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We derive a four-component spinor wave function for an electron in a helical undulator which, in the

relativistic limit, successfully reproduces all of the results of the classical calculation for the radiation

angular distribution, polarization, and energy spectrum. This wave function also allows the nonclassical

calculation of the spin flip. For electron energies below the several hundred GeV range, the spin-flip

probability is negligible, but for higher energies and high undulator strengths it cannot be neglected if

beam polarization is to be preserved, even though nonflip radiation still greatly dominates the radiation

intensity. The anomalous magnetic moment ae is seen to play a dominant role in the helical undulator

spin-flip process. The probability of spin flip is shown to have a �5 dependence on electron energy. For

high energy electrons, the direction of spin flip is independent of the handedness of the undulator. As a

result, at sufficiently high energy, a polarized electron or positron beam rapidly depolarizes by sponta-

neous radiation in the undulator. Because of the high correlation between the direction of spin flip and the

handedness of the spin-flip radiation, we conjecture that it may be possible to polarize electrons by using

the intense circularly polarized photons in the helical undulator to stimulate spin flip.
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I. INTRODUCTION

Relativistic electron beams passing through helical un-
dulators are an increasingly common source of circularly
polarized x rays [1]. Calculations of the nature of this form
of synchrotron radiation are usually done with classical
electrodynamics [2]. For most purposes, it is unnecessary
to take into account the wave nature of the electrons, since
the classical description of the radiation process is perfectly
adequate. However, in order to calculate the probability of
spin flip caused by radiation, we must use a quantum
mechanical calculation by solving the Dirac equation.

Historically, radiative effects on electron spin were
treated for storage rings in a series of papers 30 to 40 years
ago [3–5]. In a 1987 Physical Review Letters (PRL) [6,7],
we showed that a simpler treatment could obtain the same
results. In that paper the electron motion was described by
a classical electron orbital Hamiltonian and two-
component spinor in a Bargmann-Michel-Telegdi (BMT)
Hamiltonian [8]. Both the electron orbit and the electron
spin interact with both the classical magnetic guide fields
and the quantized radiation field. This semiclassical ap-
proach was shown to reproduce all of the results of
Sokolov and Ternov and Derbenev and Kondratenko. We
calculated the damping effects on the spin, i.e., the radia-
tion damping which leads to polarization. This approach
included the effects of orbital motion on the spin and thus

obtained the spin resonance conditions derived by Chao
[5]. It was not necessary to solve a Dirac wave equation for
the orbital motion. The phenomenological use of an
anomalous moment term in the BMT equation has been
vindicated by many experiments on polarization in storage
rings and g-2 experiments [9].
The effect of radiation on both orbit and spin was

included by treating radiation effects as a perturbation
initiated by the quantized radiation field. This is standard
practice (see, for example, the book by Heitler [10]). This
approach derived all fluctuation and damping effects on the
classical electron orbit.

Our 1987 paper [6] was for a circular storage ring. A

single-pass undulator represents an entirely different

physical situation, however. Radiation damping and

fluctuations can be neglected. A different approach was

used for the undulator calculation. We derive the four-

component spinor wave function for the Dirac equation

including the phenomenological anomalous moment for an

electron/positron in an ideal undulator field in the relativ-

istic limit. Again, radiation is treated as a perturbation, but

without explicitly using the BMT equation phenomenol-

ogy. Both spin-flip and nonflip probability distributions are

obtained as a result.
We introduce a form of the four-component spinor wave

function which is well suited to the electron relativistic
kinematic limit, � � 1. In contrast with the case of
circular storage rings, here we ignore stochastic radiative
effects, fluctuations, and damping, since the electrons
make only a single pass in the undulator.
With these assumptions, it can be shown that the sponta-

neous radiation in which the spin is not flipped leads to the
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same expressions for radiative power, angular distribution,
and polarization as are obtained with a classical calcula-
tion. This validates the approximations we have made to
obtain the wave function for the undulator.

Although spin-flip radiation is extremely rare for rela-
tivistic electron energies less than a few GeV, in the limit of
a strong undulator and GeV energies, it is no longer rare,
although it is still infrequent compared to nonflip radiation,
and thus never contributes significantly to the radiation
intensity. The effect of the anomalous moment is seen to
be suppressed for nonflip photon emission, but to dominate
the spin-flip radiation matrix element in the relativistic
limit.

The Dirac equation is solved in the high energy limit,
with a phenomenological anomalous moment term added
[Eq. (1) below]. As it is written, the electromagnetic fields
in Eq. (1) include only the ideal classical magnetic field of
the undulator.

The radiation field is included by the addition of an
additional perturbative term in the Hamiltonian [Eq. (2)]
containing quantized photon creation and annihilation op-

erators in the radiation vector potential, ~Aradiation. Formally,
this interaction is the same as that for the classical field in
Eq. (1). We can use a particular representation [11] for ��

and ��� to simplify the form of the interaction with the

radiation field. The coupling to the radiation field, ~Jeffective,
contains a piece from the Dirac current operator and a
second piece from the anomalous moment operator which

is proportional to ae. Possible corrections to ~Jeffective of
order photon energy/electron energy have been ignored.
Corrections of higher than the lowest order in the fine
structure constant are ignored.

To summarize, there are two physical effects of the
anomalous moment: (1) when the electron magnetic mo-
ment interacts with the classical magnetic field, possibly
affecting the orbital motion (this turns out to be negligible),
and (2) when the electron magnetic moment interacts with
the radiation vector potential to modify photon absorption
or emission.

II. THE DIRAC EQUATION FORTHE UNDULATOR
AND THE RADIATIVE PROCESS

A fully rigorous quantum electrodynamics calculation is
unnecessary in order to treat the physically observable
effects of the anomalous magnetic moment. We write the
Dirac equation including the anomalous moment:�

ði6@� e 6AÞ �me þ ae
e

4me

���F��

�
c ¼ 0: (1)

(e < 0 for an electron and e > 0 for a positron. jej is the
magnitude of the electronic charge.) ae is the anomalous
part of the electron/positron magnetic moment [9,12]:

ae � ðg� 2Þ=ð2Þ ¼ 1 159 652 . . .� 10�12:

The classical undulator magnetic field is expressed
in the A��

�¼6A and F�� terms in the Dirac equation

[Eq. (1) above].
For spontaneous radiation emission we define

J�;effectiveA
�
radiation as the matrix element between an initial

state with zero photons and a final state with one photon.
The coupling to the electron is an effective interaction

Hamiltonian:

~J effective � ~Aradiation: (2)

A�
radiation, F

��
radiation depend on the photon polarization and

the photon plane wave. We will consider only the vector
components of J�effective, since by gauge invariance the

longitudinal and time components cancel each other. The

effective ~J for photon emission is [11]:

~Jeffective ¼ ~JDirac þ ~Janomalous

¼ e ~�� ae
e

2me

�0ði ~�� ~kþ! ~�Þ: (3)

As stated above, we obtain this form of ~Jeffective by
starting from the formal expression in terms of �� (Dirac
part) and ��� (anomalous moment part), using a common
representation for the 4� 4 matrices ��, ��� [11] and
making use of the form of the solution to the Dirac equa-
tion in the undulator field, as shown in the next section.

III. HELICAL UNDULATOR WAVE FUNCTIONS

The explicit form of the vector potential for the static

undulator magnetic field is e ~A ¼ mecKðcos�; sin�; 0Þ. By
definition, � � kWz, kW � 2�=�. � is the period of the
undulator. me is the electron or positron mass. K is the
dimensionless undulator strength. In terms of themagnitude
of the undulator magnetic field B0,K�ðeB0Þ=ðmeckWÞ [1].
In our units c, the velocity of light, equals one. In

addition, we also assume kW � 1. With this choice of units,
all lengths, times, momenta, and energies are dimension-
less. The subscripts? and k refer to the z axis, which is the
undulator axis.
The four-component helicity solutions, in the presence

of a static undulator magnetic field (transverse vector
potential), are

c ¼ �
	

� �
: (4)

The lower components can be expressed in terms of the
upper components:

	 ¼ 


Eþme

� (5)

with 
 ¼ �q and q2 ¼ E2 �m2
e. (q is the kinetic momen-

tum, p is the canonical momentum.)
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The forward moving helicity eigenstates for � are

� ¼ 1ffiffiffiffiffiffi
V0

p eið ~p�~r�EtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþme

2me

s
Z



Eþme
Z

 !
: (6)

The positive helicity solution, 
 ¼ þq, is

Zþ ¼ 1
�þ
2�

 !
eiF: (7)

The negative helicity solution, 
 ¼ �q, is

Z� ¼ � ��
2�

1

 !
eiF �� ¼ �x � i�y

Fð�Þ � meK
p?
q

sinð�� �Þ:
(8)

The explicit form of the velocity ~� is given below in
Eq. (15). (p? � p has been neglected.)

Terms of order 1=�4 have been neglected, in the spirit of
the high energy limit.

The canonical transverse momentum p? is a constant of
the motion in the undulator magnetic field. The canonical
momentum is not equal to the kinetic momentum due to the
presence of the vector potential. The transverse kinetic
momentum is not constant due to the rotating nature of
the magnetic field. The helicity solutions above assume
that p? is small compared to the longitudinal momentum.
However, we do not neglect its presence in the exponent F,
since the change in p? when the photon is emitted is
important. p� is the (complex) canonical transverse mo-
mentum of the electron.

The angle � is defined by the relation p� ¼ p?e�i�.
Note that px ¼ p? cos� and py ¼ p? sin�, q2? ¼ p2

? þ
ðmeKÞ2 � 2meKp? cosð�� �Þ. In terms of the normal-
ized distance along the z axis, � � kWz, qk� �
q�� f½p2

? þ ðmeKÞ2	�g=ð2qÞ. We will neglect the last

term in what follows.
The effect of the anomalous moment ae on the wave

function is to reduce the undulator strengthK very slightly:
K ! K½1� ae=ð2qÞ	. This extremely small O½1=�	 cor-
rection to the wave function is neglected as well as terms
O½1=�2	 and higher inverse powers of �. Terms of order a2e
have also been neglected.

We can write the matrix elements in terms of two-
component spinors and a two-component transition
current. The two kinds of terms below correspond to the
Dirac effective current, proportional to the 4� 4 Dirac
matrix ~�, and to the anomalous moment contribution,
which is proportional to ae�

0:

c y
f ~�c i ¼

�

f

Ef þme

þ 
i

Ei þme

�
�y

f ~��i (9)

c y
f�

0c i ¼
�
1� 
f
i

ðEf þmeÞðEi þmeÞ
�
�y

f�i: (10)

The sign of 
 depends on the electron’s helicity. Positive
helicity corresponds to 
 ¼ þq, negative helicity 
 ¼ �q
(q is always positive).
The term ‘‘flip up’’ refers to the transition negative

helicity ! positive helicity, while ‘‘flip down’’ is the
opposite transition. The photon energy is k, Ei � Ef ¼ k,

qi � qf � k. For a nonspin flip transition, the factor in

Eq. (9) is� 2, while the expression Eq. (10) is very small.
The anomalous moment has a negligible effect on the
nonflip matrix element. In a spin-flip transition, the factor
in front of ~� will be (flip up), from Eq. (9):


f

Ef þme
þ 
i

Ei þme

¼ qf
Ef þme

� qi
Ei þme

:

For flip up this becomes � �kme=E
2, assuming the

photon energy is k � E.
Thus, spin flip with a Dirac moment is suppressed by a

factor of 1=�2, but is not zero because the photon momen-
tum and energy imply that jqfj � jqij and Ef � Ei.

The other term in the effective current operator [11],
Eq. (10), which is proportional to �0 (and ae), is not sup-
pressed for spin flip. The presence of the anomalous mo-
ment is a radiative correction which has been
experimentally verified for relativistic electrons by polar-
ization measurements in electron storage rings. The pre-
factor is � 2. It is suppressed for nonflip, however.
We can express the effective current for single photon

emission in the form of an operator operating only on the
two-component upper part of the spinor: For flip up,

~Jeff ¼ �e

�
kme

E2

�
~�� ae

�
e

me

�
ði ~�� ~kþ! ~�Þ: (11)

For flip down,

~Jeff ¼ þe

�
kme

E2

�
~�� ae

�
e

me

�
ði ~�� ~kþ! ~�Þ: (12)

We have not separated the Dirac moment term for the
spin flip up from the anomalous part at this point. These
two parts, which can in principle interfere, have opposite

signs for flip up and flip down. Also ~JeffðkÞy ¼ Jeffð�kÞ,
which relates photon absorption with photon emission.
The Dirac moment term is of order 1

�2 when compared to

the anomalous moment term which is of order ae, all other
terms being comparable. This means that for � > 1=

ffiffiffiffiffi
ae

p
we can neglect the Dirac moment term when calculating
the spin-flip matrix element. This condition amounts to
requiring the electron energy to be greater than about
15 MeV. From now on, we will treat only the anomalous
moment term in the spin-flip calculation.

IV. CALCULATION OF THE PROBABILITY

The calculation of the probability of radiating a photon
is a straightforward quantum electrodynamics calculation.
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Some of this calculation is repeated here, but ~JDirac is

replaced with the ~Jeff [Eq. (3)] for spin flip.
For either the nonflip or flip cases, the probability, using

box normalization, is

P ¼V0me

E

1

ð2�Þ6
Z
d3p0Z d3k

X
photonpolarizations

jMj2: (13)

The normalization volume V0 ¼ LuL
2. (Lu is the undulator

length.) The nonflip matrix element Mnonflip is

Mnonflip ¼ �ie

ffiffiffiffiffiffiffi
2�

k

s Z Tmax

0
dt
Z Lu

0
dz
Z L=2

�ðL=2Þ
dx

Z L=2

�ðL=2Þ
dy

� e�ið ~k�~r�ktÞ�y
f ð ~r; tÞ ~� � ~e
�ið~r; tÞ: (14)

Tmax is the time spent in the undulator. The states � are
given in Eqs. (6)–(8).

In taking the matrix element for this case, we obtain, to
order 1=�2:

h�þj ~�j�þi ¼
�
K

�
sin�;

K

�
cos�; 1� K2

4�2

�
¼ ~�: (15)

The same result is obtained for negative helicity. From
the expressions for the wave function in Eqs. (6) and (7) we
can write

eiðFi�FfÞ ¼ e�i� sinð�� ~�Þ;

where

� � Kk?
�

and ~� is the azimuthal angle of the photon. We obtain this
result using the definitions of Fi, Ff and transverse mo-

mentum conservation
All of the standard results [1] for the harmonic content

and angular distribution of the emitted photons for the
nonflip case were obtained from Eq. (14) by making a

harmonic analysis of eiðFi�FfÞ. This served as confirmation
that our solution [Eqs. (6)–(8)] is correct. To calculate the
spin-flip matrix element, we neglect the small term pro-
portional to ~� (which is the dominant term for nonflip).

The matrix element for spin flip, Mflip, is

Mflip ¼ 2iae

�
e

me

� ffiffiffiffiffiffiffiffiffi
2�k

p 1

V0

E

2me

Z Tmax

0
dt
Z Lu

0
dz

�
Z L=2

�ðL=2Þ
dx

Z L=2

�ðL=2Þ
dy e�ið ~k� ~r�ktÞ

� ei½ð ~p� ~p0Þ�~r�ðE�E0Þt	

� Zy
f ð ~r; tÞði ~�� n̂þ ~�Þ � ~e
Zið ~r; tÞ: (16)

We can express thematrix element in terms of the explicit

form of the spinors and use ~S�ð�Þ to express the matrix
elements of ~� for flip up or down. In the normalization

factors, we replace
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEþmeÞðE0 þmeÞ

p
=ð2meÞ by

E=ð2meÞ:

Mflip ¼ �2iae

�
e

me

�
E

2me

1

V0

ffiffiffiffiffiffiffiffiffi
2�k

p Z Tmax

0
dt
Z Lu

0
dz

�
Z L=2

�ðL=2Þ
dx

Z L=2

�ðL=2Þ
dy e�ið ~k�~r�ktÞ

� ei½ð ~p� ~p0Þ� ~r�ðE�E0Þt	e�i� sinð�� ~�Þ

� ½i ~S�ð�Þ � n̂þ ~S�ð�Þ	 � ~e
: (17)

The integrals over space and timegive rise to delta functions
which express the conservation of momentum and energy.
Longitudinal momentum conservation includes a contribu-
tion e�im� from the undulator periodicity arising from the
harmonic analysis of the wave function.
By definition, this harmonic analysis is

e�i� sinð�� ~�Þ ~S�ð�Þ � Xm¼þ1

m¼�1
~S�;me

�im�:

The Bessel functions which arise from this analysis are
functions of �:

e�i�sinð�� ~�Þ � Xm¼þ1

m¼�1
ame

�im� am¼Jmð�Þeim ~� (18)

� ��eiðFi�FfÞ ¼ �K

�
e�i�e�i� sinð�� ~�Þ

� Xm¼þ1

m¼�1
b�
me

�im�b�
m

¼ �K

�
Jðm�1Þð�Þeiðm�1Þ ~�: (19)

The mth harmonic of the matrix element of ~S for flip up
is

~Sþ;m ¼ eim
~�

�
Jm;�iJm;�K

�
e�i ~�Jm�1

�
: (20)

Flip down is

~S�;m ¼ eim
~�

�
Jm; iJm;�K

�
ei

~�Jmþ1

�
: (21)

Terms in the expansion with negative or zero values of m
are removed by the requirement of longitudinal momentum
conservation when a photon is omitted:m � 1. The Bessel
function arguments are ��Kk?=��mx, with x defined by

x � K

�

sin~�

1� �k cos~�
: (22)

~� is the polar angle of the emitted photon.
Flip up and flip down are no longer complex conjugates.

This is a consequence of the phase factor eiðFi�FfÞ. A spin-

flip asymmetry appears only in the z components of ~S.
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Because of the transverse polarization and small emission
angles of the photon, it has little effect on the numerical
answer.

We square the matrix element, multiply by the incident
flux, and do the six-dimensional integrals, using four of
them to satisfy the delta functions of energy-momentum
conservation.

By our choice of units, kW � 1, c � 1,�z � 1. The total
time in the undulator becomes a factor of 2�N.

We then have to sum over harmonics and carry out the

integrals over photon angles ~�, ~�.
Each km, the photon energy for the mth harmonic, con-

tributes a factor of m. After the sum over photon polar-
izations, we have to evaluate Eq. (23) below for flip up and
down separately:

Xm¼1

m¼1

m3ðj ~Smj2 � jn̂ � ~Smj2Þ: (23)

n̂ is a unit vector in the direction of the emitted photon.
We know the probabilities will be dimensionless. This is

not obvious in our formulas, because our assumption
that kW ¼ c ¼ @ ¼ 1 makes all energies and momenta
dimensionless. In particular, !0 ¼ kWc � 1, the undulator
‘‘frequency’’ has to be restored. We have to restore the
dimensions at the end. For example, 1=me becomes
ð@!0Þ=ðmec

2Þ:

km ¼ m
!0

c

1

1� �k cos~�

P ¼ 1

2
N�a2e�FSme

Z
d�k

X
m

�
km
me

�
3ðj ~Smj2 � j ~Sm � n̂j2Þ:

(24)

Using azimuthal symmetry for the photon, we can do the

integral over ~� to obtain an expression for the spin-flip
probability in the form of an integral over the sum of
combinations of Bessel functions:

P ¼�N�a2e�FS

�
!0

me

�
2

�
Z 1

�1

dðcos~�Þ
ð1��kcos~�Þ3

X
m

m3ðj ~Smj2�j ~Sm � n̂j2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�IðK;�Þ

: (25)

The equation above defines the function IðK;�Þ.
The additional factor of � gives for the probability of

spin flip an overall �5 dependence at very high energies.
The Sm’s in terms of the Bessel functions are given below.

Flip up is

j ~Sm;upj2 ¼ 2J2m þ
�
K

�

�
2
J2m�1

jn̂ � ~Sm;upj2 ¼
�
Jm sin~�� K

�
Jm�1 cos~�

�
2
:

(26)

Flip down is

j ~Sm;downj2 ¼ 2J2m þ
�
K

�

�
2
J2mþ1

jn̂ � ~Sm;downj2 ¼
�
Jm sin~�� K

�
Jmþ1 cos~�

�
2
:

(27)

Using the fact that the photon angle is normally very
small as � ! 1, we can make an approximation. In the

high energy limit, as ~� ! 0,

� ¼ mx x ! 2K
ð�~�Þ

ð�~�Þ2 þ 1þ K2
small ~�:

Making the substitution u ¼ �~� for the photon polar
angle, x ! 2Ku=ðu2 þ 1þ K2Þ. This expression has a

maximum value of xmax ¼ K=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
for u ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ K2
p

. This justifies the small angle approximation,

even ifK � 1, since � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
in the cases of interest,

hence x 
 1.
Using Eqs. (26) and (27) for spin flip up in the relativ-

istic limit, replace sin~� by u=�, u ¼ �~� and cos~� by 1.
Neglecting terms of order 1=�2,

X1
m¼1

m3½j ~SmðupÞj2�jn̂ � ~SmðupÞj2	¼2
X1
m¼1

m3J2mðmxÞ (28)

and, for spin flip down,

X1
m¼1

m3½j ~SmðdownÞj2 � jn̂ � ~SmðdownÞj2	

¼ X1
m¼1

m3½j ~SmðupÞj2 � jn̂ � ~SmðupÞj2	 þ O

�
1

�2

�
: (29)

There is no asymmetry between flip up and flip down in
the limit when terms O½1=�2	 can be neglected.
The sum 2

P
m3J2mðmxÞ is expressed as an infinite power

series in x2 divided by 4ð1� x2Þ5 [13]. This is a special
case of a Kapteyn series. A general analytic formula does
not exist. Furthermore,

x ¼ x

�
K

�
; ~�

�
� xðK; uÞ: (30)

In the limit where Eq. (30) is a valid approximation,
the � dependence in the integral defined in Eq. (25),
IðK;�Þ, is an overall factor of �4. (The important contri-
butions to this integral come from very small photon
angles, of order 1=�.) To a very good approximation we
can use u as the independent variable, and write the inte-
gral in Eq. (25) as

I � 8�4
Z 1

0

udu

ðu2 þ 1þ K2Þ3 fðxÞ

fðxÞ � 2
X1
m¼1

m3J2mðmxÞ;
(31)
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where x is defined by Eq. (22) and its expansion in the
small angle limit is given after Eq. (27). We conclude that
the limiting � dependence of the spin-flip probability P is
�5 overall. We define a function F ðKÞ which is only a
function of the undulator strength:

F ðKÞ � I

�4
: (32)

The integral for F ðKÞ is calculated numerically using
Eqs. (31) and (32).

With these approximations and the definition Eq. (32),
P becomes

P ¼ �N�5a2e�FS

�
!0

me

�
2
F ðKÞ: (33)

For numerical evaluation of F ðKÞ, we used the � ! 1
limit of ðsin~�=�4Þ=½ð1� �k cos~�Þ3	d~�=du, which is

ð16uÞ=½ð1þ K2 þ u2Þ3	.
Using MATHEMATICA [14], the first 100 terms in the sum

2
P1

m¼1 m
3J2mðmxÞ were added. A numerical integral over

the variable u in Eq. (31) from 0 
 u 
 1 was carried out
to compute F ðKÞ.

F ðKÞ is a rapidly increasing function of K, for example:
F ð1Þ ¼ 6:785, F ð2Þ ¼ 133:6, F ð3Þ ¼ 904:8, F ð4Þ ¼
3652:9, F ð5Þ ¼ 10 922:7.

An excellent fit to lnF vs lnK is given by the approxi-
mate numerical formula (0:3 
 K 
 5):

lnF ðKÞ¼1:927þ3:94lnKþ0:55ln2K�0:094ln3K: (34)

V. ENGINEERING FORMULA FOR
SPIN-FLIP PROBABILITY

The spin-flip probability from Eq. (33) is

P ¼ N�a2e�FS

�

C

�

�
2
�5F ðKÞ

¼ 5:2� 10�11NE5½GeV	
�2½cm	 F ðKÞ: (35)

In Eq. (35), N is the number of undulator periods, � is
the undulator period in cm, E½GeV	 is the electron energy
in GeV.

If the undulator strength K ¼ 1, and the period � ¼
10 cm, the spin-flip probability per undulator period for
100 GeV electrons is 3.7%. If the undulator strength is
increased to K ¼ 2, the probability per undulator period
will be 66.7%. This high value of the probability means the
spin will be flipped quite often in traversing an undulator
with many periods.

VI. SUMMARYAND CONCLUSION

Our solution for the wave function plus the perturbative
form of the interaction with the radiation field reproduces
the classical results for the characteristics of radiation from
a helical undulator. The additional terms in the Dirac
equation involving the anomalous moment interacting
with the undulator magnetic field are negligible if the
spin is not flipped. Essentially all of the radiation intensity
comes from the nonflip case. Thus, the anomalous moment
has no significant effect on the undulator radiation intensity
even at TeV energies. The spin-flip process, on the other
hand, is dominated by the anomalous magnetic moment. It
remains rare at all energies when compared to nonflip
photon emission, but the probability of spin flip by sponta-
neous emission is not small for sufficiently high energy and
strong undulators.
The helical undulator provides a flux of circularly

polarized photons from a nonflip process. This photon
flux is especially high in case the helical undulator oper-
ates in an free-electron laser (FEL) mode. We conjecture
that it may be possible to stimulate spin flip and to
polarize the electrons in the presence of the strong photon
field.
This conjecture, if supported by further calculations,

could provide a practical way to polarize a high energy
electron beam in an FEL. A detailed study of this effect
will be presented later. This will require a realistic descrip-
tion of the coherent photon flux in the FEL.
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