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A few years ago, Andrews and Brau (AB) presented the dispersion relation for a lamellar grating in two

dimensions (2D) as a step in understanding coherent Smith-Purcell radiation. This involved solving

Maxwell’s equations both in the grooves and in the region above the grooves, where Floquet theory was

used. The coupling with an electron beam was studied, and an expression for the gain as a function of

current was derived. Their approach has been supported by 2D simulations using particle-in-cell (PIC)

codes, and more recently by a demonstration experiment that used a wide grating. We present here the

dispersion relation (in the absence of beam) of a grating in three dimensions, which turns out to be a

relatively straightforward extension of the AB results. The predictions of this theory are compared with

PIC simulations, and also with measurements of the transmission coefficient as a function of frequency.

Extremely good agreement is observed.
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I. INTRODUCTION

In 1953 Smith and Purcell (SP) [1] sent an electron beam
of about 300 keV energy along the surface of a diffraction
grating, and observed visible radiation which satisfied the
condition they proposed

� ¼ Lð1=�� cos�Þ=jnj; (1.1)

where � denotes the wavelength of the radiation produced
at angle �with respect to the beam, the grating period is L,
and n, the order of diffraction, is a negative integer (for SP
radiation). The quantity � ¼ v=c, where v denotes the
electron’s velocity and c the speed of light. Although
many contributions to the understanding of this radiation
have been made over the past half century, a renaissance of
interest followed the publication of a theory for the pro-
duction of interbunch coherent SP radiation by Andrews
and Brau [2]. In this paper, the authors solved the Maxwell
equations for a lamellar grating in 2D (the grooves were
assumed infinitely long with no variation of the fields in
their direction). They established the existence of an eva-
nescent wave in the vicinity of the grating, and obtained the
dispersion relation between frequency ! and axial wave
number k of this wave as the condition that a determinant
vanishes. They showed that the intersection of the disper-
sion relation with the beam line, ! ¼ vk, occurs at a
frequency! less than the minimum allowed SP frequency.
The interaction between beam and wave leads to beam

bunching at that frequency, and the evanescent wave will
be radiated from the ends of the grating. If the bunching is
strong enough, harmonics of the bunching frequency may
appear in the current, and this could produce coherent
monochromatic radiation in a small interval around the
corresponding SP angle. It was pointed out by AB that,
for sufficiently low beam energy, the intersection would
occur on that part of the dispersion relation where the slope
d!=dk is negative, as in a backward wave oscillator. The
theory of Andrews and Brau was subsequently described in
greater detail by them and their collaborators [3]. Support
for their view was provided by simulations [4,5] that used
the 2D electromagnetic code MAGIC [6]. Shortly thereafter,
Kumar and Kim [7] analyzed the problem using a different
approach, but arrived at conclusions quite similar to those
of AB. We should also mention the paper of Skrynnik et al.
[8], who had performed a SP experiment at very low beam
energies several years before, and found a dispersion rela-
tion that prefigured the results of AB. It is also true that the
analysis of the evanescent wave on a lamellar grating has
long been available in the literature, notably in the treatise
of Collin [9].
Despite the consensus concerning the AB theory, until a

short time ago no experimental results supported their
scenario. However, two recent experiments have reported
evidence in its favor. The Vanderbilt-Vermont Photonics
collaboration [10] observed the evanescent wave, but they
used a grating equipped with sidewalls at the groove ends,
which is not strictly 2D. At CEA-CESTA a demonstration
experiment in the microwave domain without sidewalls has
found results in agreement with the scenario of AB [11]. In
the latter the width of both the grating and the beam,w, was
10 cm. Under these conditions the main results of
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3D MAGIC simulations were similar to those of the 2D
simulations presented by us in Refs. [4,12]. We conclude
that if w � L, the 2D theory should be approximately
valid. In the recent experiment, w ¼ 5L.

Several attempts have been made to study coherent SP
radiation in three dimensions, since all gratings have finite
width. Kesar [13] has rigorously calculated the effect of
finite grating width on the SP radiation from an electron
bunch, as compared to the infinite width limit. Kim and
Kumar [14] extended their previous analysis to 3D and
provided estimates of the beam parameters and minimum
current for a setup similar to the Dartmouth terahertz
experiments [15]. Dazhi Li and co-workers performed
3D simulations using MAGIC [16–18]. They showed that
one could expect bunching for sufficiently large currents
and that if sidewalls were placed at the ends of the
grooves, the start current would be reduced by a factor
of 2. They noted that with sidewalls the transverse profile
of the axial component of the electric field has a cosine
form, vanishing at the sidewalls, so that it couples well to
a narrow beam in the middle of the grating. Andrews,
Jarvis, and Brau [19] (AJB) presented a 3D dispersion
relation for a lamellar grating with sidewalls, assuming
cosine profiles in the grooves, as found by Li et al. They
examined in detail the dispersion relation for the grating
used in the experiment described in Ref. [10], and showed
that the predicted modes of operation for a beam of
30 keV were quite different according to whether the 2D
or their new 3D theory applied. Experiment favored the
3D prediction. Jarvis, Andrews, and Brau [20] have re-
cently provided a fuller description of their theory. A key
assumption in this theory is that the axial magnetic field is
zero. Although their theory agrees with the experimental
results reported in Ref. [10], we show in Sec. II E that this
hypothesis leads to a contradiction in the behavior of the
component of the magnetic field normal to the grating
plane, and the component of the electric field along the
grooves. Both of these must vanish at the tops of teeth, at
the bottoms of grooves, and at infinite distance above the
grating. But we show that the AJB theory implies mono-
tonic behavior, which is inconsistent with the required
vanishing. Thus, the AJB theory cannot be correct, despite
its success in interpreting the experimental results shown
in Ref. [10].

Although these 3D effects are of recent interest in the SP
community, they had been treated long ago by the micro-
wave tube community. Microwave tubes such as the
Orotron [21] and Ledatron [22] employ a grating in an
open resonator. Gratings in waveguides are also widely
used as filters, and also in so-called Cherenkov grating
amplifiers. A 3D theory of a lamellar grating in a closed
waveguide structure was given by McVey, Basten, Booske,
Joe, and Scharer [23]. Considerable literature exists on this
subject, and our results represent a small but significant
modification of existing work. Indeed, by slightly changing

our theory to include a flat roof and sidewalls, we recover
the results of Ref. [23]. We then benchmarked our modified
theory against their published results, and found extremely
good agreement.
We present here our 3D dispersion relation for a mode

that propagates with nonvanishing wave number q in the
direction of the grooves. We find that the most general

solution, with an assumed eiðqx�!tÞ dependence, has zero
electric field in the direction of the grooves, and that the
dispersion relation is a simple generalization of the 2D AB
solution, in which for a given axial wave number k the 3D
frequency !3Dðk; qÞ is given by

!3Dðk; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½!2DðkÞ�2 þ ðcqÞ2

q
; (1.2)

where !2DðkÞ is the 2D AB frequency. In Ref. [14], Kim
and Kumar anticipated this result, using their approach
based on the reflection coefficient matrix for the grating.
It is also embodied in the results of Ref. [23], but not in
Refs. [19,20]. The case of sidewalls is then obtained by
constraining the transverse wave number q to take on
discrete values and adding the contribution with �q, to
produce standing waves of the form cosðqxÞ, sinðqxÞ. In
support of our theory we show the results of 3D MAGIC

simulations as well as measurements of the transmission
coefficient of the grating used in the experiment described
in Ref. [11]. Extremely good agreement is found among
theory, simulation, and measurements carried out at loops
and nodes of the transverse waves.
In Sec. II we present our theory. Its predictions are

compared in Sec. III, both with 3D MAGIC simulations
and with measurements of the transmission coefficient
of the grating. Our findings are summarized in the
Conclusion.

II. THREE-DIMENSIONAL
LAMELLAR GRATING THEORY

A. Sommerfeld’s approach

In this section we follow the discussion of Sommerfeld
in Sec. 20 of his classic textbook [24]. The subject is
guided surface waves along a cylindrical surface of arbi-
trary section, and the results are explicit formulas for the
transverse components in terms of the transverse deriva-
tives of the longitudinal components Ex andHx. The x axis
(along the grooves) is chosen as the direction of propaga-

tion, and a form eiðqx�!tÞ is assumed for all components
(we use q rather than Sommerfeld’s h for the wave number
and the convention real part). Although Sommerfeld uses
generalized coordinates u, v for the transverse directions,
we need only Cartesian coordinates y (normal to the plane
of the grating), and z (in the plane, perpendicular to the
grooves), as shown in Fig. 1. In our notation, the results are
(in vacuum, with "0�0 ¼ 1=c2)

J. T. DONOHUE AND J. GARDELLE Phys. Rev. ST Accel. Beams 14, 060709 (2011)

060709-2



Ey ¼ i

�
q
@Ex

@y
þ�0!

@Hx

@z

��
ð"0�0!

2 � q2Þ;

Ez ¼ i

�
q
@Ex

@z
��0!

@Hx

@y

��
ð"0�0!

2 � q2Þ;

Hy ¼ i

�
q
@Hx

@y
� "0!

@Ex

@z

��
ð"0�0!

2 � q2Þ;

Hz ¼ i

�
q
@Hx

@z
þ "0!

@Ex

@y

��
ð"0�0!

2 � q2Þ: (2.1)

Here the longitudinal components are assumed to satisfy
the wave equation,�

@2

@y2
þ @2

@z2
� q2 þ "0�0!

2

�
Exðy; zÞ ¼ 0; (2.2)

with an identical equation for Hx.
For the lamellar grating, we choose the plane y ¼ 0 as

the top of the infinitely long and wide grating. Let L, A, and

H denote the period, the groove width, and the groove
depth, respectively. Our choice of axes differs from those
used by AB in Ref. [2], and the correspondence is x ¼
�zAB, y ¼ yAB, z ¼ xAB. In a groove, �H � y � 0, 0 �
z � A, the perfect conductor boundary conditions are sat-
isfied by the following forms:

Hg
x ðy; zÞ ¼

X1
n¼0

Hg
n cos

�
n�z

A

�
cosh½�nðyþHÞ�

coshð�nHÞ ;

Eg
xðy; zÞ ¼

X1
n¼1

Eg
n sin

�
n�z

A

�
sinh½�nðyþHÞ�

coshð�nHÞ ; (2.3)

where �2
n ¼ ðn�A Þ2 þ q2 � !2

c2
, and the Hg

n and Eg
n are

complex numbers to be determined. From Eq. (2.1), the
remaining components may be written

Eg
yðy; zÞ ¼ i

�X1
n¼1

�
q�nE

g
n ��0!

n�

A
Hg

n

�
sin

�
n�z

A

�
cosh½�nðyþHÞ�

coshð�nHÞ
���

!2

c2
� q2

�
;

Eg
z ðy; zÞ ¼ i

�X1
n¼0

�
q
n�

A
Eg
n ��0!�nH

g
n

�
cos

�
n�z

A

�
sinh½�nðyþHÞ�

coshð�nHÞ
���

!2

c2
� q2

�
;

Hg
y ðy; zÞ ¼ i

�X1
n¼0

�
q�nH

g
n � "0!

n�

A
Eg
n

�
cos

�
n�z

A

�
sinh½�nðyþHÞ�

coshð�nHÞ
���

!2

c2
� q2

�
;

Hg
z ðy; zÞ ¼ �i

�X1
n¼1

�
q
n�

A
Hg

n � "0!�nE
g
n

�
sin

�
n�z

A

�
cosh½�nðyþHÞ�

coshð�nHÞ
���

!2

c2
� q2

�
:

(2.4)

In the region above the grating, 0 � y, Floquet forms are used for Hx and Ex,

Ha
x ðy; zÞ ¼

X1
p¼�1

Ha
pe

iðkþpKÞz��py; (2.5)

Ea
xðy; zÞ ¼

X1
p¼�1

Ea
pe

iðkþpKÞz��py; (2.6)

where k denotes the axial wave number, K ¼ 2�=L, �2
p ¼ ðkþ pKÞ2 þ q2 � !2

c2
, and the Ha

p, E
a
p are coefficients to be

determined. Again the other components follow from Eq. (2.1):

Ea
yðy; zÞ ¼

� X1
p¼�1

½�iq�pE
a
p ��0!ðkþ pKÞHa

p�e��pyþiðkþpKÞz
���

!2

c2
� q2

�
;

Ea
z ðy; zÞ ¼

� X1
p¼�1

½�qðkþ pKÞEa
p þ i�0!�pH

a
p�e��pyþiðkþpKÞz

���
!2

c2
� q2

�
;

Ha
y ðy; zÞ ¼

� X1
p¼�1

½�iq�pH
a
p þ "0!ðkþ pKÞEa

p�e��pyþiðkþpKÞz
���

!2

c2
� q2

�
;

Ha
z ðy; zÞ ¼

� X1
p¼�1

½�qðkþ pKÞHa
p � i"0!�pE

a
p�e��pyþiðkþpKÞz

���
!2

c2
� q2

�
:

(2.7)
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Sommerfeld also points out that

"0!Ez þ qHy ¼ �i
@Hx

@y
; (2.8)

�0!Hz � qEy ¼ i
@Ex

@y
: (2.9)

These equations facilitate the matching conditions at the
top of the grating.

B. Interface conditions and dispersion relation

At the top of a tooth (y ! 0þ , A � z � L), the Floquet
field components Ex, Ez, and Hy must vanish for a perfect

conductor, while at a groove (y ¼ 0, 0 � z � A) all Floquet
components must be equal to the corresponding compo-
nents in the groove. From Eqs. (2.8) and (2.9), we conclude

that Ex and
@Hx

@y vanish on top of a tooth and must be con-

tinuous across the groove, whereas Hx and
@Ex

@y must match

only at a groove. Multiplying the former by e�iðkþpKÞz=L
and integrating from 0 to L yields two equations:

Ea
p ¼ 1

L

Z A

0
dze�iðkþpKÞzEg

xð0; zÞ

¼ 1

L

X1
n¼1

Eg
nJpn tanhð�nHÞ; (2.10)

Ha
p ¼ �1

�pL

Z A

0
dze�iðkþpKÞz @H

g
x ð0; zÞ
@y

¼ �1

�pL

X1
n¼0

Hg
nKpn�n tanhð�nHÞ: (2.11)

Here we have used the substitutions (Kpn was used

by AB)

Kpn ¼
Z A

0
dz cos

�
n�z

A

�
e�iðkþpKÞz

¼ iðkþ pKÞ½�1þ ð�1Þne�iðkþpKÞA�
½ðkþ pKÞ2 � ðn�A Þ2�

;

Jpn ¼
Z A

0
dz sin

�
n�z

A

�
e�iðkþpKÞz

¼ n�½�1þ ð�1Þne�iðkþpKÞA�
A½ðkþ pKÞ2 � ðn�A Þ2�

:

Continuity of Hx across the groove implies, upon multi-
plication by cosðn�zA Þ=A followed by integration from z ¼ 0

to A,

Hg
n ¼ 2

ð1þ �0nÞA
Z A

0
dz cos

�
n�z

A

�
Hg

x ð0; zÞ

¼ 2

ð1þ �0nÞA
X1

p¼�1
Ha

pKpn
�: (2.12)

Multiplying @Ex

@y by sinðn�zA Þ=A followed by integration from

z ¼ 0 to A, we find

Eg
n ¼ 2

�nA

Z A

0
dz sin

�
n�z

A

�
@Eg

xð0; zÞ
@y

¼ �2

�nA

X1
p¼�1

Ea
p�pJpn

�: (2.13)

Combining Eqs. (2.11) and (2.12), we write

Hg
m ¼ �2

ALð1þ �0mÞ
X1
n¼0

Hg
n�n tanhð�nHÞ

�
� X1
p¼�1

Kpm
�Kpn

�p

�
: (2.14)

This expression may be rewritten as

X1
n¼0

ð �Rmn � �mnÞHg
n ¼ 0; (2.15)

where the matrix elements �Rmn are defined by

�Rmn ¼ �2�n tanhð�nHÞ
ALð1þ �0mÞ

X1
p¼�1

Kpm
�Kpn

�p

: (2.16)

In order for a solution to exist, the matrix �R must have an
eigenvalue ¼ 1, and the solution for the Hg

n , to within
multiplication by a complex constant, is the corresponding
eigenvector. The matrix elements depend on the frequency
! and transverse wave number q only through the combi-
nation !2 � c2q2, that appears in �n and �p. This implies

that if, for a given k, an eigenvalue of the matrix ¼ 1when
q ¼ 0 and ! ¼ !2D, then the matrix has the same
eigenvalue and eigenvector for arbitrary q and

FIG. 1. Sketch of the 3D MAGIC simulation geometry, showing
the grating in its surroundings, along with a transverse section
indicating the grating parameters and the height of the simula-
tion volume. The walls are composed of ‘‘free space,’’ which
absorbs radiation emerging from the grating.
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! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

2D þ c2q2
q

. Our matrix �R is related to the matrix R

of AB as follows:

�Rmn ¼ �m
�1Rmn�n; (2.17)

which implies that both have the same eigenvalues. The 3D
problem for the coefficients Hg

n is thus reduced to the 2D
problem of AB. The dispersion relation for arbitrary q
follows directly from that of AB, following Eq. (1.2).

One may proceed in a similar way with Eqs. (2.10) and
(2.13) to derive

Eg
m¼ �2

AL�m

X1
n¼1

Eg
n tanhð�nHÞ

� X1
p¼�1

�pJpm
�Jpn

�
: (2.18)

We may write this in matrix form, similar to Eq. (2.15),

X1
n¼1

ð �Smn � �mnÞEg
n ¼ 0; (2.19)

where the matrix elements are (for m, n > 0)

�Smn ¼ �2 tanhð�nHÞ
AL�m

� X1
p¼�1

�pJpm
�Jpn

�
: (2.20)

If all the quantities �p are real and positive (true if

!2D <Min½ck; cðK � kÞ�, 0< k< K), the matrix �S is
negative definite, and has no eigenvalue ¼ 1.
Furthermore, if some �p are imaginary, the eigenvalues

of �S are no longer real, and thus there exists no mode with
nonzero Ex. Thus, the only 3D modes for the grating are
those with Ex ¼ 0, and these have Hz � 0.

Our result nonetheless represents a significant change
compared to the 2D dispersion relation. In the latter, the
grating acts as a low-pass filter, transmitting all frequencies
less than the maximum, which occurs at the symmetry
point, k ¼ K=2. In contrast, the minimum frequency in
3D is cq. The system thus acts as a bandpass filter,
with a lower cutoff cq, and an upper cutoffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½!2DðK=2Þ�2 þ c2q2
p

. It follows also that the 3D group
velocity in the z direction is given by

vg3D ¼ vg2D

!2D

!3D

: (2.21)

C. Transverse standing waves and sidewalls

It should also be noted that a second solution with the
same !, k exists, but where q ! �q. By superposition,
one may form the symmetric and antisymmetric combina-
tions, which correspond to standing waves in the grooves.

We also introduce the magnetic induction ~B ¼ �0
~H to

facilitate comparison with our simulations. All five non-
zero components may be written in terms of Bx and its
derivatives.

Symmetric modes:

~Eð ~x; tÞ ¼ i!

"0�0!
2 � q2

�
@Bxðy; zÞ

@z
êy � @Bxðy; zÞ

@y
êz

�
� cosðqxÞe�i!t; (2.22)

~Bð ~x; tÞ ¼
� �q sinðqxÞ
"0�0!

2 � q2

�
@Bxðy; zÞ

@y
êy þ @Bxðy; zÞ

@z
êz

�

þ Bxðy; zÞ cosðqxÞêx
�
e�i!t: (2.23)

From these one may derive the relations among compo-
nents,

Bzð ~x; tÞ ¼ q tanðqxÞ
!

Eyð ~x; t� T=4Þ;

Byð ~x; tÞ ¼ q tanðqxÞ
!

Ezð ~x; tþ T=4Þ; (2.24)

where the period T is 2�=!.
Antisymmetric modes:

~Eð ~x; tÞ ¼ i!

"0�0!
2 � q2

�
@Bxðy; zÞ

@z
êy � @Bxðy; zÞ

@y
êz

�
� sinðqxÞe�i!t; (2.25)

~Bð ~x; tÞ ¼
�

q cosðqxÞ
"0�0!

2 � q2

�
@Bxðy; zÞ

@y
êy þ @Bxðy; zÞ

@z
êz

�

þ Bxðy; zÞ sinðqxÞêx
�
e�i!t: (2.26)

These imply

Bzð ~x; tÞ ¼ q

! tanðqxÞEyð ~x; tþ T=4Þ;

Byð ~x; tÞ ¼ q

! tanðqxÞEzð ~x; t� T=4Þ: (2.27)

If the grating, instead of being infinitely wide, were
bounded by perfectly conducting walls at x ¼ �w=2, the
vanishing at the walls of Bx would impose that symmetric
modes

q ¼ ð2mþ 1Þ�=w; m ¼ 0; 1; 2; . . . ;

f3DðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½f2DðkÞ�2 þ

�ðmþ 1
2Þc

w

�
2

s
; (2.28)

antisymmetric modes:

q ¼ 2n�=w; n ¼ 1; 2; . . . ;

f3DðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½f2DðkÞ�2 þ

�
nc

w

�
2

s
: (2.29)

In Fig. 2 we display the dispersion relation for our
grating, with L ¼ 2 cm, A ¼ H ¼ 1 cm, and width w ¼
10 cm, if it had sidewalls. The 2D relation is shown along
with the first four symmetric modes m ¼ 0; 1; 2; 3 and the
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antisymmetric modes n ¼ 1; 2; 3. Also shown are the re-
sults of ‘‘pings,’’ which are described in the Sec. III.

D. Computations of fields

This theory makes many predictions that are readily
tested with the help of numerical codes that satisfy the
Maxwell equations, such as the particle-in-cell (PIC) code
MAGIC. In addition, since the grating used in Ref. [11] is

well suited to the microwave frequency range, measure-
ments of the transmission coefficient between any two
points just above the top of the grating may be performed
using a standard network analyzer. Typically the network
analyzer measures the transmission coefficient as a func-
tion of frequency, for frequencies up to 10 GHz. Provided
we can calculate the electromagnetic field components (to
within an unknown complex constant), we can compare the
theory with simulations.

Although we have concentrated on the dispersion rela-
tion, our theory actually can be used to compute the func-
tion Bgðy; zÞ which determines the magnetic field

component Bx in the groove. With the help of the program
MATHEMATICA [25], we compute a 7� 7 approximation to

the matrix �R, and for fixed k, seek the value of ! such that
the determinant of �R� I vanishes. The eigenvector of
eigenvalue zero then provides the quantities Bg

n, for
n ¼ 0 to 6. These are normalized such that

P
6
n¼0 jBg

nj2 ¼
1, and the phase can be chosen such that Bg

0 is real. For our

grating, 0:998< Bg
0 < 1 for all wave numbers, which

means that the n ¼ 0 term dominates the sum. For the
electric fields in the groove this dominance is less pro-
nounced, since the relevant coefficients for Ey are nB

g
n and

for Ez are �nB
g
n. The resulting series converge less rapidly.

Consequently, our calculation of the function Bx in the

groove is accurate, that ofEz somewhat less accurate, while
that of Ey is still less so, since the dominant n ¼ 0 term is

absent. We test the internal consistency of our approach by
computing the Floquet components, Ba

p, �10<p< 10,

and from these the fields above the grating. Comparing the
fields in the groove with those above at the interface y ¼ 0,
we observe that the agreement for Bx is good, that for Ez

acceptable, while the rather spiky behavior of Ey is only

approximately continuous. While taking more terms in the
approximation would help things, we have confidence in
our ability to calculate the fields with reasonable, if not
perfect, accuracy.

E. Comment on the AJB theory

As we stated in the Introduction, in Ref. [19] AJB
proposed a 3D theory for a grating with sidewalls that
leads to a different dispersion relation. In particular, it
does not satisfy our Eq. (1.2). The authors assumed that
the axial component of the magnetic field vanishes, i.e.,
Bz ¼ 0. This is a valid hypothesis in 2D, and AJB assumed
it would also hold in 3D. Our solution, which we claim is of
general validity, does not allow this. However, a more
direct proof is required, and we outline it here. We assume
that the magnetic field of ABJ may be written, for a side-
wall grating, and omitting the e�i!t factor, as

~Bðx; y; zÞ ¼ cosðqxÞbxðy; zÞêx þ sinðqxÞbyðy; zÞêy: (2.30)

The vanishing of the divergence implies

@byðy; zÞ
@y

¼ qbxðy; zÞ: (2.31)

Computations show that the function bxðy; zÞ has a fixed
sign as a function of y. In particular, it has a maximum on
top of a tooth, and then decays rapidly with increasing y,
showing no oscillatory behavior. It follows from Eq. (2.31)
that the derivative of byðy; zÞ with respect to y is also of

fixed sign, meaning that byðy; zÞ is monotonically increas-

ing or decreasing. But the boundary conditions require
byðy; zÞ to vanish on top of a tooth and at the bottom of a

groove, while the evanescent behavior at infinite y requires
it to vanish there. Clearly, this is impossible for a mono-
tonic function, and a contradiction is obtained. Similar
arguments can be made to show that the component Ex,
which must also vanish on top of all teeth, at the bottom of
all grooves, and as y ! 1 is a monotonic function of y. We
conclude that the basic hypothesis assumed by AJB leads
to contradictory behavior for both By and Ex.

III. COMPARISON WITH SIMULATIONS
AND MEASUREMENTS

In support of our theory, we present some results ob-
tained with simulations, together with transmission mea-
surements performed on the grating using a network
analyzer. In the 3D MAGIC simulations, the grating
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FIG. 2. The 2D dispersion relation for the grating is shown in
green. For the grating with sidewalls, the 3D symmetric higher
modes are shown in black, and the antisymmetric modes in red.
The blue curve shows the FFT of a ping, which correlates very
well with the maxima of these seven branches of the dispersion
relation.
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was chosen to have the parameters of that used in the
demonstration experiment, i.e., twenty periods of length
L ¼ 2 cm, A ¼ H ¼ 1 cm, and width w of the grating ¼
10 cm. Its surface was assumed to be a perfect conductor,
with vanishing tangential electric field and normal mag-
netic field components. In the simulations, MAGIC calcu-
lated all six components of the electromagnetic field. In
order to get a rough idea of the transmission properties, a
ping or short burst of localized electromagnetic field was
excited in an upstream groove. The field then propagated
down the grating, and time signals of the magnetic field
component Bx were observed in a downstream groove.
From the fast Fourier transform (FFT) of this time signal,
the spectrum of frequencies that can propagate is obtained
at once. Then, having seen which frequencies are likely to
propagate well, we simulate a monochromatic current
source at a given frequency inserted in the first groove,
and use the various MAGIC tools to study the properties of
the fields that propagate downstream. Among these are the
time histories of the fields at a point, the space dependence
of a component along a given line in space (parallel to one
of the axes) at fixed time, and contour maps of any plane of
the grating (whose normal lies along an axis) for any field
component at a fixed time. With the FFT capacity of MAGIC

the frequency and wave number dependence of the
signals may be determined, in order to test the theoretical
predictions of the previous section.

A network analyzer model HP 8510 was used to mea-
sure the transmission of the grating surface wave between
two arbitrary points, typically chosen to be just above a
groove, at small values of the coordinate y. Most such
measurements were performed with sidewalls, realized
by fastening conducting planes at the ends of the grooves.
This is indicated in Fig. 3, which shows a photograph of the
setup. As shown, the connections were terminated by short
linear antennas, which were oriented to excite and receive
the component Ez. In addition, some simulations were
performed with open-ended grooves, since that was the
configuration used in the experiment.

A. Response of grating to a ping in simulations

If a very short burst of current (ping) is used to excite the
surface waves of the grating, the corresponding frequency
spectrum will be broad. However, only those frequencies
that satisfy the dispersion relation can propagate down the
grating. By observing the field Bx at a point downstream
from the current source, and performing an FFT, one sees
immediately what bands of frequencies are allowed. In 2D
simulations, all frequencies up to the maximum (approxi-
mately 4.7 GHz for our grating) are observed, but none
above this. In contrast, the signals observed in 3D simula-
tions show a series of allowed frequency bands, extending
well beyond the 2D limit. When the grating has sidewalls,
well-defined transverse modes with nodes and loops are
seen. In Fig. 4(a) are shown the transverse profiles of Bx for
the four lowest symmetric modes, with 2m internal nodes;
the three lowest antisymmetric modes with 2n� 1 internal
nodes are shown in 4(b). The nodes and loops are indicated
by solid circles and triangles, respectively. If either the
current source is placed at a node or the observation point
occurs at a node, the corresponding mode will not be
excited (or only weakly, if the positioning is imperfect).
Conversely, if both are placed at loops of a mode, the signal

FIG. 3. Photograph of the grating during measurements of the
transmission coefficient, showing the antennas connected to the
network analyzer. One sidewall is drawn to show its position.
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should be prominent. To illustrate this, we show in Fig. 5
for low frequencies and Fig. 6 for high frequencies the
spectra corresponding to 11 different pings. The left-hand
sides of these figures show the modulus of the FFT for the
pings, while the right-hand sides show the modulus of the
measured transmission coefficients. We used six distinct
transverse positions for both emission and observation:

0, 0.83, 2, 2.5, 3.33, and 4.29 cm. There were five additional
emission-observation pairs: (0.83, 3.33), (2, 3), (2.5, 0),
(3.33, 1.67), and (4.29, 3.57). In no case where the theory
predicts zero signal is any seen, and at several places where
loops are present at both emission and measurements,
above average signals are seen. We have shown in Fig. 2
that the band heads occur at values corresponding to the

formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½f2DðK=2Þ�2 þ ½ðmþ 1

2Þc=w�2
q

, m ¼ 0; 1; 2; 3,

for the symmetric modes, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½f2DðK=2Þ�2 þ ðnc=wÞ2p

for the antisymmetric modes, with n ¼ 1; 2; 3. The net-
work analyzer measurements are generally quite consistent
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measured transmission coefficient S21 for the same emission and
measurement points. The theoretical band heads for symmetric
(black) and antisymmetric modes (red) are indicated by small
squares. See also Table I.
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with the simulations, even though they are not strictly
comparable. The measurements provide experimental sup-
port for both our theory and our simulations.

For the determined reader, we indicate in Table I the
loops and nodes that are expected on the basis of our
theory. In addition, some emission points (x0) and mea-
surement points (xm) are quite close to either nodes or
loops, and these are also indicated. All predictions may
be verified in the Figs. 5 and 6.

When the grating has sidewalls, the transverse modes are
imposed by the condition that Bx vanishes there. However,
in the experiment of Ref. [11], the grating had no sidewalls,
and it is of interest to ask how the fields vary in the
transverse direction. We have performed simulations with
no sidewalls, and a selection of our results is shown in

Fig. 7. To our surprise, the ping results are quite similar to
those in the sidewall case, with clearly visible band heads.
The cutoff frequencies are different, of course, with the
lowest band head around 4.74 GHz. This only marginally
exceeds the 4.71 GHz 2D cutoff, and it suggests a cosðqxÞ
behavior with a small value of q, of order 0:1 cm�1. If the
exciting antenna is placed at the middle of the grating, only
symmetric modes are generated, with band heads at 4.74,
5.5, and 7.25 GHz. With asymmetric excitation, two addi-
tional antisymmetric bands are found, with maximum fre-
quencies of 4.9 and 6.3 GHz. Although we do not
understand why these results occur without sidewalls, we
make the empirical observation that, if one imposes that Bx

have a loop at x ¼ 5:5 cm (5 mm beyond the end of the
groove), then the transverse wave numbers qn would be

TABLE I. Nodes and loops of grating with sidewalls.

x (cm) x=w Cosine node Cosine loop Sine node Sine loop Nearby

0 0 All m All n
0.83 1=12 n ¼ 3 Nodes m ¼ 2, 3
1.67 1=6 m ¼ 1 n ¼ 3
2 1=5 m ¼ 2 Node m ¼ 3
2.5 1=4 n ¼ 2 n ¼ 1, 3
3 3=10 m ¼ 2
3.33 1=3 m ¼ 1 n ¼ 3
3.57 5=14 m ¼ 3 Loop n ¼ 2
4.29 3=7 m ¼ 3 Loop n ¼ 3
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FIG. 7. The moduli of FFTs of pings emitted at transverse position x0, and observed at xm for the grating without sidewalls. Bands
with sharp cutoffs are clearly visible, just as for the grating with sidewalls. The empirical values for the band heads are again indicated
for symmetric and antisymmetric modes. See also Table II. (a) x0 ¼ 0 (symmetric modes only), (b) x0 ¼ 1:87, (c) x0 ¼ 2:8, and
(d) x0 ¼ 4:8.
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n�=11 cm�1, n ¼ 1; 2; 3, and 4. The corresponding band
heads and transverse modes would be [4.91 GHz, sinðq1xÞ],
[5.46 GHz, cosðq2xÞ], [6.27 GHz, sinðq3xÞ], and [7.25 GHz,
cosðq4xÞ]. This is close to what we observe. In Rayleigh’s
‘‘Theory of Sound’’ Sec. 312 [26], one learns that the note
of a cylindrical organ pipe of radius R behaves as if there
were a loop at the open end, and the length were increased
by 8R=3�. If the analogy with acoustics were valid, our
results could be interpreted as a similar phenomenon.

We indicate in Table II those values of n for which nodes
or loops are expected to occur at points of emission or
measurement, if the transverse wave numbers suggested
above were correct. The agreement between these predic-
tions and the simulations is reasonable, which supports our
conjecture for the transverse profiles. Nevertheless, we
cannot justify our empirical values of the transverse wave
numbers qn from first principles.

B. Results with monochromatic current driver

Although the use of pings permits us to test the response
of the grating over a broad range of frequency, a more
sophisticated method of investigation is to insert a mono-
chromatic current driver at some point in a groove, and
thereby excite a simulated evanescent wave of definite
frequency. If the source is placed at the midpoint of a

groove, then only symmetric transverse modes will be
excited. As may be seen from Fig. 2, the dispersion relation
is such that if k is an allowed wave number for a given
frequency, then so is K � k. Thus, both forward and back-
ward evanescent waves are generated, with unknown rela-
tive amplitudes. Reflections at both ends of the gratings
also occur, again leading to a mixture of forward and
backward waves. Various diagnostic tools available in
MAGIC may then be used to examine details of the simula-

tion, with the aim of testing our theory. For example, we
show in Fig. 8 the results of four 3D simulations of our
grating with sidewalls, with symmetric excitation at fre-
quencies 4.75, 6.4, 8.7, and 11.3 GHz. The current driver
was placed in the first groove on the left, at x ¼ 0.
Instantaneous contour maps of the field Bx in the x-z plane
are shown, with y ¼ �2 mm. On the right of the figure are
shown the four lowest symmetric mode branches of dis-
persion relation for the grating. The standing wave trans-
verse modes are clearly visible, with 0, 2, 4, and 6 internal
nodes, depending on the frequency. The positions of these
modes on the different branches of the 3D dispersion
relation are indicated by arrows. Although the wave num-
bers were determined from the FFT of the spatial depen-
dence (not shown), crude estimations can be made from the
contour plots by counting periods between recurring

TABLE II. Nodes and loops of grating without sidewalls.

x (cm) Cosine node Cosine loop Sine node Sine loop Nearby

0 n ¼ 0; 2; 4 n ¼ 1; 3
1.4 n ¼ 4 Loop n ¼ 3
1.87 n ¼ 3
2.8 n ¼ 2 n ¼ 4
3.7 n ¼ 3
4.8 Loop all n > 0
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FIG. 8. Simulated contour plots of Bx in the x-z plane (y ¼ �1 mm) at fixed time, generated by a current driver operating at fixed
frequencies in each of the four lowest symmetric modes. The grating has sidewalls, where Bx is seen to vanish. On the right is shown
the theoretical 3D dispersion relation (red). Some results of simulations where the wave numbers k were determined are indicated by
squares.
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patterns. This figure shows that frequencies much greater
than the 2D maximum frequency can propagate on a
grating with sidewalls.

In Fig. 9(a) we show a simulated contour plot of Bx for
an antisymmetric mode, with a current driver of frequency
5.3 GHz placed at x ¼ 2:5 cm in the leftmost groove. The
grating has sidewalls. The y coordinate is just below the top
of the teeth, so that the teeth appear as field-free zones.
According to our theory, the wave numbers for this fre-
quency are 114 and 200 m�1, corresponding to forward
and backward waves, respectively. Assuming that the latter
is negligible compared to the former (which is not true), we
use our model to calculate the field Bx as a function of x, z,
and t, with the y coordinate ¼ 0. Successive grooves are
phase shifted by the Floquet factor eikL. By choosing the
time appropriately, and adjusting the scale, we generated
the theoretical contour plot shown in Fig. 9(b). Since it
does not contain the small backward wave, it is not exactly
comparable to the simulation, but there is a reasonable
similarity.

In Fig. 10 we show the results of 3D simulations per-
formed for our grating without sidewalls, as was the case in
the experiment reported in Ref. [11]. Here the current
driver placed at x ¼ 0was used at several discrete frequen-
cies, and the ‘‘range’’ command of MAGIC was used to
obtain the z dependence of Bx along the line x ¼ 0, y ¼
2 mm. From the FFT of these, the wave numbers k and
K � k were determined, and they are shown in Fig. 10 as
circles, triangles, and squares for the three lowest symmet-
ric modes. The theoretical predictions are made using those
values of q that reproduce the three symmetric band heads
seen in Fig. 7. The corresponding dispersion curves are
shown in red, while the 2D prediction is shown in green.
The forward and backward light lines are shown in black,

and the beam line for a typical energy of 85 keV is shown
in blue. The overall agreement between theory and simu-
lation is good, and the validity of the 2D theory for the
lowest mode is obvious. However, the beam line also
intersects two higher frequency modes, one just at the
backward light line, and the other well beyond it. These
intersections correspond to allowed coherent SP radiation,
in contrast to the lowest mode. If these higher modes could
be excited, it would be possible to have coherent SP
radiation without the necessity of bunching on the har-
monic of the evanescent wave. We emphasize that this is
not the evanescent wave escaping as coherent SP radiation,
but simply the usual SP radiation becoming monochro-
matic and coherent due to the bunching at that frequency.
An important aspect of the excitation of the evanescent

wave is the coefficient �p that appears in Eq. (2.5) and

which determines the exponential decrease of the field with
height above the grating for the Floquet component whose
wave number is kþ pK. In order to excite the evanescent
wave with a beam, the beam should pass within a distance
of order 1=�0 from the top of the grating. According to our
theory, this quantity depends on the wave number, but not
upon which branch of the dispersion relation one is func-
tioning. The essential relation is

�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ pKÞ2 � ½!2DðkÞ�2

q
; (3.1)

where !2DðkÞ denotes the 2D frequency associated with
the wave number k. This is to be understood as follows: if
two surface waves of different frequency !3D but same
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FIG. 9. (a) Simulated contour plot of Bx in the x-z plane (y ¼
�1 mm) at fixed time, generated by a current driver operating at
5.3 GHz in the lowest antisymmetric mode. (b) Theoretical
contour plot of Bx in the x-z plane (y ¼ �0 mm) at fixed
time, corresponding to the forward wave. The time has been
chosen to maximize resemblance, and the overall scale has been
freely adjusted.
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FIG. 10. The three lowest branches of the 3D dispersion rela-
tion for the grating without sidewalls, with q chosen to yield the
correct band heads, are shown in red. The 2D dispersion relation
is shown in green. Black lines represent the forward and back-
ward light lines, while a beam line corresponding to 85 keV is
shown in blue. The intersection of the beam line with the two
highest branches could generate coherent SP radiation at that
frequency. For the lowest branch, the intersection takes place at a
sub-SP frequency, and coherent radiation can occur only at
harmonics.
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wave number k are excited, they will have the same value
of �0. This claim can be tested by exciting waves of fixed
frequency with the current driver, and observing the quan-
tity Bx as a function of z for x ¼ 0, t fixed, and two positive
values of y. From the FFTs of these curves we find an
interval of k in which the best value lies. This interval is
swept to find that value of k such that the quantity
jRb

a dzBxðz; yjÞeikzj attains its maximum. We then use the

‘‘Fit’’ procedure in MATHEMATICA to obtain the complex

coefficients C1 and C2 of the best fit of the form C1e
ikz þ

C2e
iðK�kÞz þ c:c: This is performed for the different values

of yj, and the corresponding values of �0 are obtained from

the following expressions:

�0ðkÞ ¼ �R½lnðC1jy1=C1jy2Þ�=ðy1 � y2Þ; (3.2)

�0ðK � kÞ ¼ �R½lnðC2jy1=C2jy2Þ�=ðy1 � y2Þ: (3.3)

For consistency, the coefficients Ci at different heights
must have the same phase, and this was typically true, to
within 0.1.
The results of extracting the coefficient �0 are displayed

in Fig. 11. The theoretical curve is obtained from the 2D
dispersion relation, while the simulations involved 2D, 3D
with sidewalls, and two different 3D frequency bands with
no sidewalls. To a fair degree, these empirically deter-
mined values all lie close to the theoretical expectations.
In the experiment described in Ref. [11], typical k values of
180 m�1 were found, for which the e-folding height is
about 6 mm. In the higher Brillouin zones with p > 0,
much greater values of �p are reached. If one wished to

excite such Floquet components with a beam, it would
have to pass very close to the grating’s surface.
A simple illustration of the predictive power of the theory

is provided by the pair of equations (2.24). A 3D simulation
of the gratingwith sidewalls was performedwith the current
driver operating at 4.7 GHz. The field components By, Bz,

Ey, and Ez were determined as a function of t, at x ¼ w=2.

At this point the factor tanðqxÞ ¼ 1; the model predicts that
the curves of ByðtÞ and ðq=!ÞEzðtþ T=4Þ should be iden-

tical. In Fig. 12(a) these curves are plotted, the former in
solid red, the latter in dotted black. The agreement is quite
good. Similarly, the prediction that BzðtÞ and ðq=!ÞEyðt�
T=4Þ should be identical is tested in Fig. 12(b), with sat-
isfactory if not perfect agreement.
If the grating were equipped with sidewalls, the possi-

bility of exciting some of the higher frequency modes
should be considered. To illustrate this, we show in
Fig. 13 the dispersion relation for the four lowest modes,
extended over two Brillouin zones. The forward and back-
ward light lines are shown, along with the beam line for
energy 61 keV. Such a beam intersects each branch of the
dispersion relation, but only the intersection with the low-
est branch occurs in the triangle bounded by the light lines.
In this case, the frequency is too low to correspond to
allowed SP radiation, and it can only occur on harmonics.
However, the other three intersections occur at allowed SP
frequencies, and coherent SP radiation at well-defined
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FIG. 12. Tests of the predictions given in Eq. (2.24). The rescaled and time-shifted electric field components (black) are compared
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FIG. 11. The coefficient �0 [see Eq. (2.5)] for the lowest
Floquet component as a function of wave number. According
to theory, shown in black, �0 depends only on the wave number,
and not on the frequency. Simulations in two and three dimen-
sions, with and without sidewalls, were used to generate the
points indicated, which tend to lie near the theoretical prediction.
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angles could be produced, provided these evanescent
waves could be excited. It is not the evanescent wave itself
which is radiated, but rather the coherent SP radiation due
to the bunching at that frequency.

C. Comparison with results of McVey and collaborators

As stated in the Introduction, the problem of a grating
enclosed by both sidewalls and a roof was treated by
McVey and collaborators many years ago. They considered
a section of rectangular waveguide whose lower plate
formed a rectangular grating. It is straightforward to adapt
our model to theirs. All that is necessary is to replace the
factor e��py appearing in Eq. (2.5) by cosh½�pðb� yÞ�=
coshð�pbÞ, where b denotes the height of the roof mea-

sured from the top of the grating. This ensures that the
tangential electric field vanishes on the roof. Everything

goes through in our derivation of the matrix �R, except that
the quantity �p must be replaced by �p tanhð�pbÞ wher-
ever it appears. This change, which is minor if �pb � 1, is

very important, since it allows �p to take on imaginary

values while keeping the eigenvalues of the matrix �R real.
This means that solutions to Eq. (2.16) exist for imaginary
�p. This does not happen in the AB approach, since the

determinant becomes complex for imaginary �p.

To illustrate the relation between our approach and that
of Ref. [23], we use their parameters (in inches), period
L ¼ 0:07, groove depth H ¼ 0:260, groove width A ¼
0:035, grating width w ¼ 0:622, and height b ¼ 0:311.
In Fig. 14(a) we show in blue the 2D AB calculation for
this grating if its width were infinite and without roof. If the
grating width is kept infinite, but the roof is taken into
account as shown above, the red dotted curves are ob-
tained. The existence of several branches is characteristic
of gratings where the groove depth exceeds the period. In
the absence of a roof these branches are confined to the
zone bounded by the light lines. When the roof is included,
these curves connect smoothly to modes that at long wave-
length become waveguide modes.
In Fig. 14(b) are shown the results of our 3D theory with

sidewalls (but no roof) in blue, and its extension to a roof
as red dotted lines. Comparison of the latter with the three
branches shown in Fig. 3 of Ref. [23] shows excellent
agreement. It should be noted that in the region bounded
by the light lines the roofless and roofed gratings have
almost identical properties. In fact, for the lowest fre-
quency, the agreement is nearly perfect everywhere.

IV. CONCLUSION

In this paper we have presented numerous arguments in
support of our theory for the 3D grating. It is based on a
simple extension of the 2D AB theory for a lamellar grat-
ing, as given by Eq. (1.2). We have offered evidence in its
favor based on 3D simulations and experimental measure-
ments of the transmission coefficients. A comparison with
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earlier established work on an enclosed grating lends sup-
port to our theory. We have also found that even a grating
with no sidewalls exhibits a frequency band structure simi-
lar to that of a grating with sidewalls. What remains to be
shown is the relevance to future experimental work,
which might establish some of the features we showed in
Figs. 10 and 13.

Although all of our simulations and measurements con-
cerned our grating, which functions in the microwave
frequency domain, there is no intrinsic scale in our theory,
and it should be valid at all frequencies. In order to obtain
terahertz frequencies with SP free-electron lasers, gratings
of much smaller periods must be used. We think that our
theory, together with simulations using PIC codes such
as MAGIC, can provide guidance in designing such
gratings.
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