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Harmonic seeding of free electron lasers has attracted significant attention as a method for producing

transform-limited pulses in the soft x-ray region. Harmonic multiplication schemes extend seeding to

shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade

the pulse quality and impede production of transform-limited pulses. In this paper we consider the effect

of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We

use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the

results for arbitrary seed laser envelope and phase.

DOI: 10.1103/PhysRevSTAB.15.030702 PACS numbers: 41.60.Cr, 42.60.Jf, 42.62.�b, 42.55.Vc

I. INTRODUCTION

The recent success of self-amplified spontaneous emis-
sion (SASE) free electron lasers (FELs) has led to x-ray
sources of unprecedented brightness [1,2]. However, some
applications still require higher power (e.g., [3,4]), and the
poor longitudinal coherence of SASE FELs can inhibit
x-ray optimization and degrade experimental results. To
improve control over the spectral and temporal x-ray prop-
erties, there is strong interest in seeding FELs at high
harmonics of optical or UV lasers. Beam line users are
particularly interested in the minimal bandwidth and sim-
ple temporal structure of transform-limited x-ray pulses. In
this paper, we consider how errors in the seeding process
may affect production of transform-limited x-ray pulses.

There are numerous challenges for seeding schemes, and
previous theoretical and experimental studies have focused
on a wide variety of accelerator and FEL requirements. In
particular, it is well known that harmonic seeding schemes
must contend with increasingly strict electron beam toler-
ances as the harmonic number increases. Initial errors that
are insignificant compared to the seed wavelength may be
large relative to a much shorter wavelength harmonic. For
example, harmonic multiplication amplifies electron shot
noise, which can overwhelm the external seeding source
[5–8]. More recently, attention has turned to errors from
the seed laser itself (see, e.g., [9]). Without sufficient
control of the initial seed laser phase, the x-ray pulse
acquires longitudinal structure; if sufficiently far from the
transform limit, seeding may have little or no benefit
compared to SASE FELs.

In this paper, we study the effects of laser phase errors on
the seeded electron density. Recent papers have used ana-
lytical methods to derive the sensitivity of seeding schemes

to quadratic laser phase [10,11]. Here we develop simula-
tions to observe the increase in phase errors as a function of
harmonic number in high gain harmonic generation
(HGHG) and echo-enabled harmonic generation (EEHG).
We show that simulations match analytical results for the
case of quadratic phase, and extend the simulations to
arbitrary higher order spectral phase. Finally, we consider
a practical HGHG case to estimate the required level of
noise control in future seeded FELs.

II. SCHEMATIC DESCRIPTION OF HARMONIC
PHASE MULTIPLICATION

As a simple example of seeding, we begin with the case
of HGHG driven by a temporally flattop laser pulse. In
idealized HGHG [12], the laser produces an energy modu-
lation in the electron beam, and a dispersive region con-
verts the energy modulation into a density modulation.
After the combined modulation and dispersion, the elec-
tron beam has periodic density spikes separated by the
laser wavelength, �L; i.e., the electrons are ‘‘bunched’’ at
a wave vector, k1 ¼ kL, with laser wave vector kL �
2�=�L. If the density spikes are short compared to the
harmonic wavelength, �L=H, the electrons are also
bunched at the harmonic wave vector kH ¼ Hk1, for a
given harmonic, H. [Later we will quantify the degree of
density modulation from the bunching factor, Eq. (5).]
In a realistic laser pulse, the wavelength varies as a

function of time. As the wavelength changes, the resulting
separation of electron density spikes also shifts from the
central wavelength, as illustrated in Fig. 1. If the wave-
length varies by �� across the bunch, then the peak
electron bunching will vary by �k ¼ 2���=�2. The rela-
tive variation in wave vector is constant at all harmonics, so
�kH=kH ¼ �k1=k1.
The electron bunching determines the FEL radiation, so

an increase in �kH increases the radiated bandwidth as
well. If the seed laser pulse is far from the transform limit,
then we expect the total radiated bandwidth to grow as
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�kH � H�k1: (1)

To quantify the effect of wavelength variation in the seed
laser, we calculate the time-bandwidth product (TBP) of
the FEL,

TBP ¼ c�TFEL�kFEL; (2)

from the pulse duration �TFEL, bandwidth �kFEL, and
speed of light c. For a given spectral distribution, the
minimal TBP corresponds to a transform-limited pulse.
As the TBP grows, the seeded FEL characteristics revert
to those of a SASE pulse.

For a flattop seed laser with a small linear variation in
wavelength, all harmonics have the same pulse length.
From Eq. (1) we then expect the TBP to grow linearly
with harmonic number. [This holds only for small changes
in wavelength, when the entire laser pulse satisfies the
HGHG bunching condition, Eq. (10).]

While it is possible to produce seed laser pulses with
nearly minimal TBP, at sufficiently large harmonic num-
bers the growth in �kFEL will lead to pulses far from the
transform limit. For realistic laser envelope and phase, the
harmonic amplification is more complicated, but the TBP
still grows with increasing harmonic number. The follow-
ing sections develop these more realistic cases in detail.

III. HGHG WITH SPECTRAL PHASE ERRORS

A. Laser in spectral domain

Experimental laser measurements are predominantly
spectral, so it is convenient to describe the laser pulse using
the electric field in the spectral domain,

~EðkÞ ¼ ~EðkÞe�i�ðkÞ; (3)

with spectral intensity ~EðkÞ and phase

�ðkÞ ¼ X1
n¼2

�n

n!
ðk� k0Þn: (4)

(We ignore the �0 and �1 terms, which represent the
carrier-envelope offset and the envelope temporal delay
respectively, and are not relevant to this analysis.) A
transform-limited pulse by definition has minimal TBP
and flat spectral phase, �ðkÞ ¼ 0. Realistic laser pulses

will have non-negligible spectral phase, and these phase
terms produce longer pulses with greater intensity fluctua-
tion in the time domain; i.e., pulses farther from the trans-
form limit.
We start by considering laser pulses with Gaussian

spectrum, ~EðkÞ, and only quadratic spectral phase, �2, as
these are easily studied analytically in the time domain.
With simulations, we then extend the results to include
arbitrary spectral envelope and phase.
Throughout the paper, we will assume the laser pulse is

short compared to the electron bunch. Production of suffi-
cient laser power at short wavelengths is currently a chal-
lenging limitation for seeding x-ray FELs and the long
electron bunch ensures there is no wasted laser pulse
energy. However, there are advantages to a long laser pulse.
Phase control is simpler for a narrow bandwidth laser, and
a short electron bunch will sample the phase only at the
center of a long seed laser (Sec. III E). The complementary
case of a short electron bunch and long laser pulse was
described recently in Ref. [11].

B. Electron bunching factor

The final electron distribution is responsible for the
properties of the FEL. To estimate the FEL radiation at
wave vector k, we define the averaged electron bunching
factor:

bðkÞ � 1

NT

XNT

j¼1

e�ik�zj ; (5)

where the sum is over the final longitudinal position, �z, of
all NT electrons in the bunch. We can also define a local
bunching factor by summing over a single wavelength slice
of the beam. In this case, we change the normalization of
Eq. (5) to the number of electrons in the local slice,
NsliceðzÞ,

bslice;kðzÞ � 1

NsliceðzÞ
XNsliceðzÞ

j¼1

eik�zj : (6)

In HGHG and EEHG, the seeded bunching factor largely
determines the FEL characteristics at saturation. For ex-
ample, the length of the slice bunching bslice;kðzÞ deter-

mines the duration of the FEL pulse �TFEL. The width of a
harmonic in the averaged bunching bðkÞ determines the
FEL bandwidth �kFEL. From the product of the rms FEL
duration �TFEL and bandwidth �kFEL, we find the TBP of
the FEL.
We can also define a spectral phase of the electron bunch

from the argument of the averaged bunching factor,

�e�ðkÞ ¼ Arg½bðkÞ�: (7)

The electron spectral phase is directly analogous to the
laser spectral phase [Eq. (4)].
Central to all calculations is the assumption that the

seeded bunching factor determines the properties of the

FIG. 1. Cartoon illustrating the effect of seed phase errors on
HGHG electron bunching. A time-varying wavelength in the
seed laser (blue line) results in a varying separation of the
bunched electrons (red bunches).
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FEL radiation. The FEL can affect the electron spectral
phase in two ways. First, the FEL process is itself a narrow
band amplifier, which can in principle change the output
radiation properties. However, for Linac Coherent Light
Source the FEL bandwidth is as large as �kSASE=k ¼
0:1%. By contrast, seeded FELs hope to generate band-
widths as small as �kSEED=k ¼ 0:01%, so we assume that
�kSEED � �kSASE; in the opposite limit, there is little
purpose to seeding as the SASE process will dominate.
For the case of short-pulse seeding when �kSEED &
�kSASE, the FEL process could limit the bandwidth broad-
ening of large phase errors.

Second, dispersion in the undulators can compress the
electron beam, altering bðkÞ (see, e.g., [13]). Variation in
the relative energy of the electron beam, hðzÞ � dp=dz,
leads to a changing seeded wavelength � ! �ðzÞ�, with
compression factor

�ðzÞ � 1þ Rð56Þ
undhðzÞ; (8)

and dispersion Rð56Þ
und ¼ 2Nu� over Nu undulator periods.

While a constant �ðzÞ shifts �, if �ðzÞ varies across the
bunch, the final x-ray pulse may acquire additional tempo-
ral structure. With a sufficiently flat-phase space,

jRð56Þ
undhðzÞj< �kSEED=k, we can ignore all compression

effects.

C. Second order spectral phase, analytical approach

We are now ready to consider the effects of laser spectral
phase on the electron bunching. A seed laser pulse with a
Gaussian spectral amplitude of rms width, �k, and second
order spectral phase, �2, transforms into itself in the time
domain; i.e., a pulse with a Gaussian E field

E ðzÞ ¼ E0e
�z2=2�2

LeiðkLzþ�2z
2Þ; (9)

where the temporal envelope �L and second order tempo-
ral phase �2 are determined by the spectral equivalents, �k

and �2. The derivative of the phase determines the instan-
taneous wavelength, so quadratic temporal phase �2

produces a linear change in wavelength. Because the
time-domain pulse has a simple analytical form, we can
solve for the resulting electron bunching factor analytically
as well. (The derivation for the following section can be
found in Ref. [10].)

To calculate the averaged bunching factor bðkÞ, we
assume a longitudinally uniform distribution with an en-
ergy spread of �p. In the case of HGHG, the final particle

position is given by �z ¼ zþ R56½pþ A0 cosðkLzÞ�, with
initial longitudinal position and energy, z, p, dispersion
R56, and amplitude of laser-induced energy modulation A0.
To produce bunching at harmonic H � 1, we require the
standard HGHG condition A0 * H�p, and optimize

bunching at the laser center with

R56 � ð1þ 0:81H�2=3Þ=A0kL: (10)

To find the bunching factor at wave vector kH þ �kH
near a harmonic kH, we then integrate Eq. (5) over the
electron distribution to find the averaged bunching factor
[10]:

bHð�kÞ / �Le
�H2r2ð1þ0:81H�2=3Þ2=2A2

0

�GðHGHGÞ
H ð�k�L=H;H��2

L=�
2; rÞ; (11)

with

GðHGHGÞ
H ðx;y;rÞ�

Z 1

�1
d�eix�þiy�2

JH½rðHþ0:81H�1=3Þe��2=2�;
(12)

where � � �2=2k
2
L is the dimensionless second order

phase and r� 1 optimizes the bunching factor near the
peak of the laser pulse. From bHð�kÞ we can determine
both the bandwidth�kFEL and the spectral phase�e�ðkÞ, as
a function of harmonic number.

D. Second order spectral phase, simulation

To extend the study to higher order spectral phase, we
developed a 1D particle simulation of an HGHG seeding
scheme. Starting from a longitudinally uniform electron
beam (much longer than the seed laser pulse) with a
Gaussian energy distribution, we apply an energy modula-
tion from the electric field of a laser pulse [e.g., Eq. (9)].
We then follow the modulation with a dispersive region,
and finally calculate the bunching factor [Eq. (5)] at the
exit of the HGHG seeding.
Using the metrics described in Sec. III B, we calculate

the rms TBP as a function of harmonic number. Figures 2
and 3 show the bunching factor and TBP for a laser pulse
with quadratic spectral phase. We confirm that laser phase
errors widen the bunching bandwidth at high harmonics, as
predicted by Eq. (12).
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FIG. 2. Electron bunching factor for a Gaussian seed laser
pulse with quadratic phase. The seed laser pulse has phase
�ð�kÞ ¼ �, amplitude A0 ¼ 30�p, and rms bandwidth

�k=kL ¼ 10%. Amplitude of the bunching factor is small due
to averaging over a long electron bunch of uniform length L ¼
10�L [Eq. (5)]. Simulated bandwidths (blue) reproduce the
analytical result [Eq. (12) in green, scaled to match the bunching
amplitude]. As expected, the peaks broaden at higher harmonics.
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The normalization of the average bunching factor,
Eq. (5), depends on the total number of electrons in the
entire bunch, while the shorter seed laser determines the
length of the final radiated pulse. As a result, the average
bunching factor may be small even though the slice bunch-
ing factor, Eq. (6), is large where the seed laser overlaps the
electrons. Here we are interested primarily in the width and
phase of each bunching peak, rather than the overall
amplitude.

Figure 4 shows the spectral phase�e�ðkÞ for the first ten
harmonics, calculated from both simulations and Eq. (11).
When the seed pulse has quadratic phase, the electron
bunching factor also shows quadratic phase. As expected,
the phase increases as a function of harmonic number.

In principle, it is possible to correct for a linear change in
wavelength (or ‘‘chirp’’) by compressing the radiated x-ray
pulse with a diffraction grating. Indeed, chirp-pulse ampli-
fication (CPA) schemes have long been proposed for
generating short, high power FEL pulses (see, e.g.,
[14–17]). In the case of a CPA FEL, the TBP of the seeding
overestimates the TBP of the final compressed x-ray pulse.

At present, grating efficiencies near 1 nm are too low for
CPA to increase the peak power, but advances in blazed
gratings may make CPA schemes more effective in the
future (see, e.g., [18]).

E. Pulse shortening

The increase in TBP for Gaussian pulses is not as large
as predicted by the flattop argument in Sec. II. The flattop
and Gaussian cases differ primarily due to the effect of
harmonic pulse shortening. High harmonic bunching relies
on the creation of sharp density spikes; when the laser
E-field amplitude drops away from the peak of a
Gaussian pulse, the HGHG bunching condition [Eq. (10)]
is suboptimal and broadens the density spikes. The widen-
ing density spikes cut off higher harmonics first, leading to
increasingly short pulses as the harmonic number in-
creases. Figure 5 shows the local slice bunching factor
[Eq. (6)] as a function of position along the bunch; as
expected, the pulse lengths are shorter at higher harmonics.
In Fig. 6 we confirm that in HGHG from a Gaussian seed
laser, the pulse length is approximately proportional to

H�1=3 [10]. By contrast, when seeding from a flattop pulse,
the width of density spikes is independent of longitudinal
position, and all harmonics have the same duration.
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FIG. 4. Spectral phase of the electron bunching factor from
Fig. 2 for the first ten harmonics. Solid line calculated from
Eq. (12), with crosses taken from simulations. At higher har-
monics the curves are wider due to the increasing bandwidth.
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Pulse shortening changes the harmonic spectral phase;
while the fundamental bunching follows the seed laser
amplitude and phase, the harmonic bunching samples
phase only from the center of the seed pulse. As a result,
the harmonic spectral phase from a Gaussian seed laser is
smaller than that from an equivalent flattop pulse. Whereas
Sec. II predicts an increase in phase proportional to har-
monic number [Eq. (1)], Figs. 3 and 4 show that a Gaussian
envelope produces weaker growth in bandwidth and TBP
[Eq. (12)].

While pulse shortening has the beneficial effect of limit-
ing the harmonic phase errors, the shorter pulses result in a
larger coherent bandwidth and lower spectral brightness.
To produce a narrow bandwidth FEL requires long seed
lasers with high pulse energy. Though the phase of the long
pulse may be easier to control, it is not possible to use
arbitrarily long laser pulses as the corresponding increase
in pulse energy will push already challenging parameters.

F. Arbitrary spectral phase, simulation

A realistic laser pulse contains non-negligible spectral
phase beyond the 2nd order. Because of the difficulty of
writing an analytical time-domain expression for arbitrary
spectral phase, we use simulations to study harmonic am-
plification of such pulses.

Figure 7 shows the 10th harmonic electron spectral
phase, �e�ðkÞ, from seed lasers with 2nd through 5th order
spectral phase. We note that the odd order phases have less
impact on the electron bunch than the even orders. Figure 8
illustrates the reasoning as follows: odd order spectral
phase produces side pulses in the time domain, with a �
flip in the temporal phase between each pulse. In Sec. III E
we found that at high harmonics, bslice;kðzÞ is significant

only in the center of the laser pulse, where the temporal

phase is constant. This central region dominates the aver-
aged bunching bðkÞ, so �3 and �5 make little contribution
to �e�ðkÞ.
We find that all even orders contribute at approximately

the same level when �n�
n
k=n! ¼ 1. Controlling spectral

phase becomes increasingly difficult at higher orders.
However, for long pulses with narrow bandwidths �k

(e.g., durations above �50 fs), we expect �n�
n
k=n! � 1

for n > 5 and can ignore the higher orders. For shorter
pulses (e.g., durations below 20 fs), it may be necessary to
control the phase for n ¼ 6 as well.
The loose constraints on the odd order phase may aid in

production of transform-limited pulses. For example, can-
celing only the even order seed laser phase will reduce the
complexity of the optical setup. Alternatively, it may be
beneficial to treat the laser phase as a total minimization
problem; rather than separately minimizing each order, it is
possible to collectively select all orders to minimize the
TBP of the FEL. This collective approach is analogous to
methods used in the production of transform-limited laser
pulses [19,20].

IV. EEHG WITH SPECTRAL PHASE ERRORS

The EEHG seeding mechanism [21] shares many sim-
ilarities with HGHG. In the standard EEHG arrangement,
the first laser-chicane combination filaments the electron
beam in phase space. The second laser-chicane stage then
simultaneously bunches each filament, resulting in mul-
tiple density spikes within each seed wavelength.
The spectral phase on the seed laser will affect the two

stages differently. On the first laser pulse, spectral phase
distorts the separation of the filaments, so that the density
spikes do not fall exactly at the harmonic spacing (Fig. 9).
The distortion reduces the bunching factor, but because the
second laser still phase locks each set of density spikes,
there is relatively little effect on the TBP. (If the reduced
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bunching factor also shortens the pulse length, there may
be coherent broadening of the bandwidth.)

The second stage of EEHG is similar to the HGHG
process, but with the energy separation of the filaments
determining the final harmonic number. Following the
approach of Sec. III, we again find that the electron bunch-
ing factor follows the spectral phase of the seed laser. If we
assume a flattop laser pulse in the first stage and a Gaussian
pulse of length �L2 in the second stage, the increase in
electron bunching factor bandwidth is given by

GðEEHGÞ
H ½�k�L2=H; ðH þ 1Þ��2

L2=�
2� [10], with

GðEEHGÞ
H ðx; yÞ �

Z 1

�1
d�eix�þiy�2

JHþ1fr½ðH þ 1Þ

þ 0:81ðH þ 1Þ�1=3�e��2=2g; (13)

analogous to Eq. (12) for the case of HGHG.
As for HGHG, we use the simulations to expand on the

analytical results. In Fig. 10 we simulate an EEHG scheme
at the 10th harmonic, using pulses with Gaussian envelope
and arbitrary spectral phase for both laser stages. We
consider three cases: flat phase on both stages, quadratic
spectral phase on only the first stage, and quadratic spectral
phase on only the second stage. As expected, a chirp on the
second stage increases the electron bunching factor band-
width, while a chirp on the first stage only decreases the
overall bunching factor. We note that the increase in TBP is
actually worse than suggested by Fig. 10; the spectral
phase on the second stage stretches the laser pulse in
time, so the increase in bandwidth is accompanied by an
additional increase in pulse length.

It is possible to treat the arbitrary case of Fig. 10 by
extending the approach of Ref. [10]. However, we note that
the approximate solution given in Eq. (13) predicts the
simulated increase in bandwidth reasonably well
(Fig. 10), validating the assumption of a flattop pulse
with flat phase in the first stage.

V. PRACTICAL EXAMPLE

We conclude by simulating a practical example using an
800 nm laser pulse. Table I gives experimentally measured
spectral parameters from an ultrafast Ti:sapphire amplifier
(the Coherent Legend Elite USX). The pulse length of 22 fs
is close to the transform-limited (flat phase) pulse length of
20 fs. Despite the nearly transform-limited initial seed laser
pulse, Fig. 11 shows that the electron bunching factor at the
30th harmonic is approximately 3 times the transform
limit.
We can use the parameters of Table I to give a rough

estimate of the phase control required for HGHG and
EEHG seeding of transform-limited pulses. Figure 12
shows the slice bunching factor (30th harmonic) vs time
for the cases of flat phase, measured phase, and double
measured phase. If the phase errors increase beyond the
level of Table I by just a factor of 2, the formerly transform-
limited pulse starts to acquire temporal modulations. As a
result, we expect that it will be necessary to include phase
control at the level of Table I to preserve the temporal
characteristics of the seed laser. While this example
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factor, but does not broaden the bandwidth. The same quadratic
phase on the second seed laser increases the bandwidth and
TBP as found for HGHG. Solid lines show the numerical
integral, Eq. (13).

TABLE I. Measured parameters for a nearly transform-limited
800 nm pulse. The fourth order phase dominates the FEL
performance.

Measured laser pulse

Central wavelength 800 nm

Bandwidth (fwhm) 73 nm

Pulse duration 22 fs

Second order phase (GDD) 0:5 fs2

Third order phase (TOD) 2:4� 103 fs3

Fourth order phase (FOD) �4:6� 104 fs4

Fifth order phase (5OD) �1:2� 106 fs5

FIG. 9. Schematic of EEHG phase space. Phase errors on the
first stage distort the separation of density spikes within a single
modulation wavelength (solid blue arrows), but the length of
each group (dotted red arrows) is phase locked by the second
stage. Phase errors on the second stage, by contrast, can change
the final seeded wavelength.
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assumes an 800 nm laser, the results scale to the shorter
seed wavelengths of interest to x-ray seeding.

We conclude that it will be difficult to achieve
transform-limited pulses beyond the 50th harmonic, and
seeding of x-ray pulses at 1 nm will require laser phase
control at wavelengths below 50 nm. It is currently pos-
sible to measure pulse characteristics into the XUV range
(see, e.g., [22]), but there is still a need to develop short
wavelength phase control to the level currently achievable
at 800 nm.

Alternatively, a single harmonic of a high harmonic
generation (HHG) source could be used as a seed. Single
harmonics of HHG sources have been measured with flat
spectral phase at wavelengths below 100 nm [23,24].
However, we note that the power level required by multi-
plicative seeding schemes such as HGHG and EEHG
pushes the current state of the art for a single HHG
harmonic.

VI. CONCLUSION

We have studied the effect of the seed laser phase on
HGHG and EEHG schemes. Using analytical results and
simulations, we find that the electron bunching factor

copies the seed laser spectral phase. The electron spectral
phase increases with harmonic number, but pulse narrow-
ing due to the laser envelope decreases the phase growth,
especially for odd order spectral phase. The pulse narrow-
ing may aid in the production of transform-limited pulses,
but will also increase laser energy requirements. We simu-
late a case with realistic laser parameters and find a seeded
electron beam at the 30th harmonic at approximately 3
times the transform limit. We conclude that seeding near
transform-limited pulses in the soft x-ray regime will
require development of new methods for phase measure-
ment and control of short wavelength lasers or HHG
sources. The required level of phase control is on par
with that currently available at 800 nm.
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