have to be taken into account, one should
replace the response function G0H (18) with X0H ð�H Þ
(28) and (29) in the equations presented below.

C. Ultrashort incident pulse with confined wave front

In the next step, we introduce an incident x-ray pencil
beam directed along the unit vector û0ð�Þ � û0. The wave
front of the pencil beam is bounded in the direction
v̂0ð�Þ � v̂0 perpendicular to û0 by the transverse profile
�ðv0Þ, where v0 ¼ v̂0r. We assume that the profile has a
characteristic width of �v and can be written as a Fourier
transform of the angular profile:

�ðv0Þ ¼
Z 1

�1
d~�

2�
�ð~�Þ exp½�iv0ð!=cÞð~�� �Þ�: (31)

The characteristic angular spread �� in �ð~�Þ is related to
�v by the uncertainty relationship ���v ’ c=!. In par-
ticular, for a pencil beam of x rays with a photon energy
@! ’ 12 keV (
 ¼ 2�c=! ’ 0:1 nm) and a lateral spread
of �v ’ 10 �m, the angular spread �� ’ 10�5 rad.
An ultrashort-in-time incident pencil beam Eiðr; tÞ ¼

Eie
�i!�0�ð�0Þ�ðv0Þ can be presented as a Fourier integral

over ~� of the plane-wave components (11) and (12) prop-

agating along directions û0ð~�Þ at glancing angles of inci-

dence ~� to the atomic planes around the central angle �:
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Eiðr; tÞ ¼ Ei

Z 1

�1
d~�

2�
�ð~�Þe�i!�0ð~�Þ�½�0ð~�Þ�

�
Z 1

�1
d~�

2�
�ð~�Þ

Z 1

�1
d�

2�
e�ið!þ�Þ�0ð~�Þ;

�0ð~�Þ ¼ t� û0ð~�Þr0
c

:

(32)

The ultrashort-in-time pencil-beam presentation (32) is

valid provided the ~� dependence in the delta function

�½�0ð~�Þ� can be neglected. Since �0ð~�Þ ’ �0 � v0

c ð~�� �Þ,
this is valid if the time delays �0 we are considering
are much longer than the inverse frequency: �0 �
���v=c ’ 1=!.

The spatiotemporal response EH ðr; tÞ of the crystal in
Bragg diffraction to the excitation by the ultrashort and
laterally bound x-ray pulse (32), both for diffracted
(H ¼ H) and forward diffracted (H ¼ 0) components,

can now be constructed as a Fourier integral over ~� of the
plane-wave solutions (17) and (18):

EH ðr; tÞ ¼ Ei

Z 1

�1
d~�

2�
�ð~�Þe�i!ð~�Þ�H ð~�ÞG0H ½�H ð~�Þ�;

�H ð~�Þ ¼ t� ûH ð~�Þr
c

; �0ð~�Þ ¼ �0ð~�Þ;

�Hð~�Þ ¼ �Hð~�Þ þDð~�Þ v̂Hð~�Þr
c

þT dð~�Þ�BL:

(33)

Here we are using again an important condition that the

carrier frequency !ð~�Þ satisfies Bragg’s law,
!ð~�Þ sin~� ¼ Hc=2; (34)

equivalent to (3), and � ¼ 0 condition.

Since only small ~�� � values are significant, we can use

ûH ð~�Þ ¼ ûH þ �ûH , with �ûH ¼ �v̂H�~�. Here, the
vectors v̂H are perpendicular to ûH and directed as shown
in Figs. 1(a) and 1(b). Applying this result and Taylor

expanding �H ð~�Þ and !ð~�Þ from (33) to first order in

j~�� �j 	 1, we obtain

�H ð~�Þ ’ �H þ vH

c
ð~�� �Þ; vH � v̂H rH ;

!ð~�Þ ’ !½1� ð~�� �Þ cot��; ! � !ð�Þ;
�H ð~�Þ!ð~�Þ ’ !�H þ!

c
ðvH � �H c cot�Þð~�� �Þ:

(35)

G0H ð�H Þ is a slowly varying function compared to
expð�i!�H Þ. Therefore, one can neglect dependence of

G½�H ð~�Þ� on ~� in performing integration over ~� in (33)
provided the lateral shift vH or/and angular spread �� are
not too large, so that �H � ��vH =c. With these assump-
tions, and using again Eqs. (21)–(23), we arrive at the
following general expression for the spatiotemporal depen-
dence of Bragg diffraction from a crystal, excited with

an ultrashort-in-time pencil beam with a lateral spatial
distribution �ðv0Þ:
EH ðr; tÞ ¼ EiG0H ð�H Þ�ðvH � �H c cot�Þe�i!�H ;

�H ¼ t� ûH r

c
; H ¼ ð0; HÞ;

�0 ¼ �0; �H ¼ �H þD
v̂Hr

c
þT d�BL:

(36)

Equations (36) reveal an interesting general property: the
spatiotemporal response in Bragg diffraction (H ¼ H)
or in Bragg forward diffraction (H ¼ 0) is given by a
product of the corresponding plane-wave spatiotemporal
response function G0H ð�H Þ (18) and the spatiotemporal
envelope function �ðvH � �H c cot�Þ, whose peak shifts
along v̂H perpendicular to the optical axis ûH linearly
in time. Thus, a fixed relationship (36) exists between the
time delay of the crystal response and the peak of the
lateral shift. In other words, the time delay is mapped
onto the lateral spatial shift.
In our previous paper [1], we have shown that the spatial

shift takes place in symmetric Bragg diffraction in Bragg
scattering geometry. This result of [1] was recently repro-
duced in [24]. The solution (36) generalizes that result to
asymmetric diffraction both in reflection (Bragg)—Fig. 1(a),
and transmission (Laue) scattering geometries—Fig. 1(b).
This result can be interpreted as follows: the incident wave
field with bounded wave front is presented in Eq. (32) as a
superposition of plane waves propagating at different
angles of incidence. At a different angle, Bragg’s law is

fulfilled for different photon frequency !ð~�Þ (34). As a
result, the spatiotemporal response EH ðr; tÞ of the crystal
in Bragg diffraction (33) is a superposition of wave fields

with different carrier frequencies !ð~�Þ (34), resulting in a
lateral spatial modulation, or, equivalently, in a lateral
spatial shift. An alternative interpretation of the derived
above general relationship between the time delay and
spatial shift is discussed in Appendix C. We will denote
this effect as the lateral spatial modulation due to Bragg’s
law of dispersion, to distinguish it from the spatial modula-
tion due to angular dispersion discussed in Sec. II B, and
refer to�ð Þ in Eq. (36) as Bragg’s law dispersion envelope.
We conclude: the spatiotemporal response of the crystal

to the excitation with an ultrashort and laterally bounded
x-ray pulse is accompanied by lateral spatial modulations
driven by two different mechanisms: Bragg’s law of dis-
persion and angular dispersion. We will illustrate manifes-
tation of these two mechanisms using particular cases in
Secs. III and IV.
Finally, using Eqs. (36) the spatiotemporal dependence

of the intensity of Bragg diffraction from a crystal excited
with an ultrashort-in-time pencil beam having a lateral
spatial distribution �ðv0Þ can be calculated using

IH ðr; tÞ / jEij2jG0H ð�H Þj2�2ðvH � �H c cot�Þ: (37)
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We have derived in this section general solutions describ-
ing the spatiotemporal response of crystals in Bragg dif-
fraction. In each particular case it is important to know the
appropriate plane-wave response functions G0H ð�H Þ.
They can be calculated numerically in the general case,
and examples are discussed in the following Sec. III for the
reflection (Bragg) geometry, and in Sec. IV for the trans-
mission (Laue) geometry. In some cases G0H ð�H Þ can be
calculated analytically, in particular, for nonabsorbing
crystals. In Secs. III and IV we will derive analytical
expressions for the response functions of nonabsorbing
crystals in the general case of asymmetric diffraction
� � 0, in Bragg and Laue scattering geometries, respec-
tively, and perform analysis of the spatiotemporal crystal
response using these analytical solutions.

III. RESPONSE IN BRAGG-CASE GEOMETRY

A. Diffraction and forward diffraction amplitudes

We begin this section by summarizing the well-known
results of the dynamical theory of x-ray Bragg diffraction
for both the forward diffraction R00 and diffraction R0H

amplitudes measured at the rear (z ¼ d) and the front
(z ¼ 0) surfaces of a crystal, respectively:

R00 ¼ eiß1d
R2 � R1

R2 � R1e
iðß1�ß2Þd ;

R0H ¼ R1R2

1� eiðß1�ß2Þd

R2 � R1e
iðß1�ß2Þd ;

(38)

where

ß
d ¼ �0

K0d

2�0

þA
2

Y
ðyÞ; R
 ¼ GY
ðyÞ;

Y
ðyÞ ¼ ð�y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ b=jbj

q
Þ; G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbj�H� �H

q
=� �H;

y ¼ K0
��H

2�0

½b�þ �0ð1� bÞ�; A ¼ d= ��H;

(39)

and

�� H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0j�Hj

p
sin�

��ðsÞ
H ; ��ðsÞ

H ¼ sin�

K0jPj ffiffiffiffiffiffiffiffiffiffiffiffiffi
�H� �H

p : (40)

Here �H (H ¼ 0, H, �H) are Fourier coefficients of the
periodic-in-space crystal electric susceptibility �ðrÞ. In
general, �H are very small complex parameters. The
imaginary part =f�H g is related to the cross section of
photoabsorption, while the real part <f�H g is primarily
related to the atomic Thomson scattering amplitude. In
many interesting cases, e.g., for Si crystals, <f�H g �
=f�H g. In certain cases, e.g., for diamond or Be crystals,
one can even neglect photoabsorption to a certain extent,
and assume �H to be purely real parameters. We make this
approximation in the analytic calculations of the response

functions below, although as shown by Kato [25] the
resulting expressions can often be applied to absorbing
perfect crystals by letting the �H be complex if the
appropriate branches of square roots, etc. are taken.
Typically, <f�H g � 10�4–10�7 for Si and diamond crys-
tals for 5–20 keV x rays.
The incident and diffracted waves are assumed to be

polarized either in the � or the � polarization state. The
polarization factor in (40) for the �-polarization compo-
nent is P ¼ 1, and P ¼ cos2� for the �-polarization
component, respectively.
The index 
 ¼ 1; 2 identifies two possible solutions

for the correction ß
 of the in-crystal wave vector k0 ¼
K0 þ ßẑ with respect to the vacuum wave vector K0.
The diffraction R0H and forward diffraction R00 ampli-

tudes in (38) are essentially functions of one main parame-
ter, the normalized deviation parameter y (39). It contains
all the information on the magnitude of the photon fre-
quency !0, the direction of its momentum K0 relative to
diffraction vector H and to the internal surface normal ẑ,
the asymmetry factor b, and other information pertinent to
scattering geometry.

The parameter ��H (40) in (39) is an extinction length
[26]. In Eq. (40) we also define the extinction length

in symmetric scattering geometry ��ðsÞ
H , for which the

asymmetry angle � ¼ 0, see Fig. 1(a). In this case �0 ¼
��H ¼ sin�, and ��H ! ��ðsÞ

H . An important feature of the

symmetric version ��ðsÞ
H is that it is invariant for a given

Bragg reflection, being independent of the photon fre-
quency !0 or incidence angle � [27] to good accuracy

for crystals with small photoabsorption; ��ðsÞ
H is determined

solely by the diffraction vector H. This can be seen from
(40), by using the fact that �H / 1=K2

0 and sin� ’ 2H=K0.

The extinction length ��ðsÞ
H determines the characteristic

interaction length in Bragg diffraction from the atomic
planes with diffraction vector H. Along with the crystal
thickness d, the extinction length is another characteristic
measure of length in Bragg diffraction.
With the help of the above Eq. (39), and using expres-

sion (13) for the deviation parameter �, the following
relationship can be established between y and �:

� ¼ �sgnfbg y

T �

þ wH!; (41)

where

T � ¼ 2 ��Hsin
2�

cj�Hj � T ðsÞ
�

ffiffiffiffiffiffi
jbj

p
sin�; (42)

T ðsÞ
� ¼ 2 ��ðsÞ

H =c: (43)

and

wH ¼ wðsÞ
H

ðb� 1Þ
2b

; wðsÞ
H ¼ � �0

2sin2�
: (44)
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Here, T � is the characteristic measure of time in Bragg
diffraction associated with the extinction length. It can be
directly compared to T d ¼ AT � (21), another charac-
teristic measure of time in Bragg diffraction associated
with the crystal thickness. We have introduced here also

the Bragg reflection invariant time constant T ðsÞ
� (43),

which is associated with the Bragg reflection invariant

extinction length in symmetric scattering geometry ��ðsÞ
H .

Typically, ��ðsÞ
H 
 1–50 �m (see Table I in Appendix E),

and therefore T ðsÞ
� 
 50–1000 fs.

The parameter wH in (44) is a Bragg’s law correction
due to refraction at the vacuum-crystal interface [18]. Its

magnitude wðsÞ
H in symmetric diffraction (b ¼ �1) is a

Bragg reflection invariant, similar to the invariance of the

extinction length ��ðsÞ
H . While the precise value of wðsÞ

H

depends on the Bragg reflection, in most cases it is very

small (wðsÞ
H 	 10�4, see Table I in Appendix E).

Far off the region of Bragg diffraction, where the devia-
tion parameter jyj � 1 or equivalently when � (2) is large,
the diffraction signal is R0Hð1Þ ¼ 0 (38), as expected. On
the contrary,

R00ð1Þ ¼ C; C ¼ exp

�
i�0

K0d

2�0

�
(45)

has a nonzero value that represents the diffraction-free
transmission amplitude of the incident radiation with re-
fraction and photoabsorption accounted for by C through
the complex �0. The actual forward diffraction amplitude
is therefore obtained by subtracting off the trivial
y-independent amplitude C (45),

~R 00 ¼ R00 � C; (46)

resulting in ~R00ð1Þ ¼ 0. Using the actual forward diffrac-
tion amplitude (46), the forward Bragg diffraction response
function (18) can be presented as the sum

G00ð�0Þ ¼ C�ð�0Þ þ ~G00ð�0Þ
~G00ð�0Þ ¼

Z 1

�1
d�

2�
e�i��H ~R00ð!þ�Þ;

(47)

so that the response is decomposed into the prompt
diffraction-free transmission C�ð�0Þ, and the delayed

actual forward diffraction response function ~G00ð�0Þ.
A similar approach has been used in [22] to deal with
time dependence of forward resonant scattering from
Mössbauer nuclei.

B. Response functions

The response functions G0Hð�HÞ and ~G00ð�0Þ are calcu-
lated using Eqs. (18) and (47) with forward diffraction ~R00

and diffraction R0H amplitudes given by Eqs. (38) and (46)
of the previous sections. We use Eq. (41) to perform the

integration over y instead of � in the Fourier integrals.
In reflection (Bragg) scattering geometry �H < 0, the
asymmetry ratio b < 0, and therefore the relationship
(41) between � and y is actually � ¼ y=T � þ wH!.

The response functions G0Hð�HÞ and ~G00ð�0Þ can be
calculated numerically in the general case. Figure 4 shows
examples of such calculations. The left column of Fig. 4
shows examples of reflectivity spectra jR0Hj2 for crystals
of different thicknesses d. Crystals of rather large thickness

are considered d � ��H. In the particular case of the
H ¼ ð004Þ Bragg reflection in diamond crystal, the ex-

tinction length ��ðsÞ
H ¼ 3:6 �m. The reflectivity spectra are

nearly rectangular within jyj< 1, and have an almost
crystal thickness independent form and width �EH. The
reflectivity is almost 100%. Such a high reflectivity is
typical for diamond crystals due to low photoabsorption
and a high Debye-Waller factor [33,34]. The second col-
umn in Fig. 4 shows results of calculations for the forward
diffraction intensity spectra. They look like inverse diffrac-
tion spectra, because of the dominating contribution of the
trivial transmission in the diffraction-free region jyj � 1.
The third column shows intensity spectra of the actual
forward diffraction. The main contribution is outside the
region of the total Bragg reflection. The spectral width
�E0 � �EH and is crystal thickness dependent, varying
linearly with d.
The last (right) column shows the temporal dependences

of the diffraction response function intensity jG0Hð�HÞj2,
and the actual forward diffraction response functions in-

tensity j ~G00ð�0Þj2. In agreement with the behavior of the
spectral dependences, jG0Hð�HÞj2 is approximately inde-

pendent of the crystal thickness, while j ~G0Hð�HÞj2 strongly
depends on the crystal thickness d. The characteristic times
of Bragg diffractionT � and forward Bragg diffractionT 0

are indicated on the graphs. The temporal features at �H ¼
T d for the crystal with smallest thickness d ¼ 0:05 mm
represent diffracted and forward diffracted wave fields
originating from the rear and front surface reflections as
schematically illustrated in Fig. 3, cf. also numeric calcu-
lations in [12,18]. In thicker crystals these echo wave fields
arrive at later times, which are outside the presented time
range. Interestingly, the characteristic time of the Bragg
diffraction response in the range �H >T d changes from
T � toT 0. This reflects the fact that the contribution to this
signal comes from the same modes which contribute to
forward diffraction, i.e., from the modes propagating
through the whole crystal thickness, and not from those
propagating only through the extinction length.
More insight can be obtained from analytical solutions.

The response functions can be calculated analytically in
some specific cases, e.g., in the approximation of a
nonabsorbing (=f�H g ¼ 0) and thick crystal, for which

d � ��H, or equivalentlyA � 1. In this case, the diffrac-
tion and forward diffraction amplitudes can be approxi-
mated by
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R0H ¼ G

8<
:�yþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
for jyj< 1

�yþ sgnfyg ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p
for jyj � 1;

(48)

R00 ¼ C

8><
>: e

�A
2

�
iyþ

ffiffiffiffiffiffiffiffi
1�y2

p �
for jyj< 1

e
iA2

�
�yþsgnfyg

ffiffiffiffiffiffiffiffi
y2�1

p �
for jyj � 1:

(49)

The following observations were used to obtain Eqs. (48) and
(49). In the region y ^ 1, both R1 	 1, and R1=R2 	 1,
while for y �̂1, both R2 	 1, and R2=R1 	 1.
Neglecting these small terms, Eq. (38) transforms to
Eqs. (48) and (49).

Equation (48) represents a well-known result of the
dynamical theory, that Bragg diffraction from a nonabsorb-
ing, thick crystal A � 1 takes place with total (100%)
reflectivity jR0HðyÞj2 ¼ 1 within the region jyj< 1, or
equivalently, using (43), within the photon energy range:

�EH ¼ 2@=T �; (50)

in agreement with results of numeric calculations shown in
Fig. 4 (left column). Here �EH ¼ @��.

Using Eqs. (46)–(49), the actual forward diffraction
amplitude can be presented in the jyj> 1 range as

~R 00 ¼ C
�
exp

�
i
A
2

ð�yþ sgnfyg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

q
Þ
�
� 1

	
: (51)

Equation (51) is in agreement with the results of numeric
calculations shown in the third column of Fig. 4. The
forward diffraction spectral width

�E0 ’ �EH

A
2�

(52)

is a factor of (A=2�) broader than the Bragg diffraction
spectral width �EH, and is crystal thickness dependent.
Using the diffraction amplitude R0H (48), the forward

diffraction amplitude ~R00 (49) and (51), and relationship
� ¼ y=T � þ wH! (42), we obtain the plane-wave
response functions Eq. (18) in the Bragg-case geometry
(see Appendix A for mathematical details):

G0Hð�HÞ ¼ i
G

T �

J1ð�H=T �Þ
�H=T �

e�iwH!�H ; (53)

FIG. 4. Spectral dependences (left three columns) of the Bragg diffraction (BD) intensity jR0HðEÞj2, the forward diffraction intensity
jR00ðEÞj2, the actual forward Bragg diffraction (FBD) intensity j ~R00ðEÞj2 ¼ jR00ðEÞ � R00ð1Þj2, and the corresponding temporal
intensity dependences of the response functions jG0H ðtÞj2 (right column) in symmetric Bragg-case geometry. Numeric calculations
use Eqs. (38)–(44), (13), and (18)–(21) for the glancing angle of incidence � ¼ 45� to the (004) reflecting atomic planes in diamond,
with the asymmetry angle � ¼ 0. The center of the Bragg reflection region (y ¼ 0) corresponds to x-ray photon energy Ec ¼
9:83 keV. The spectral and time dependences in diamond crystals of different thickness d ¼ 0:05 mm, d ¼ 0:1 mm, and d ¼ 0:2 mm
are shown in three different rows from bottom to top, respectively.
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~G 00ð�0Þ ¼ � C

2T 0

J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

T 0

�
1þ �0

T d

�r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

T 0

�
1þ �0

T d

�r e�iwH!�0 ; (54)

T 0 ¼ T �=A � 2½ ��ðsÞ
H �2

cðd=�0Þ : (55)

These solutions are valid if �H <T d (H ¼ 0, H), i.e.,
over the duration of time that is less than the total propa-
gation time through the crystal T d. Thus, this solution
does not include possible reflections from the rear and front
crystal surfaces.

In the limit of symmetric Bragg scattering, the response
function envelopes are the same as those obtained in [1]. In

general, however, an asymmetric geometry changes the
characteristic time constants.
According to Eq. (53), the characteristic time constant

in Bragg diffraction is T � (42), which is a function of the

asymmetry factor b; in fact, it scales with
ffiffiffiffiffiffijbjp

. By appro-
priately choosing the asymmetry factor b, the time
response can be made faster or slower compared to the
time response of Bragg diffraction in symmetric geometry.
Additionally, the uncertainty-type relationship (50) asso-
ciates the characteristic time constant of diffraction with
its spectral width. As a consequence of Eqs. (50) and (42),
a well-known result of the dynamical theory can be
reproduced: the Bragg reflection spectral width scales

with 1=
ffiffiffiffiffiffijbjp

, �EH ¼ @c=ð ��ðsÞ
H

ffiffiffiffiffiffijbjp
sin�Þ. Note that both

FIG. 5. Spatiotemporal intensity profiles of FBD and BD from a 100 �m thick diamond crystal from the (004) Bragg reflection

( ��ðsÞ
H ¼ 3:6 �m), in the reflection (Bragg) scattering geometry—Fig. 1(a)—with asymmetry angles � ¼ 20� (a), � ¼ 0� (b), and

� ¼ �20� (c). We plot Eq. (37) using the plane-wave response functions (53) and (54) and a Gaussian lateral spatial profile of
the incident x-ray beam with �v ¼ 1000 �m (i.e., a practically unbounded incident wave front). Other parameters: � ¼ 45�,
E ¼ 9:8 keV, which are the same as those used for the calculations of the response functions shown in Fig. 4. The intensity front
tangent in Bragg diffraction (BD) is dvH =d�H ¼ �c=D (22). White dashed lines are traces of the Bragg’s law dispersion envelopes
�2ðvH � �H c cot�Þ (36) and (37) with a tangent dvH =d�H ¼ c cot�, cf. Fig. 6.
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the typical energy and time scales are predominantly
determined by a single parameter, namely, the extinction

length ��ðsÞ
H . This fact explains why Bragg diffraction is not

instantaneous, as it builds by multiple, coherent scattering
of x rays within the extinction length.

The characteristic time constant of forward Bragg dif-
fraction is significantly different, since different multiple
scattering processes are involved. According to Eqs. (54)
and (55), the characteristic time is given by T 0, which is a

factor of A ¼ d= ��H smaller than the characteristic con-
stant of Bragg diffraction T �. Interestingly, T 0 is practi-
cally the same as in symmetric scattering geometry. In the
general case, it is basically defined by the Bragg reflection

invariant ��ðsÞ
H and the effective crystal thickness seen by

incident x rays d=�0. From Eq. (54), we also calculate that
the first trailing maximum of the forward diffraction

response function appears at ts ¼ 26T 0, as illustrated in
Fig. 4, and its duration is �ts ¼ 16:5T 0.
We note also that, if �0 	 T d, the expression for the

forward diffraction response function given in Eqs. (54)
and (55) can be simplified to

~G 00ð�0Þ ¼ � C

2T 0

J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=T 0

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=T 0

q e�iwH!�0 : (56)

C. Analysis of the spatiotemporal response
in Bragg-case geometry

By combining the analytical expressions for the plane-
wave response functions (53) and (54) obtained in the
previous section with the general solutions (36) and (37),

FIG. 6. Spatiotemporal intensity profiles of FBD and BD for similar parameters as that of Fig. 5. Here, however, the incident x rays
have a bounded lateral spatial profile �ðv0Þ that is assumed to be Gaussian with �v ¼ 10 �m. Because of this, the spatiotemporal
intensity profiles shown in Fig. 5 are limited now by a tight Bragg’s law dispersion envelope �2ðvH � �H c cot�Þ (37) with a tangent
dvH =d�H ¼ c cot�, shown as white dashed line.
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we are now in a position to describe the spatiotemporal
response of crystals in x-ray Bragg diffraction resulting
from the excitation by an ultrashort and laterally confined
x-ray pulse.

To make the analysis more instructive, we show in
Figs. 5 and 6 examples of 2D (�H , vH ) color plots of
the spatiotemporal intensity profiles of forward Bragg
diffraction (FBD) and Bragg diffraction (BD) from a
100 �m thick diamond crystal in the (004) Bragg

reflection ( ��ðsÞ
H ¼ 3:6 �m) with the asymmetry angle

� ¼ 20� (a), � ¼ 0� (b), or � ¼ �20� (c).
Figure 5 shows examples of calculations that apply the

above-mentioned equations to an incident wave front
that is, for all practical purposes, laterally unbounded
(we assume that the incident spatial profile has a Gaussian
distributionwith�v ¼ 1000 �m). In the symmetric case—
Fig. 5(b)—the spatiotemporal profiles of both FBD and BD
are homogeneous in the lateral spatial shift vH , i.e., they
show no variation along the plane perpendicular to the
appropriate optical axis ûH—see Fig. 1(a). The FBD re-
sponse remains independent of vH for nonzero values of
the asymmetry angle � � 0, as the plots demonstrate in the
left columns of Figs. 5(a) and 5(c). In contrast, the BD
profiles acquire modulations along vH if � � 0. They
also produce the impression that the wave fronts of the
BD wave fields are inclined. There are two phase factors
in the expression for the wave field EHðr; tÞ in Eq. (36). The
first is expð�i!�H Þ defining the wave front perpendicular
to the optical axis ûH, and another one expð�iwH!�HÞ
resulting from the plane-wave response function G0Hð�HÞ
(53). Since the second contribution is due to a small refrac-
tive correction, the wave front is practically not inclined.
The pronounced effect seen in Figs. 5(a) and 5(c) is actually
the inclined amplitude (intensity) front due to the amplitude
modulation perpendicular to ûH resulting from angular
dispersion, discussed in Sec. II B. Formally, the inclination
andmodulation reveal themselves through the argument �H

of G0Hð�HÞ which depends both on time t, and, if � � 0,
also on the space variable vH—Eq. (23). The magnitude of
the inclination to ûH is D=c, it scales with the normalized
angular dispersion rate D. The inclination of the intensity
front changes sign with the sign of �. The tilting of the
intensity profiles due to Bragg diffraction was previously
noted by Bushuev [20].

In all cases, varying the magnitude and sign of the asym-
metry angle � changes the time constants T 0 and T �,
resulting in either dilation—Fig. 5(a)—or contraction—
Fig. 5(c)—of the oscillating intensity structures associated
with the spatiotemporal response; this dilation or contrac-
tion as compared to the symmetric case occurs both in the
vH and the �H directions, as shown in Fig. 5(b).

In the next step, we narrow considerably the lateral
spatial profile of the incident x-ray beam. Figure 6 shows
examples of calculations for incident x rays having a
Gaussian lateral spatial profile with �v ¼ 10 �m, with

all other parameters being identical to those in Fig. 5.
The wave field in the direction perpendicular to the optical
axis ûH is bounded by the Bragg’s law dispersion envelope
�2ðvH � �H c cot�Þ—Eqs. (36) and (37). White dashed
lines in Figs. 5 and 6 are traces of the envelope. The tangent
dvH =d�H ¼ c cot� is independent on whether the
geometry is symmetric � ¼ 0—Fig. 6(b), or asymmetric
� � 0—Figs. 6(a) and 6(c). As has been mentioned in
Sec. II C this is a result of Bragg’s law dispersion due to
angular spread in the incident beam caused by the bounded
wave front.
The two effects of lateral amplitude modulation of the

wave field, due both to angular dispersion and to Bragg’s
law of dispersion, can be clearly distinguished by compar-
ing the spatiotemporal profiles in Fig. 5 and in Fig. 6.

IV. RESPONSE IN LAUE-CASE GEOMETRY

A. Diffraction, forward diffraction amplitudes,
and response functions

The wave field amplitudes in transmission (Laue)
geometry are given by the following expressions [6–11]:

R00 ¼ 1

R2 � R1

ðR2e
iß1d � R1e

iß2dÞ;

R0H ¼ R1R2

R2 � R1

ðeiß1d � eiß2dÞ:
(57)

The notation is the same as in (39), but in contrast to the
reflection (Bragg) geometry, the asymmetry factor b (39) is
positive in transmission geometry. Using Eqs. (39) and (44),
the wave field amplitudes (57) can be presented as

R00 ¼ Ce�iAy=2WðyÞ;

WðyÞ ¼ cos

�
A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

q �
þ iy

sin
�
A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p ;

(58)

R0H¼ iCGe�iAy=2VðyÞ; VðyÞ¼
sin

�
A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þ1

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þ1

p : (59)

Using the forward diffraction amplitude R00 given
by (58), the diffraction amplitude R0H given by (59), the
relationship � ¼ �y=T � þ wH! (42), and assuming
zero photoabsorption, we compute the plane-wave
response functions Eq. (18) for the Laue case which are
given by (see Appendix B for mathematical details)

G00ð�0Þ ¼ ~G00ð�0Þ þ C�ð�0Þ;

~G00ð�0Þ ¼ C

2T 0

�
1� �0

T d

� J1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

T 0

�
1� �0

T d

�r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

T 0

�
1� �0

T d

�r e�iwH!�0

½0< �0 <T d�; (60)
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G0Hð�HÞ ¼ �i
CG

2T �

J0

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�H

T 0

�
1� �H

T d

�s 3
5e�iwH!�H

½0< �H <T d�: (61)

Here we use characteristic time constants defined
previously: T d in Eq. (21), T � in Eq. (43), and T 0 in
Eq. (55). Both Eqs. (60) and (61) can be simplified if
�H 	 T d:

~G 00ð�0Þ ¼ C

2T 0

J1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0=T 0

q �
ffiffiffiffiffiffiffiffiffiffiffiffi
�0T 0

q e�iwH!�0 ; (62)

G0Hð�HÞ ¼ �i
CG

2T �

J0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�H=T 0

q �
e�iwH!�H : (63)

Remarkably, for small �0 � �0 	 T d, the forward

diffraction plane-wave response function ~G00ð�0Þ in the
Laue-case geometry (63), and its counterpart (56) in the
Bragg-case geometry, are equivalent, however, with in-
verted signs, as a consequence of sgnfbg in Eq. (41).

The time constant T 0 (55) is essentially the same
inboth transmission (Laue) and reflection (Bragg) geometries.

It equals the time constant T ðsÞ
� in symmetric Bragg diffrac-

tion scaled by a ratio ��ðsÞ
H =ðd=�0Þ of the symmetric extinction

length ��ðsÞ
H to the effective crystal thickness (d=�0), i.e., he

crystal thickness seenby incident x rays. The time constant of
forward Bragg diffraction T 0 (55) is thus a universal pa-
rameter for all symmetric or asymmetric, transmission or
reflection scattering geometries. It is the parameter control-
ling the strength and duration of forward Bragg diffraction
response, with the extinction length and the effective crystal
thickness being the primary variables composing T 0.

B. Analysis of the spatiotemporal response

Expressions (60) and (61) for the plane-wave response
functions are very similar to the analogous expressions ob-
tained by Graeff and Malgrange in [15,16], with the excep-
tion thatG00ð�0Þ in (60) contains also the prompt �-function
contribution. It originates from the spectral components in
the incident pulse with frequencies far from the Bragg dif-
fraction region that propagate diffraction-free through the
crystal. In Appendix Bwe also provide somemore details on
the comparison with the results of [15,16].
Figure 7 shows results of numeric calculations of the

plane-wave response function intensities jG0H ð�HÞj2 and
related to them spectral dependences jR0H ðEÞj2 for

FIG. 7. Spectral dependences (left three columns) of the Bragg diffraction (BD) intensity jR0HðEÞj2, the forward Bragg diffraction
intensity jR00ðEÞj2, the actual forward Bragg diffraction (FBD) intensity j ~R00ðEÞj2 ¼ jR00ðEÞ � R00ð1Þj2, and the corresponding
temporal intensity dependences of the response functions jG0H ð�H Þj2 (right column) in Laue-case geometry. Numeric calculations
use Eqs. (57), (39)–(44), and (18) for the glancing angle of incidence � ¼ 45� to the (004) reflecting atomic planes in diamond, with
the asymmetry angle � ¼ 90�. The center of the Bragg reflection region (y ¼ 0) corresponds to the x-ray photon energy Ec ¼
9:83 keV. The spectral and time dependences in diamond crystals of different thickness d ¼ 67 �m, d ¼ 80 �m, and d ¼ 104 �m
are shown in three different rows from bottom to top, respectively.
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FIG. 8. Spatiotemporal intensity profiles of FBD and BD from a 100 �m thick diamond crystal from the (004) Bragg reflection

( ��ðsÞ
H ¼ 3:6 �m), in the transmission (Laue) scattering geometry—Fig. 1(b)—with asymmetry angles � ¼ 110� (a), � ¼ 90� (b), and

� ¼ 70� (c). We plot Eq. (37) with the plane-wave response functions (60) and (61) and a Gaussian lateral spatial profile of the
incident x-ray beam with �v ¼ 1000 �m, (i.e., a practically unbounded incident wave front). Other parameters: � ¼ 45�, E ¼
9:8 keV, which are the same as those used for response functions shown in Fig. 7. The intensity front tangent in Bragg diffraction (BD)
is dvH =d�H ¼ �c=D (22). White dashed lines are traces of the Bragg’s law dispersion envelopes �2ðvH � �H c cot�Þ (36) and
(37) with a tangent dvH =d�H ¼ c cot�, cf. Fig. 9.
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the Laue case. These calculations are provided to facilitate
‘‘visualization’’ of the analytical solutions given by
Eqs. (57)–(61). The dependences shown in Fig. 7 are
counterparts of the analogous Bragg-case dependences

shown in Fig. 4. They are calculated under the same con-
ditions, with the single difference being that the asymmetry
angle is now � ¼ �=2 (‘‘symmetric’’ Laue case), instead
of � ¼ 0 in Fig. 4 (symmetric Bragg case).

FIG. 9. Spatiotemporal intensity profiles of FBD and BD for similar parameters as that of Fig. 8. Here, however, the incident x-rays
have a bounded lateral spatial profile �ðv0Þ that is assumed to be Gaussian with �v ¼ 10 �m. Because of this, the spatiotemporal
intensity profiles shown in Fig. 8 are limited now by a tight Bragg’s law dispersion envelope �2ðvH � �H c cot�Þ (37) with a tangent
dvH =d�H ¼ c cot�, shown as white dashed line.
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In the Laue case, the spectral range where Bragg dif-
fraction takes place scales with �EH. While this is similar
to the Bragg-case geometry, for Laue there is no region of
total reflection. The dominant feature of the spectral inten-
sity dependence in Fig. 7 is the intensity oscillations, which
is associated with the well-known Pendellösung effect of
Ewald [4]. Pendellösung is basically related to oscillations
of the energy flow between the forward diffracted and
diffracted beams in the Laue-case geometry. The period

of oscillations scales with the extinction length ��H, which
is 3:6 �m in this particular case. For the calculations pre-
sented in the middle row the crystal thickness d is reduced

by 2� ��H ¼ 22:6 �m, compared to the d value used in the
calculations presented in the top row. The crystal thickness

d is further decreased by � ��H ¼ 11:3 �m for the calcu-
lations presented in the bottom row. Varying the crystal
thickness leads to periodic in d and in E variations of the
intensities that are complementary for the diffracted and
forward diffracted signals. Interestingly, in the spectral
range jE� Ecj>�EH, the actual forward diffraction
intensity j ~R00ðEÞj2 ¼ jR00ðEÞ � R00ð1Þj2 has a structure
very similar to that in the Bragg-case geometry, cf. Fig. 7.

This is in agreement with the fact that ~G00ð�0Þ for small �0

values are identical (modulo the inverted sign) in Bragg-
case and Laue-case geometries, cf. Eqs. (56) and (62).

Comparison of Eqs. (61) and (53), as well as the results
of numeric calculations of jG0Hð�HÞj2 in Figs. 7 and 4,
show that the characteristic time of diffraction in Laue-case
geometry is T 0 (53), i.e., different from the characteristic
time of diffraction T � (43) in Bragg-case geometry. This
evidences that two different characteristic length scales are
involved for these two different diffraction cases.

Equations (60) and (61) and Fig. 7 demonstrate a
signature feature of the Laue-case plane-wave response
functions G0H ð�H Þ. Unlike the Bragg-case analogs,
G0H ð�H Þ vanish outside the range 0> �H >T d. This
effect has been reported and discussed by Shastri et al.
[12,13] using numeric calculations, and by Graeff and
Malgrange using analytical solutions in [15,16].

This feature, however, deserves a more detailed
discussion, as it is in fact valid only under certain con-
ditions, but not in general. To illustrate this, we refer to the
example 2D (�H , vH ) intensity color plots of the spatio-
temporal response of forward Bragg diffraction (FBD) and
Bragg diffraction (BD) in Laue-case geometry shown in
Figs. 8 and 9, which are analogs of the Bragg-case shown
in Figs. 5 and 6.

Figure 8 shows 2D plots for the practically unbounded
incident wave front. Unlike the Bragg case, in the Laue-
case geometry the intensity fronts of the diffracted wave
fields are always strongly inclined. This is a consequence
of the nonvanishing angular dispersion in Laue geometry,
in agreement with Eqs. (22) and (23).

Laue-case FBD is truly limited in time, both for obser-
vations made at a single point or over an extended field of

view: the duration is always T d (21), which can be
changed by d, �, and �. The Laue-case BD is limited in
time for an observer who measures the field at a single
point, and its duration is the same as in FBD, namely, T d.
However, for an observer that collects the reflected x rays
over some region in space, the duration of BD depends on
the extent of the field of view. For an infinite field of view
the duration is infinite.
If the incident wave front is now strongly bounded, as

assumed for calculations of the 2D plots presented in
Fig. 9, then BD is limited to the region of the Bragg’s
law dispersion envelope. As a result, the duration of BD for
an observer with an infinite field of view becomes limited
to T d=b. We obtained this result also by ray tracing the
wave fronts in Fig. 2, which represents the limiting case of
an extremely bounded incident wave front.
From the above examples it is clear that there is no

unambiguous answer to the question what is the duration
of x-ray diffraction in Laue-case geometry. Depending on
the conditions of the experiment, it can be either T d, or
T d=b, or even arbitrarily long. The duration of BD in the
Laue case can be varied not only by decreasing the crystal
thickness, as was suggested in [15], but also by varyingT d

or T d=b through the asymmetry angle � and asymmetry
factor b, as follows from (21).
The lateral spread vH of FBD and BD in Laue-case

geometry appears to be limited to vðmaxÞ
H

if the incident

beam has a bounded wave front. This is a well-known
result of the dynamical theory, supported by many experi-
ments, reviewed in detail, e.g., in [11]. Figure 9 demon-
strates how the limited-in-time crystal response correlates
with the limited lateral spread. Using these graphs, one can
find that the maximal lateral spread is given by

vðmaxÞ
0 ¼ d sin2�=�H; vðmaxÞ

H ¼ d sin2�=�0: (64)

The same values can be obtained using ray tracing of the
wave fronts in Fig. 2. In agreement with (64), we find from

Fig. 2 AA0 ¼ vðmaxÞ
0 ¼ d sin2�=�H, and BB0 ¼ vðmaxÞ

H ¼
d sin2�=�0.

V. APPLICATIONS

A. Self-seeding of XFELs

Understanding spatiotemporal dependencies in Bragg
diffraction of x rays has immediate practical implications,
in particular for self-seeding of x-ray free-electron lasers
(XFELs). The self-seeding scheme uses an upstream XFEL
to generate an intense x-ray pulse via self-amplified spon-
taneous emission (SASE). The relatively broad-bandwidth
SASE pulse is then put through an x-ray monochromator
to generate a monochromatic seed for the downstream
XFEL undulators, which in turn amplifies the narrow
bandwidth seed to produce fully coherent x rays [35,36].
However, traditional two- or four-bounce monochromators
induce a large delay (> 10 ps) of the x rays, which in turn
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requires an impractically long (� 40 m) electron beam
transfer line.

A very clever, readily realizable idea of a ‘‘wake’’
monochromator that produces a monochromatic x-ray
seed at an optimal 
 20 fs delay has been proposed by
Geloni et al. [37,38], and recently realized at the Linac
Coherent Light Source XFEL by an international team lead
by Emma [39].

In the original proposal [37,38] the authors applied the
equations of the dynamical theory of x-ray diffraction in
crystals to calculate numerically the time dependence and
strength of the monochromatic seed propagating in for-
ward direction. The action of the monochromator crystal in
the Bragg-transmission geometry was interpreted in terms
of a Bragg diffraction (BD) band-stop filter. The under-
lying physics is actually related to forward Bragg diffrac-
tion (FBD). We have discussed in detail its properties in the
symmetric Bragg-case geometry relevant for self-seeding
in [1]. We showed that, first, the characteristic time for
FBD is T 0 (55), substantially different (shorter) than the
characteristic BD time T � (43), and therefore the crystal
in FBD generates a seed with a broader spectrum than a
BD band-stop filter would do. Second, it was shown that
the intensity of the monochromatic seed is / 1=T 2

0,

cf. Eq. (56), which can therefore be enhanced by varying
parameters composing T 0. Similarly, its time delay ts ¼
26T 0 (see Fig. 4), and its duration �ts ¼ 16:5T 0 can be
tailored by changingT 0, which can be done practically by

adjusting the extinction length ��ðsÞ
H (for example, by choos-

ing another reflection or asymmetry parameter), or by
changing the crystal thickness. A limitation of this scheme
has been also identified in [1]. It is due to the lateral shift of
the FBD signal. This is a very generic effect, caused by the
Bragg’s law dispersion, as discussed in Sec. II C of the
present paper.

The theory developed in the present paper allows us to
diversify the variety of possible forward diffraction self-
seeding monochromator schemes. First of all, forward
Bragg diffraction in Laue-case geometry is a competitive
approach. The possibility of applying FBD in Laue-case
geometry for self-seeding becomes immediately apparent
from the derived equivalence of the forward diffraction

plane-wave response functions j ~G00ð�0Þj2 in the Laue-case
geometry (62), and of its counterpart (56) in the Bragg-case
geometry. The equivalence holds for small �0 	 T d,
which is the range most appropriate for self-seeding of
femtosecond long XFEL pulses. As has been established in
this paper, the time constant of forward Bragg diffraction
T 0 (55) is common for all symmetric or asymmetric,
transmission or reflection scattering geometries, and is
the only parameter which defines the strength, delay, and
duration of FBD and therefore of the monochromatic seed.
These properties advance FBD both in Bragg and Laue-
case geometries, including asymmetric ones, to a universal
approach for the generation of monochromatic, delayed

seeds for self-seeded XFELs. The physics is controlled by
the parameters which compose T 0 (55): the magnitude of
the effective crystal thickness d=�0, and the extinction

length ��ðsÞ
H in the symmetric Bragg reflection. Table I in

Appendix E provides some useful data for Bragg reflections
in diamond, which can be used to select the Bragg reflec-
tion most appropriate for the desired application. Similar
data for silicon and Al2O3 crystals can be found in [18].
There is no universal answer to the question: which

geometry is better, Bragg or Laue? We investigate certain
aspects of this question below, where for simplicity we
have restricted our analysis to the symmetric diffraction
geometries, defined by� ¼ 0 in the Bragg case—Fig. 1(a),
and by � ¼ �=2 in the Laue case—Fig. 1(b).
If the experimenter highly values operating the self-

seeding monochromator over as large a spectral tuning
range as is possible, then the Laue-case geometry may be
a better choice. The strongest variation of the photon energy
E with the glancing angle of incidence to the reflecting
atomic planes � takes place for small � & �=6, i.e., in the
linear range of Bragg’s law E sin� ¼ EH (3). Wewrite here
Bragg’s law in terms of photon energy E and Bragg energy
EH ¼ Hc@=2, the smallest photon energy for which
Bragg’s law can be fulfilled (at � ¼ �=2). In the symmetric
Laue-case geometry the effective thickness d=�0 ¼
d= cos� does not vary much if � is small, unlike the
Bragg case in which d=�0 ¼ d= sin�. Therefore, a large
variation in E is accompanied in the Laue-case geometry
with a small variation in d=�0 and therefore inT 0, resulting
in a rather stable seed power and time delay of the seed over
a large range of photon energies. In the Bragg-case geome-
try this is not the case. In addition, the Laue-case geometry
at small � allows for using thicker crystals for the sameT 0

as compared to the similar situation in the Bragg case. This
may represent a technical advantage since the fabrication of
thin crystals is typically more challenging.
Using small � angles, however, also has its disadvan-

tages. The lateral spatial shift, given by the Bragg’s law
dispersion envelope �2ðv0 � �0c cot�Þ—Eq. (37), is
v0 ¼ �0c cot�, i.e., proportional to cot�, and is maximal
in the range of small �. This may not be significant for very
short x-ray pulses that can use short delay times ts.
However, if one wants to seed long XFEL pulses
’ 50–100 fs, then the Bragg-case scattering geometry
close to backscattering � ! �=2would be a more advanta-
geous option, albeit at a decrease in the spectral tuning
range.
For example, the (733) Bragg reflection in diamond,

having ��ðsÞ
H ¼ 19:5 �m (see Table I), can be used for

self-seeding of ’ 100 fs long pulses at the photon energy
E ¼ 14:4125 keV of the nuclear resonance in 57Fe. In this
case, the angle of incidence is near normal, with � ¼
80:7�. Assuming a d ¼ 200 �m thick diamond crystal
plate with surfaces perpendicular to (001), we obtain � ¼
68:5�, T 0 ¼ 6:5 fs, and that the first trailing maximum of

YURI SHVYD’KO AND RYAN LINDBERG Phys. Rev. ST Accel. Beams 15, 100702 (2012)

100702-18



FBD (the seed) appears at ts ¼ 26T 0 ¼ 168 fs with a
duration of �ts ¼ 107 fs. The lateral shift is only v0 ’
10 �rad after 200 fs in this case, while the spectral band-
width of the FBD seed is �E0 ’ �EHðA=2�Þ ’ 30 meV.

B. Ultrafast time measurements by mapping
time on space

Angular dispersion in asymmetric Bragg diffraction re-
sults in an inclined intensity front of the diffracted wave
fields. This effect is illustrated in Figs. 5 and 8, in Bragg-
case and Laue-case geometries, respectively. Inclination of
the intensity front in asymmetric x-ray diffraction geome-
try was, to our knowledge, first explicitly derived using ray
tracing in [40], where it was proposed to be used for x-ray
pulse compression.

Here, we suggest using the effect of intensity front
inclination for time measurements of ultrafast processes.
The schematic drawing in Fig. 10 explains the idea. The
inclined intensity front allows mapping time onto space, as
different parts of the inclined front traverse and thus probe
the sample at different times.

We assume that the process under study is triggered in
the sample homogeneously over its extent by, for example,
an external laser. If we then probe the sample with an
inclined x-ray intensity front from an asymmetric crystal,
then different transverse positions will be probed at differ-
ent times, so that time dynamics can be extracted with a
spatially resolved x-ray detector. We assume that the x-ray
wave front is sufficiently broad so that we may ignore any
small additional spatial shifts that take place due to Bragg’s
law dispersion.

To estimate the achievable time resolution, we first
neglect the finite duration of the incident x-ray pulse, the
finite duration of Bragg diffraction, and the sample thick-
ness. In this case, the resolution of the time measurements
�t ¼ ð�x=cÞ= tan� ¼ �x=ðcDÞ is determined by the
spatial resolution of the detector �x and normalized

dispersion rate D (16). With �x ’ 1–10 �m, and D ’ 1,
an estimate for the time resolution is �t ’ 3–30 fs. The
duration of the incident x-ray pulse, the duration of Bragg
diffraction, and the sample thickness will increase this
number. The duration of the Bragg diffraction is T � in
Bragg-case or T d in Laue-case geometry. By an appro-

priate choice of ��ðsÞ
H and asymmetry factor b, the character-

istic time of Bragg diffraction (42) can be made, however,
as small as T � ’ 1 fs, i.e., smaller than the �t. Tilting the
sample to the x-rays propagation direction (without tilting
the intensity front) may result in a similar effect. However,
tilting the intensity front in many cases may be advanta-
geous, as it is decoupled from the propagation direction in
the sample, which may be an important parameter of
experiments, of diffraction experiments in particular.

VI. CONCLUSIONS

The spatiotemporal response of crystals in x-ray Bragg
diffraction resulting from excitation by an ultrashort, lat-
erally confined x-ray pulse was studied theoretically. The
theory developed in the paper presents an extension of the
analysis in symmetric reflection geometry [1] to a generic
case, which includes Bragg diffraction both in reflection
(Bragg) and transmission (Laue) asymmetric scattering
geometries.
The spatiotemporal response is presented as a product of

a crystal-intrinsic plane-wave spatiotemporal response
function and an envelope function defined by the crystal-
independent transverse profile of the incident beam and the
scattering geometry. The diffracted wave fields exhibit
amplitude (or intensity) modulation perpendicular to the
propagation direction due to two effects: angular disper-
sion and dispersion due to Bragg’s law. Angular dispersion
results in the inclination of the intensity front of Bragg
diffraction in asymmetric geometries. Bragg’s law disper-
sion produces a lateral spatial shift v0 of photons emerging
from the crystal with respect to the incident x-ray pulse that
increases linearly with time delay �0. A simple general
relationship c�0 ¼ v0 tan� holds in all diffraction geome-
tries. This effect was also interpreted in terms of the energy
flow of the wave fields in the crystal.
The spatiotemporal plane-wave response functions in

Bragg diffraction can be expressed in terms of three char-
acteristic space and related to them three time parameters:
(i) crystal thickness d and T d (21), (ii) extinction length
��H (40) and T � (42), (iii) rescattering length ��2

H=d and
T 0 (55). The glancing angle of incidence � and the
asymmetry angle � also enter the three time parameters,
and, therefore, are factors that change the spatiotemporal
response scale.
We address some practical applications of the developed

theory. We show that forward Bragg diffraction (FBD) of x
rays in Laue-case geometry can be used for self-seeding of
hard x-ray free-electron lasers, along with FBD in the
Bragg-case geometry. Laue-case FBD is advantageous if

FIG. 10. Schematic of ultrafast time measurements by map-
ping time delay on space in asymmetric x-ray Bragg diffraction
from a crystal. The intensity front is rotated by an angle � upon
asymmetric Bragg reflection of x rays. Here tan� ¼ D is deter-
mined by normalized dispersion rate D (22).
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a large spectral tuning range is required. We discuss also a
possibility of using asymmetric diffraction for ultrafast
time measurements with femtosecond resolution.
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APPENDIX A: RESPONSE FUNCTION IN
REFLECTION (BRAGG) GEOMETRY

To compute the temporal response of the forward dif-
fracted wave, we must evaluate

~G 00ð�0Þ ¼ � C

T �

e�iwH!�0
Z 1

�1
dy

2�
e�ið�0=T �Þy ~R00ðyÞ;

(A1)

where the ~R00ðyÞ is given by subtracting C from (49).

Since causality requires ~G00ð�0 < 0Þ ¼ 0, we have found
that the most convenient way to treat this particular prob-
lem is as an inverse Laplace transform. In the table of
inverse Laplace transforms given by Erdélyi, Magnus,
Oberhettinger, and Tricomi [41], we find thatZ 1

0
dte�ptfðtÞ ¼ 1� e�bð

ffiffiffiffiffiffiffiffiffiffiffi
p2þa2

p
�pÞ

) fðtÞ ¼ abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðtþ 2bÞp J1½a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðtþ 2bÞ

p
�: (A2)

Now, we make the replacements: t ¼ �0, p ¼ �iy=T �,
a ¼ 1=T �, and b ¼ AT �=2; then, (A2) is proportional
to the approximate Bragg transmission. Thus, we have thatZ 1

0
d�0e

iy�0=T �fð�0Þ ¼ eiA=2½�
ffiffiffiffiffiffiffiffi
y2�1

p
�y� � 1

) fð�0Þ ¼ �A
2

J1
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0ðAT � þ �0Þ
q

=T �

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðAT � þ �0Þ

q :

(A3)

In terms of the forward Bragg diffraction amplitude, (A3)
implies that

~G00ð�0Þ ¼ � C

T �

e�iwH!�0
Z 1

�1
dy

2�
e�ið�0=T �Þy ~R00ðyÞ

¼ � C

2T 0

J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

T 0

�
1þ �0

T d

�r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

T 0

�
1þ �0

T d

�r e�iwH!�0 ; (A4)

with T 0 ¼ T �=A � 2�0½ ��ðsÞ
H �2=ðcdÞ. On the other

hand, the reflected wave is given by

G0Hð�HÞ ¼ G

T �

e�iwH!�H
Z 1

�1
dy

2�
e�ið�H=T �ÞyR0HðyÞ;

(A5)

and the integrals are simple enough for MATHEMATICA to
do; we find thatZ 1

1

dy

2�
e�ið�H=T �Þy

�
�yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

q �

þ
Z �1

�1
dy

2�
e�ið�H=T �Þy

�
�y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

q �

¼ 2i
Z 1

1

dy

2�
sinð�Hy=T �Þ

�
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

q �

¼ i
J1ð�H=T �Þ
2�H=T �

sgnð�H=T �Þ

þ i
ð�H=T �Þ cosð�H=T �Þ � sinð�H=T �Þ

�ð�H=T �Þ2
(A6)

andZ 1

�1

dy

2�

�
iy sinð�Hy=T �Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

q
cosð�Hy=T �Þ

�

¼ i
J1ð�H=T �Þ
2�H=T �

� i
ð�H=T �Þ cosð�H=T �Þ � sinð�H=T �Þ

�ð�H=T �Þ2
: (A7)

Adding these two, we obtain

G0Hð�HÞ ¼ G

T �

e�iwH!�H
Z 1

�1
dy

2�
e�ið�H=T �ÞyR0HðyÞ

¼ i
G

T �

e�iwH!�H
J1ð�H=T �Þ
�H=T �

�ð�H=T �Þ:

(A8)

APPENDIX B: RESPONSE FUNCTION IN
TRANSMISSION (LAUE) GEOMETRY

To calculate response functions in Laue-case diffraction
geometry we use Eqs. (18), (58), (59), and (41) in the form
� ¼ �y=T � þ wH!, as b > 1 in Laue-case geometry.
As a result we obtain

G00ð�0Þ ¼ � C

T �

e�iwH!�0I0;

I0 ¼
Z 1

�1
dy

2�
e�i�0yWðyÞ; �0 ¼ � �0

T �

þA
2

;

WðyÞ ¼ cos

�
A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

q �
þ iy

sin
�
A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p ; (B1)

and
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G0Hð�HÞ ¼ �i
CG

T �

e�iwH!�HIH;

IH ¼
Z 1

�1
dy

2�
e�i�HyVðyÞ; �H ¼ � �H

T �

þA
2

;

VðyÞ ¼
sin

�
A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p : (B2)

The Fourier integral IH in (B2) is a tabulated integral [42]
and can be calculated analytically, as was previously car-
ried out in solving similar problems [11,16,25]:

I H ¼ 1

2
J0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA=2Þ2 � �2H

q �
�

�
A
2

þ �H

�
�

�
A
2

� �H

�
:

(B3)

Here�ð Þ is the Heaviside unit step function whose value is
zero for negative argument and one for positive argument.

The Fourier integral I0 in (B1) can be calculated using
the property I0 ¼ @IH=@ðA=2Þ � @IH=@� [11,16,25]
resulting in

I0 ¼ ~I0 þ 2�

�
A
2

� �0

�
;

~I0 ¼ � A=2þ �0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA=2Þ2 � �20

q
� J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA=2Þ2 � �20

q �
�

�
A
2

þ �0

�
�

�
A
2

� �0

�
:

(B4)

Here the � function appears as a result of differentiating the
step functions. Finally with (B3) and (B4) and definition
of �0 and �H in (B1) and (B2) we arrive at the following
analytical expressions for the plane-wave response func-
tions in Laue-case geometry:

G00ð�0Þ ¼ ~G00ð�0Þ þ C�ð�0Þ;
~G00ð�0Þ ¼ C

2T 0

e�iwH!�0

�
1� �0

T d

�

�
J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

T 0

�
1� �0

T d

�r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

T 0

�
1� �0

T d

�r �ð�0Þ�ðT d � �0Þ; (B5)

G0Hð�HÞ ¼ �i
CG

2T �

e�iwH!�H

� J0

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�H

T 0

�
1� �H

T d

�s 3
5�ð�HÞ�ðT d � �HÞ:

(B6)

With one exception, these expressions agree with rele-
vant expressions obtained by Malgrange and Graeff in

[16], where diffraction of short x-ray pulses with infinite
wave front in the asymmetric Laue case was studied
analytically. Unlike the expression for forward diffraction
presented in [16], Eq. (B5) contains the delta function,
which represents the prompt response in the forward dif-
fraction due to spectral components far from the Bragg
diffraction region that propagate essentially diffraction-
free through the crystal.
We note also that a reference system ðx0; z0Þ was used in

[16] attached to the crystal rear surface. Unlike this, we are
using in our treatment for each diffracted wave field its
own reference system ðûH ; v̂H Þ. We are also using a
different approach to calculate the vacuum wave vector
of the diffracted wave (7)–(10). Because of these differ-
ences, the expressions for the spatiotemporal variables �H
(20)–(23) similar variables in [16]—Eq. (28)—may appear
at a first glance to be very different. However, our detailed
comparison shows that they are actually identical. So
mathematically our results and results of paper [16] for
the delayed parts of the response functions are in agree-
ment, except for the delta function in Eq. (B5).

APPENDIX C: MAPPING TIME ON LATERAL
SPACE SHIFT

The relationship vH ¼ �H c cot� between the time de-
lay �H and the spatial shift vH in Bragg diffraction,
representing the trace of the Bragg’s law dispersion enve-
lope�ðvH � �H c cot�Þ in Eq. (36), can be derived alter-
natively by combining Ewald’s concept of the crystal wave
field [4] with the concept of energy flow introduced by
von Laue [43].
These concepts lead to the following picture of physical

processes involved in x-ray Bragg diffraction in crystals. It
is illustrated graphically in Figs. 11(a) and 11(b), sche-
matically presenting diffraction in the Bragg-case geome-
try and in the Laue-case geometry, respectively.
An incident monochromatic plane wave with wave vec-

tor K0 excites monochromatic wave fields in the crystal
given by Eq. (1), where each wave field is associated with a
tie point on one of the brunches of the dispersion surface,
which we number below by 
. The energy flow for each
wave field in a perfect crystal is given by the wave field
Poynting vector [43], which is directed along the normal to
the dispersion surface taken at the tie point of the surface
representing the field [44]. The Poynting vector is parallel
to the vector of group velocity V
. As a result, different
monochromatic wave fields propagate, first, along different
paths of different lengths, and second, with different group
velocities V
. At the exit surface, the wave field breaks up
into independent plane-wave fields, one with the wave
vector K0 propagating in the direction û0, and another
with the wave vector KH propagating in the direction ûH.
One should note that the concept of the energy flow works
with one substantial limitation: it is not applicable in the
total reflection region in Bragg-case geometry, as there is

SPATIOTEMPORAL RESPONSE OF CRYSTALS IN X-RAY . . . Phys. Rev. ST Accel. Beams 15, 100702 (2012)

100702-21



no propagating through the crystal wave fields in this case.
It is applicable, however, outside the total reflection region.
Because of this, the wave with the wave vector KH is
shown in Fig. 11(a) propagating along the line starting at
point A.

Using Figs. 11(a) and 11(b) we calculate for the spatial
shifts vH and delays �H :

v0 � AB ¼ OA sin�
; �0 ¼ OA

V


�OB

c
; (C1)

vH � AC ¼ OA sinð2���
Þ; �H ¼ OA

V


�OC

c
:

(C2)

The magnitude of the group velocity can be given, as
derived in Appendix D, by

V


c
¼ cos�

cosð���
Þ : (C3)

We use in Eq. (C1) the fact that propagation along OB
(�
 ¼ 0) or OC (�
 ¼ 2�) takes place with the speed of
light in vacuum c, in agreement with Eq. (C3). Using the
relationships OB ¼ OA cos�
, OC ¼ OA cosð2���
Þ,
and Eq. (C3), we obtain

vH ¼ �H c cot�; H ¼ ð0; HÞ: (C4)

This relationship is valid in the general case of asymmetric
diffraction, both for Bragg and Laue scattering geometries.
It maps temporal onto spatial scales in Bragg diffraction,
in agreement with the Bragg’s law dispersion envelope
�ðvH � �H c cot�Þ in Eq. (36). Uncertainty relationships
are always valid, and therefore Eq. (C4) is actually
applied not for absolutely monochromatic waves, or waves
localized in time and space, but rather for wave packets
with certain spectral and momentum distributions.

APPENDIX D:WAVE FIELD GROUP VELOCITY IN
THE CRYSTAL VS PROPAGATION ANGLE

The group velocity vector V
 is given by [11,43,44]

V 
 ¼ c
û0 þ ûHR

2



1þ R2



; (D1)

where R
 is defined in Eq. (39), and 
 numbers brunches of
the dispersion surface.
The absolute value of the group velocity V
 can be

calculated by taking the magnitude of Eq. (D1) and recall-
ing that û0ûH ¼ cos2�:

V
 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2R2


 cos2�þ R4



p
1þ R2




: (D2)

The angle �
 between the direction of the group velocity
vector V
 and optical axis û0 is determined from the vector
scalar product cos�
 ¼ û0V
=V
, which using Eq. (D1)
becomes

cos�
 ¼ 1þ R2

 cos2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2R2

 cos2�þ R4




p : (D3)

Combining (D2) and (D3) we obtain the following rela-
tionship between the magnitude of wave field group veloc-
ity V
 and its direction �
:

V


c
¼ cos�

cosð���Þ : (D4)

Equation (D4) gives a physically reasonable result. The
direction of the wave field propagation under the Bragg
diffraction condition is at � ¼ �, in which case the group
velocity V
 ¼ c cos� is less than speed of light in vacuum.
Far from Bragg diffraction conditions � ¼ 0 or � ¼ 2�,
resulting in a reasonable solution V
 ¼ c.

FIG. 11. Schematic presentation of two-beam x-ray Bragg diffraction from a crystal (a) in the reflection (Bragg) scattering geometry
and (b) in the transmission (Laue) scattering geometry. The direction of the energy flow by the crystal wave field is indicated by the
vector of the group velocity V
, at an angle �
 to the direction of the incident wave.
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APPENDIX E: BRAGG REFLECTIONS IN DIAMOND

TABLE I. Allowed Bragg reflections H ¼ ðhklÞ in diamond crystals and their parameters

relevant to the present studies: Bragg energy EH ¼ hc=2dH , the extinction length ��ðsÞ
H (40), the

Bragg’s law correction wðsÞ
H (44), the energy width �EH (at � ¼ �=2). These parameters are

calculated using interplanar distance dH ¼ 3:567 12ð2Þ �A in diamond crystals at T ¼ 298 K
[28,29], a Debye temperature of 2230 T [30], anomalous scattering factors from [31,32], and
assuming jPj ¼ 1, i.e., for the �-polarization component. If the � component is involved, the

tabulated ��ðsÞ
H values should be increased by 1=jPj ¼ jcos�12�j, cf. Eq. (40).
H EH

��ðsÞ
H wðsÞ

H �EH

h k l [keV] [�m] �10�5 [meV]

1 1 1 3.010 34 1.09 8.17 192.0
2 2 0 4.915 61 1.98 3.04 106.0
3 1 1 5.764 01 3.74 2.20 56.0
4 0 0 6.951 61 3.63 1.51 60.6
3 3 1 7.575 32 5.89 1.27 35.8
4 2 2 8.513 91 5.03 1.00 44.5
3 3 3 9.030 35 7.83 0.89 27.3
5 1 1 9.030 35 7.83 0.89 27.3
4 4 0 9.831 08 6.41 0.75 35.9
5 3 1 10.2815 9.82 0.69 22.6
6 2 0 10.9914 7.87 0.60 29.2
5 3 3 11.3961 11.9 0.56 19.1
4 4 4 12.0404 9.44 0.50 25.0
5 1 5 12.4110 14.2 0.47 16.4
7 1 1 12.4110 14.2 0.47 16.4

6 4 2 13.0051 11.1 0.43 21.3

5 5 3 13.3489 16.7 0.40 14.3

7 3 1 13.3489 16.7 0.40 14.3

8 0 0 13.9030 13.0 0.37 18.6

7 3 3 14.2251 19.5 0.36 12.6

6 6 0 14.7464 15.1 0.33 16.5

8 2 2 14.7464 15.1 0.335 16.5

7 5 1 15.0504 22.5 0.322 10.8

8 4 0 15.5440 17.3 0.301 14.7

7 5 3 15.8328 25.7 0.291 9.9

9 1 1 15.8328 25.7 0.291 9.9

6 6 4 16.3027 19.7 0.274 12.9

9 3 1 16.5783 29.2 0.265 8.5

8 4 4 17.0276 22.3 0.251 11.6

7 5 5 17.2916 33.0 0.243 7.8

7 7 1 17.2916 33.0 0.243 7.8

9 3 3 17.2916 33.0 0.243 7.8

10 0 2 17.7229 25.1 0.232 10.1

8 6 2 17.7229 25.1 0.232 10.1

7 7 3 17.9767 37.2 0.225 6.9

9 5 1 17.9767 37.2 0.225 6.9

9 5 3 18.6366 41.6 0.210 6.1

10 4 2 19.0375 31.5 0.201 8.1

11 1 1 19.2740 46.4 0.196 5.4

7 7 5 19.2740 46.4 0.196 5.4

8 8 0 19.6618 35.1 0.188 7.2

11 3 1 19.8909 51.6 0.184 5.0

9 5 5 19.8909 51.6 0.184 5.0

9 7 1 19.8909 51.6 0.184 5.0
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