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The results of Monte-Carlo simulations of electron-positron-photon cascades initiated by slow electrons

in circularly polarized fields of ultrahigh strength are presented and discussed. Our results confirm

previous qualitative estimations [A.M. Fedotov et al., Phys. Rev. Lett. 105, 080402 (2010)] of the

formation of cascades. This sort of cascade has revealed a new property of restoration of energy and

dynamical quantum parameter due to acceleration of electrons and positrons by the field. This may

become a dominating feature of laser-matter interactions at ultrahigh intensities. Our approach incorpo-

rates radiation friction acting on individual electrons and positrons.
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I. INTRODUCTION

The dramatic progress in laser technology has enabled a
novel area of studies exploring laser-matter interactions
at ultrahigh intensity [1]. The intensity level of
2� 1022 W=cm2 has recently been achieved [2] and two
projects [3,4] aiming at intensity levels up to 1026 W=cm2

are under way. Furthermore, several proposals [5–7] have
been put forward, which reach even higher intensities. One
of the key phenomena of laser-matter interactions at ultra-
high intensities of our interest is the occurrence of QED
cascades [4,8–10]. These cascades (also called avalanches,
or showers) are caused by successive events of hard photon
emissions and electron-positron pair photoproduction by
hard photons. As predicted in Ref. [10] on the basis of
qualitative estimations, the cascades may arise as soon as
the laser field strength exceeds the threshold value of E� ¼
�ES, where � ¼ e2=@c � 1=137 is the fine structure con-
stant and ES ¼ m2c3=e@ ¼ 1:32� 1016 V=cm is the char-
acteristic QED field. Such a field strength corresponds to
the intensity of �1025 W=cm2.

Previously QED cascades have been observed and
studied as a part of extensive air showers (EAS) in the
context of the passage through the atmosphere [11–13] of
ultrahigh energy particles that originate from cosmic rays.
However, similar processes can be observed in the external
electromagnetic field as well. In this case bremsstrahlung
is replaced by the nonlinear Compton scattering and the
Bethe-Heitler process is replaced by the nonlinear Breit-
Wheeler process. The latter processes are well studied both
theoretically [14–19] and in laser experiments [20] and are

probably of great importance for astrophysics (see, e.g.,
[21]).
An important novel distinctive feature of the cascades in

the ultrastrong laser field, compared to situations ever
studied previously, is that the laser field is not only able
to be a target for ultrarelativistic electrons and hard pho-
tons, but can also accelerate the charged particles to ultra-
relativistic energies.
As a result, the cascades can be produced even by initially

slow electrons or positrons, if they were somehow injected
into the strong field region. Moreover, the mean energy of
the particles is no longer decreasing in the course of the
cascade development due to its redistribution among the
permanently growing number of the created particles.
Instead, the mean energy is being restored at the expense
of the energy extracted from the laser field. This must lead
to a vast increase of the cascade yield, as compared to the
cascades in media or in strong magnetic fields. In this case
the cascade multiplicity would be restricted either by the
dwell time of the particles in the focal region of the laser
field, or even (under more extreme conditions) by the total
energy stored in the laser field. In the latter case the focused
laser pulses would be depleted by cascade production.
As it will be explained in more detail below, the resto-

ration mechanism works if the particles can be accelerated
transversely to the field. Several authors [8,10] conjectured
that this may be indeed the case on the basis of qualitative
analysis for the model of uniformly rotating electric fields.
In the EAS theory, the 1D approximation is often used

because spreading in the transverse direction is inessential
for ultrarelativistic particles and has no significance for
that problem. Besides, the cascade equations can be solved
in this case analytically within the ultrarelativistic approxi-
mation by means of the Mellin transform [12,13]. The
results of such analytic theory are in good agreement
with both experiments [11,12] and Monte-Carlo simula-
tions [22]. The attempts to treat the cascades in strong
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magnetic fields on similar grounds are also known [23].
However, although the 1D approximation remains valid,
the cascade equations cannot be simplified using the
Mellin transform unless some further approximation is
made. According to Monte-Carlo simulations [24], the
resulting analytical approach works much worse here
than in the case of 1D approximation for EAS. In our
case of cascades arising in a laser field, the structure of
the cascade equations (see the Appendix) is the same as for
the magnetic field, but it is impossible to incorporate
restoration mechanism within the 1D approximation in
momentum space. This means that our problem is essen-
tially two or three dimensional.

In this work we report on the first results of the Monte-
Carlo simulations of cascades produced by initially slow
electrons in a uniformly rotating homogeneous electric
field. Such a field can be obtained practically at the antin-
odes of a standing electromagnetic wave. The choice of the
field model is uniquely specified by the existence of
reasonable qualitative estimations for scaling of the basic
cascade characteristics for this particular case [10]. Our
goal was to prove explicitly the existence of the restoration
mechanism and to test the estimations [10] by direct
numerical simulations.

The paper is organized as follows. In Sec. II, which can
be considered as a technical introduction, we review and
collect the known information on the elementary quantum
processes: single photon emission by electrons and pair
creation by hard photons in strong fields of arbitrary con-
figuration. Though this information is not completely new,
it is of essential importance for our presentation and is
spread among the literature on the subject. After that, in
Sec. III we present the reasoning in favor of the energy
restoration mechanism for cascades in electromagnetic
fields. In Sec. IV we formulate the assumptions of our
model, present the details of our Monte-Carlo routine,
and discuss the results obtained by numerical simulations.
These results are compared to the known estimations.
Summary and discussion is given in Sec. V. Finally, in
the Appendix, we discuss the cascade equations for our
problem and explicitly demonstrate that, contrary to the
recent doubts [25], the approach we use takes proper
account of radiation friction for ultrarelativistic electrons.

II. QUANTUM PROCESSES WITH HIGH-ENERGY
PARTICLES IN A STRONG

ELECTROMAGNETIC FIELD

General properties of radiation of ultrarelativistic parti-
cles are well known [26]. The momenta of the products of
any decay of an ultrarelativistic particle are directed
mainly in the forward direction along the momentum p
of the particle: they are contained almost entirely within
the small range of angles��� ��1 around the direction of
p. Here � ¼ "=mc2 is the Lorentz factor, and " is the
energy of the particle. Thus, radiation of a charged

ultrarelativistic particle is visible at the point of observa-
tion only for a short period of time ��mc=eF? during
which its momentum rotates through the angle of the order
��. Here, F? denotes the transverse (to the direction of
motion) component of the field.
The decay processes in external electromagnetic fields

are ruled, see, e.g., [27], by the Lorentz and gauge invariant
parameter

� ¼ e@

m3c4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
"E

c
þ p�H

�
2 � ðp �EÞ2

s
; (1)

which, in particular, determines whether the process is
controlled by classical or quantum electrodynamics. If
� � 1, the loss of the energy by an electron due to
emission of a photon is inessential and radiation can be
treated classically, whereas at � * 1 such emission causes
both a loss of the electron energy and longitudinal recoil
deflecting the electron trajectory. In the latter case the
radiation should be considered in the framework of QED.
In what follows, we assume that E;H � ES. On the

other hand, we assume that the field is of relativistic
strength in the sense that the dimensionless field amplitude

a0 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A�A

�
p

=ðmcÞ � 1, where A� is the 4-vector of

the field potential. The characteristic time of the field
variation essentially exceeds � under this condition.
Thus, the field can be considered constant with respect to
the decay processes. If, in addition, � � E=ES, then any
field looks as a constant crossed field [27] and we can apply
the theory of quantum processes in such a field which was
given in Refs. [15,19,27].
According to this theory, the energy distribution of the

probability rate for photon emission by ultrarelativistic
electrons in an electromagnetic field is given by

dWradð"�Þ
d"�

¼��m2c4

@"2e

�Z 1

x
Aið�Þd�þ

�
2

x
þ��

ffiffiffi
x

p �
Ai0ðxÞ

�
;

(2)

where x ¼ ð��=�e�
0
eÞ2=3, AiðxÞ ¼ ð1=�ÞR1

0 cosð�3=3þ
�xÞd� is the Airy function, "� and "e are the energies of

the emitted photon and the initial electron, respectively.
�e; �

0
e ¼ �e � �� and �� (0< �� < �e) are the dimen-

sionless quantum parameters for the electron before and
after emission, and for the emitted photon, respectively.
Note that the probability rate (2) displays singular be-

havior at "� ! 0, dWradð"�Þ=d"� ¼ Oð"�2=3
� Þ. However,

in the adopted approximation this singularity is weaker
than the usual Oð"�1

� Þ infrared divergence of perturbative

QED [27,28]. As a result, the total radiation probability
rate is convergent. In general, the sector of small photon
frequencies is not important in the domain of parameters
considered in this paper, since the average frequency of the
emitted radiation exceeds the frequency of the driving field
essentially.
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The energy distribution of the probability rate for direct
pair creation by hard photons ("� � mc2) is given by

dWcrð"eÞ
d"e

¼ �m2c4

@"2�

�Z 1

x
Aið�Þd�þ

�
2

x
� ��

ffiffiffi
x

p �
Ai0ðxÞ

�
;

(3)

where the indices ‘‘�’’ and ‘‘e’’ refer this time to the initial
photon and to the created electron, respectively. For the
created positron, we have �0

e ¼ �� � �e (0< �e < ��).

Formula (3) is completely symmetric with respect to elec-
trons and positrons, remaining unchanged under the re-
placement �e $ �0

e. The similarity between formulas (2)
and (3) is explained by the fact that these two processes are
two cross channels of the same reaction [27].

The total probability rates for both processes cannot be
written in terms of known special functions and should be
obtained by numerical integrations. However, they allow
simple asymptotic expressions in the limit of large �e and
��, respectively. We have

Wrad � 1:46
�m2c4

@"e
�2=3
e ; �e � 1; (4)

and

Wcr � 0:38
�m2c4

@"�
�2=3
� ; �� � 1: (5)

For small values of the quantum parameter ��, the proba-

bility rate for pair photoproduction Wcr is suppressed ex-
ponentially. This corresponds to the impossibility of pair
creation in the classical limit.

Equation (2) determines the energy distribution function
for the photons emitted by an electron with the momentum
pe and the energy "e. If �e � 1, the momentum of this
photon is given by p� ¼ ð"�=peÞpe. The energy and the

momentum of the recoil electron should be determined
from the conservation laws. In the electromagnetic back-

ground, they are of the form p
�
e þ q� ¼ p

0�
e þ p

�
� , where

q� is the 4-momentum extracted from the field. However,
for ultrarelativistic particles we can write p0

e ¼ pe � p�.

This is because q & eF� & mc � pe; p
0
e; p� within the

accuracy of our approximation. The same argument can be
applied to the process of pair creation by hard photons as
well.

In addition to one-photon emission and direct pair pho-
toproduction reviewed above, there exist more complicated
higher-order processes, such as, e.g., the two-photon emis-
sion e� ! e��� or the trident process e� ! e�e�eþ.
Their specific feature is that the intermediate particle is
off the mass shell, i.e., is virtual. However, in strong field
cases of our interest the two-step processes dominate
[8,9,20]. For this reason, we do not consider higher-order
processes in the sequel.

III. BASIC ESTIMATES FOR CASCADE
PRODUCTION IN A ROTATING ELECTRIC FIELD

Since there is no difference whether an electron or a
positron initiates a cascade, we assume in this section that
our cascade is initiated by a positron (e > 0).
Consider a positron in a homogeneous, uniformly rotat-

ing electric field

E ðtÞ ¼ fE0 cos!t; E0 sin!tg: (6)

The equation of motion

_pðtÞ ¼ eEðtÞ; (7)

with the initial condition pðt0Þ ¼ p0, can be easily solved:

pxðtÞ ¼ p0x þmca0ðsin!t� sin!t0Þ;
pyðtÞ ¼ py0 �mca0ðcos!t� cos!t0Þ:

(8)

Here, a0 ¼ eE0=m!c is the dimensionless field amplitude.
Let us assume first that the positron is at rest (p0 ¼ 0)

initially (t0 ¼ 0). Equations (6) and (8) show that the
energy and the quantum parameter � of the positron for
this case depend on time as

"eðtÞ ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a20sin

2 !t

2

r
; (9a)

�eðtÞ ¼ e@E0

m2c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a20sin

4 !t

2

r
: (9b)

Both quantities are increasing initially. They are oscillating
with the period 2�=! of the rotation of the field. The
amplitudes of these oscillations, "m � 2mc2a0, �m �
2a0ðE0=ESÞ ¼ 2ð@!=mc2Þa20 are proportional to a0 and

a20, respectively, and are quite large under our basic as-

sumptions. For example, �m approaches unity already at
a0 � a0c ¼ 500 for an optical rotation frequency, @! ¼
1 eV. This corresponds to the field strength E0 �
10�3ES � 1013 V=cm and intensity 1024 W=cm2. Since
�m � 1 under such conditions, the positron, according to
the preceding section, is able to emit a hard photon with
�� � �e � 1, which, in turn, can create an electron-

positron pair. However, at such intensities a new generation
of pairs is typically produced on the time scale �=!, and
the whole pair generation process may be rather sensitive
to peculiarities of the field model. As we will discuss
below, stable cascade formation is expected at higher
intensity levels.
The formulas (9a) and (9b) become especially simple for

stronger fields a0 � a0c, because in this case the value
�e � 1 is reached within just a small fraction tacc of the
rotation period. We have

"eðtÞ � eE0ct;
1

!a0
� t � 1

!
; (10a)

�eðtÞ � 1

2

�
E0

ES

�
2 mc2!

@
t2;

1

!
ffiffiffiffiffi
a0

p � t � 1

!
: (10b)
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Equation (10a) immediately follows from the fact that the
positron is initially accelerating almost along the field. Let
us note now that according to Eqs. (6) and (8) the momen-
tum of the positron in the case pð0Þ ¼ 0 constitutes the
angle with both the instant direction of the field and the x
axis exactly equal to !t=2. This is because the particle
does not follow the rotation of the field precisely due to its
inertia. As a consequence, the transverse (to the momen-
tum of the particle) component of the field increases as
E? ¼ E0 sinð!t=2Þ � E0!t=2. Since �eðtÞ � E?�=ES,
we arrive immediately at Eq. (10b). The similar behavior
of the energy and the parameter � with time has been
observed in Ref. [10] for generic field configurations.

As it follows from Eq. (10b), the quantum parameter �e

becomes of the order of unity over the period of time tacc,

tacc � @

�mc2�

ffiffiffiffiffiffiffiffiffi
mc2

@!

s
: (11)

Here we have introduced a new dimensionless field inten-
sity parameter � ¼ E=E�; E� ¼ �ES � ES=137, which is
appropriate for the cascade problem [10]. The parameter�
is related to the commonly accepted parameter a0 by � ¼
ð@!=�mc2Þa0. According to Ref. [10], the cascades can be
caused by initially slow particles if � * 1.

In the course of hard photon emission, the value of the
quantum parameter �e is shared between the positron and
the emitted photon [29], �e � �� þ �0

e. If �e * 1 then

both �� and �0
e are less than �e but are of comparable

values �0
e � �� & �e. Although propagation of the result-

ing hard photon is not affected by the field, nevertheless its
�� continues to increase after emission just due to rotation

of the field.
In order to understand better what is happening at the

successive stages of cascade development, let us return to
Eq. (8) and consider the general initial conditions. In the
case H ¼ 0 the sign of the time derivative of (1) is com-
pletely determined by the sign of the quantity �ðp �EÞ�
ðp � _EÞ. The zones in the p0 plane where _�e is positive for a
parental positron at the moment of photon emission t ¼ t0
are shaded in Fig. 1. Since the secondary particles are
created with momenta parallel to the momentum of the
parental particle, their momenta also lie in the shaded
sector and hence the parameter � of the recoil positron is
also growing. The same will be true for successive pair
creation processes as well. The momenta of created elec-
tron and positron also lie in the sector with _�> 0 and their
transverse (to the momentum of the parental photon) mo-
menta are both growing in magnitude being oppositely
directed.

The fact that the field repeatedly restores the values of
parameter � of the particles which decrease at every event
of photon emission plays the key role for cascade develop-
ment. The preceding paragraph explains the restoration
mechanism for the case of a homogenous uniformly rotat-
ing electric field in detail.

Though the spatial picture of the cascade development is
very complicated (see Fig. 2), one can obtain some general
estimates in the high-field limit� � 1 [10]. Basing on the
similarity of the probability rates (4) and (5), as well as
time dependencies of the angles between the momenta and
the field strength for all particles (positrons, electrons, and
photons), we will not distinguish between these three sorts

FIG. 1. The sign of _�eðtÞ along the particle trajectory at t ¼ t0
in different zones of the p0xp0y plane. The shaded zones corre-

spond to acceleration (increase of �e) of positrons and electrons.

FIG. 2. Spatial picture of the formation of the cascade initiated
by a positron in the homogeneous uniformly rotating electric
field (obtained by a Monte-Carlo simulation with a0 ¼ 2� 103

and @! ¼ 1 eV). Legend: Trajectories of electrons and positrons
are shown as black and gray curves, respectively. The hard
photons which have created pairs during the simulation time
are shown as the dashed lines. The trajectory of the primary
positron ignoring any QED processes is plotted as the thick light
gray curve.
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of particles and use the model of a simple doubling chain
process. Such a model must give a correct order-of-
magnitude estimate.

Let us denote by te the typical lifetime for electrons and
positrons with respect to hard photon emission. The same
quantity defines the lifetime of photons with respect to pair
creation up to an order of magnitude. The lifetime te, the
typical energy " and the quantum parameter � of the
particles, as well as the angle between their momenta and
the field strength � can be estimated as [10]

te � @

�mc2�1=4

ffiffiffiffiffiffiffiffiffi
mc2

@!

s
; (12a)

"est �mc2�3=4

ffiffiffiffiffiffiffiffiffi
mc2

@!

s
; �est ��3=2; (12b)

�est �!te � 1

��1=4

ffiffiffiffiffiffiffiffiffi
@!

mc2

s
: (12c)

Under the condition � � 1, as is assumed here, we have
� � 1 and � � 1. The latter inequality approves the
choice of the asymptotic expressions (4) and (5). In addi-
tion, we have the following hierarchy of the time scales
tacc � te, which assures that exactly hard photons with
�� * 1 are typically emitted.

Within the framework of the doubling chain process
model, the number of pairs (multiplicity of the cascade)
must grow exponentially,

NðtÞ � e�t; �� 1

te
� ��1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2!

@

s
: (13)

In the next section, we are checking the estimations (12)
and (13) by direct Monte-Carlo simulations.

IV. DESCRIPTION OF MONTE-CARLO
APPROACH AND NUMERICAL RESULTS

In our simulations we are using a Monte-Carlo approach
for the integration of the cascade equations [see the
Eqs. (A1) and (A2)]. We trace the motion of the electrons
and positrons in between the acts of photon emission
classically, whereas for hard photons we exploit the ray
tracing approximation in between the acts of their emission
and conversion into pairs. Even though there exists the
exact analytical solution (8) for equations of motion (7)
for positrons and electrons, we are integrating Eq. (7)
numerically for each of the particles. This is done in order
to incorporate the probabilistic events of photon emission
and pair creation in the routines as described below, as well
as for the purpose of future generalization to more realistic
field configurations.

Our numerical algorithm works as follows. At each time
step ti < t < ti þ �t we are calculating the momenta of all
the particles created at the preceding time steps by piþ1 ¼
pi þ qiEiþ1=2�t, where Eiþ1=2 ¼ Eðti þ �t=2Þ and

qi ¼ þe;�e; 0 for positrons, electrons, and photons, re-
spectively. The event generator determines which of the
electrons or positrons is going to emit a photon at this time
step and whether any of the present photons is going to
produce a pair.
Let us explain our event generator for photon emission

in more detail (see also Refs. [22,30]). Starting from pi and
Ei ¼ EðtiÞ, we attach the value �i at time ti using Eq. (1)
to each electron and positron and compute the total proba-
bility rate Wrad. In order to isolate the infrared singularity,
we set the lower limit of integration to "min. For each
electron and positron, we assume that it emits a photon
between ti and tiþ1 if r < Wrad�t, where r (0< r < 1) is a
uniformly distributed random number. If the above in-
equality is fulfilled, then the energy "� of the emitted

photon is obtained as the root of the sampling equation,

1

Wrad

Z "�

"min

dWradð"�Þ
d"�

d"� ¼ r0; (14)

where r0 (0< r0 < 1) is an independent random number.
The time step �t, which remains fixed in the course of
computation, must be chosen such that the restriction
�t � W�1

rad ; W
�1
cr holds. The direction of propagation of

the newly emitted photon is parallel to the momentum pi of
the parental electron or positron, whose momentum after
emission we find from the conservation law as discussed in
Sec. II. For pair creation, the event generator works simi-
larly, apart from the fact that there is no need for the
regularization parameter "min.
Within the constant crossed field approximation applied

here we assume that "� � mc2. However, the photons

with energies "� & mc2 are not able to create pairs in a

subcritical field, for which �� � 1. Therefore, we can

completely neglect emission of soft photons in our prob-
lem. Based on this reasoning, we currently set the lower
integration limit "min tomc2 for bothWrad and the sampling
Eq. (14).
As a benchmark for our code we have simulated the

development of a cascade initiated by a high-energy ("0 ¼
2� 105mc2) initial electron in a constant homogeneous
transverse field with E0 ¼ 0:2ES. Our results are averaged
over 103 simulation runs. In this particular simulation, the
curvature of trajectories of electrons and positrons has been
neglected, so that the results of our simulations can be
directly compared with previous simulations of cascades
produced by high-energy electrons in a magnetic field [24].
Comparison of cascade profiles obtained in both simula-
tions is given in Fig. 3 by the thin black and thick gray
lines, respectively. The figure represents the number of
pairs with an energy exceeding 0.1% of the energy of the
primary electron versus the elapsed time. In our notation
the reference characteristic radiation time trad as adopted

in Ref. [24] is trad ¼ 3:85� ð�in=��
2=3
in Þ � ð@=mc2Þ ¼

5:64�W�1
rad;in, where the subscript ‘‘in’’ refers to the initial

QED CASCADES INDUCED BY CIRCULARLY POLARIZED . . . Phys. Rev. ST Accel. Beams 14, 054401 (2011)

054401-5



data for primary electron. We see that our results are in
reasonable agreement with the paper [24].

We have also implemented and tested a different event
generator, which provides significant speed up due to the
absence of numerical integrations. The idea is to exploit
some explicit algebraic fits for the energy spectrum (2), and
to exchange the order of testing the occurrence of photon
emission and of sampling its energy. In this alternative
version of the algorithm, within each time step one first
samples the possible energy of an emitted photon just as a
uniformly distributed random quantity, "� ¼ "er

0 in the

above notation. After that, photon emission is assumed to
take place if r < ½dWradð"�Þ=d"�	"e�t. In this case, the

time step must satisfy the condition �t �
½"edWradð"��Þ=d"�	�1 for all appearing electrons and posi-

trons, where "�� is the photon energy that corresponds to the

maximum of the emission spectrum (2). The same scheme
can be applied to the simulation of pair photoproduction as
well. Note that in this case there is no need to introduce the
energy cutoff "min, although this may serve as a useful trick
if one wants to restrict the number of soft photons that are
traced by the code. The test of the modified event generator
is included by circles in Fig. 3. This test demonstrates that
both versions of the event generator are in fact equivalent.
The results of our simulations are collected in Figs. 2

and 4–7. Figure 2 represents a typical spatial picture of the
formation and development of a cascade initiated by a
positron. The electrons and positrons are deflected by the
field in opposite directions, whereas the directions of
propagation of photons are distributed randomly, as could
be expected. For the rest of the paper we assume for all
simulations in an uniformly rotating field that at t ¼ 0 we
have a single electron at rest (pe ¼ 0) and no photons and
positrons. The typical evolution of the quantum dynamical
parameter �e of the primary electron is illustrated with the
left panel of Fig. 4. Before the emission of a first photon,
the electron is gaining energy and its parameter �e is
growing as the square of time in accordance with
Eq. (10b). After the first photon emission, which for our
parameters happens typically on the time scale te smaller
than !�1, the curves become stochastic and consist of
smooth sections with typical growth of �e due to accelera-
tion by the field. These sections are separated by sudden
breakdowns resulting from recoils due to successive pho-
ton emissions. Since these recoils are random, the three
curves in the figure corresponding to independent simula-
tion runs deviate at later times. After the transient period
which typically lasts for several lifetimes te, the momen-
tum losses due to quantum recoils are coming into equi-
librium on the average with the trend of acceleration by the
field. After that, function �eðtÞ for an individual electron
describes a stationary stochastic process. This is a

FIG. 4. Left plot: Temporal evolution of the quantum dynamical parameter �e of the primary electron for three independent Monte-
Carlo simulations. The thick gray curve corresponds to the analytical solution Eq. (9b) for �eðtÞ in the absence of any QED processes.
The three other curves (run 1, run 2, and run 3) are the results of the three independent Monte-Carlo simulations with parameters
a0 ¼ 2� 104 and @! ¼ 1 eV. Right plot: The total number of electrons and positrons Neþe� vs time for the same independent
simulations.

FIG. 3. Comparison of the cascade profile obtained with our
code (black thin line), with a code applying an alternative event
generator (circles) and from previous independent simulations
(thick gray line, see Fig. 5 in [24]). Depicted is the number of
pairs with energy " > 10�3"0 versus the elapsed time. The
simulation parameters are "0 ¼ 100 GeV and E0=ES ¼ 0:2.
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manifestation of the restoration mechanism discussed in
the preceding section.

As it was predicted in Ref. [10], the development of a
cascade results in exponential growth with time of the total
numbers of secondary hard photons and electron-positron
pairs. This is illustrated with the right panel in Fig. 4. The
plot Ne�eþðtÞ is given by a random stairway, with each stair
corresponding to creation of a single pair. The successive
steps are well separated initially, when the total number of
pairs remains small. At later time with the number of pairs
growing rapidly, the stairlike structure of the lines in the
plot becomes invisible and straight lines are obtained.
Although these straight lines for independent simulation
runs are typically different, mostly because emission of the
first photon starts randomly from one simulation run to
another, nevertheless their gradients are varying weakly in
different runs and can be used to determine the growth rate
� in Eq. (13). For example, the growth rates extracted from
the curves 1–3 at Fig. 4 are � ¼ 4:62, 4.84, and 4.90,
respectively.

We have studied the averages of the quantities �e, "e,
and � over the cascade. For example, temporal evolution of
the mean value

h�eðtÞi ¼ 1

Ne�ðtÞ
XNe�ðtÞ

i¼1

�eiðtÞ; (15)

where Ne�ðtÞ is the instant number of present electrons and
�eiðtÞ is the instant value of the quantum dynamical pa-
rameter for the ith electron, is depicted in the left plot of
Fig. 5. One can see that at later times the random fluctua-
tions are smoothed out and the quantity (15) stabilizes
acquiring some definite constant value which is indepen-
dent of the simulation run. The same behavior was ob-
served for h"ei and h�i, which are defined similarly to
Eq. (15). The typical evolution of the averaged energy of
all the components of the cascade is represented in the right
plot of Fig. 5. At later times, the mean energies of electrons

and positrons coincide as is expected from symmetry
consideration, whereas the mean photon energy typically
remains smaller. At the same time, the energy spectrum of
created electrons and positrons is wider than the photon
spectrum (see Fig. 6). Both features are explained naturally
by the fact that in our setup the hard photons (�� * 1) are

quickly converted into pairs which survive, whereas soft
photons (�� & 1) are stable with respect to pair photo-

production and hence are accumulated. In the high energy
region, all the spectra are likely to show exponential decay.
One of our main tasks was the investigation of the

validity of estimations (12) and (13) which were suggested
previously in Ref. [10] and are of crucial importance. In
particular, Eq. (13) was serving as an argument for the
estimation of the maximum value of the intensity attain-
able with focused laser fields. In order to test these estima-
tions, we have performed parametric studies of the
stabilized values of the quantities h�ei, h"ei, h�i and of
the increment �. These results are presented in Fig. 7. The
ratios h"ei="est; h�ei=�est; h�ei=�est as functions of � are
presented in the left plot for the fixed rotation frequency
@! ¼ 1 eV. It is clear from the figure that at large values of
� each ratio acquires some constant value of the order of
unity. According to our results the formulas (12) are valid
up to some numerical coefficients of the order of unity,
which vary no more than twice in the whole range �> 1.
The results of simulations for � are compared with Eq. (13)
for two different rotation frequencies @! ¼ 0:66 eV and
@! ¼ 1 eV on the right panel of Fig. 7. One can see that for
large values of � the estimation (13) is justified with good
accuracy even without any correction factor. For � & 30
formula (13) overestimates � but not more than by half of
an order of magnitude. This may be nevertheless crucial for
the estimation of the total cascade yield due to its expo-
nential dependence on �. For the particular value � � 10,
which was exploited in Ref. [10], formula (13) overesti-
mates � by approximately a factor of 1.5. This, however, is

FIG. 5. Left plot: The dynamical quantum parameter h�ei for the electrons averaged over the cascade vs time for the same
simulations as in Fig. 4. Right plot: Evolution of the mean energy of the electrons, positrons, and photons averaged over the cascade in
a typical simulation run (a0 ¼ 5� 104 and @! ¼ 1 eV).
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compensated by simultaneous underestimation of the es-
cape time tesc in Ref. [10].

In order to apply the results of our simulations to esti-
mate the cascade yield by a realistic focused laser field, we
assume that the appearing electrons and positrons are
pushed away as a whole from the focus by the pondero-
motive potential in radial direction with almost the speed
of light. Assuming the Gaussian profile of the focused

beam we can write �ðtÞ ¼ �0e
�c2t2=w2

0 , where �0 is the
value of the parameter� at the center of the focus andw0 is
the focal radius. Then the total number of pairs produced
by the cascade can be estimated to the

lnðNeþe�Þ �
Z 1

0
�½�ðtÞ	dt ¼ �ð�0Þ

Z 1

0
e�c2t2=4w2

0dt;

see Eq. (13). The remaining integral defines the effective
time of escape from the focus and equals

ffiffiffiffi
�

p ðw0=cÞ, i.e., isffiffiffiffi
�

p � 1:77 times larger than it was assumed in Ref. [10].
This correction almost totally cancels the overestimation of

� by formula (13) at � � 10 that we have observed in our
simulations. Thus, we hope that the quantitative predic-
tions in Ref. [10] must remain unaffected by our
corrections.
One can see that we are currently neglecting the com-

plicating details in our code such as elastic collisions,
Compton scattering, and annihilation processes. Such
phenomena must become important only at longer time
scales, when the plasma is dense enough. Though succes-
sive collisions and annihilations of the electron and posi-
tron from the same created pair may be important [31], we
are currently ignoring these effects for simplicity [32]. We
ignore the higher-order processes, such as two-photon
creation and the trident processes as well (see the remark
at the end of Sec. II). All these assumptions are natural and
commonly accepted in the present cascade theory [23],
even though they may be revised in future studies.
Because of limitations of computer power, we currently

stop our simulations after the creation of Ne�eþ & 104

pairs. This was shown to be enough to estimate the growth
rate �, as well as to average the characteristics of a cascade
over the ensemble of pairs with reasonable accuracy. In the
time interval of simulation these pairs occupy a volume of
the order d3, where d� c=!� 1 �m. This corresponds to
a pair density neþe� � 1016 cm�3. Typical values of the �
factor for electrons and positrons are �� 103–104 (see
Fig. 6), corresponding to energies "e ¼ �mc2 �
0:5–5 GeV. Assuming a temperature T � "e=k� 1013 K,

we can estimate the Debye screening radius rD �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=e2neþe�

p � 1 cm � d. The relativistic plasma fre-
quency �pe � c=rD � 1010 sec�1 remains about 5 orders

of magnitude smaller than the optical frequency. For these
reasons we have completely neglected Coulomb interac-
tion between electrons and positrons and all the accompa-
nying collective plasma effects in the present simulations.

FIG. 6. The energy spectra for different components of the
cascade at t ¼ 1:2�!�1 for a0 ¼ 5� 104 and @! ¼ 1 eV.

FIG. 7. Left plot: Parametric studies of the mean energy h"ei, the mean dynamical quantum parameter h�ei, and the mean angle h�i
between the momentum and the field for electrons and positrons. The ratios of the simulation results to the approximations (12b) and
(12c), are plotted vs the parameter � for @! ¼ 1 eV. Right plot: Parametric study of the increment � as a function of the
dimensionless field strength � for two rotation frequencies @! ¼ 1 eV and @! ¼ 0:66 eV. The approximation (13) is shown by
the dashed lines.
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However, the density of pairs is growing exponentially,

neþe�ðtÞ / e�t, and hence rD / e��t=2 and �pe / e�t=2.

After a relatively short period of time & 2�=!, when the
number of pairs becomes macroscopic (� 1011), the quan-
tities rD and �pe attain the values d and !, respectively,

and the collective plasma effects may come into play.
Within our approximation of a homogeneous field, the total
number of created pairs would be restricted by the screen-
ing of the external field by the self-field of arising plasma.

Let us note that, despite some doubts expressed in [25],
the radiation friction is taken into account properly in our
version of the algorithm by the recoils happening at the
times of photon emission (see, e.g., Ref. [33] and the
Appendix in our paper). Hence, there is no need to include
an additional radiation friction force in the equations of
motion (7) for electrons and positrons as this would cause
double counting. Moreover, our approach transfers the
concept of classical radiation friction into the quantum
domain in a correct fashion. It can be asked how the
classical continuously acting radiation friction can be re-
covered from the sudden jumps of momentum similar to
those in Fig. 4. In fact this happens on the average with
respect to the ensemble of Monte-Carlo realizations, since
the moments of successive photon emissions are distrib-
uted randomly. At a longer time, when the number of
created pairs becomes large, the cascade forms a represen-
tative ensemble itself, and there is in principle no need for
averaging over independent realizations.

V. SUMMARYAND DISCUSSION

In this paper we have presented the first results of
numerical simulations of the formation and development
of electron-positron-photon cascades by initially slow elec-
trons in a uniformly rotating homogeneous electric field. In
such a situation the cascades reveal a new feature, i.e., the
restoration of the energy and the dynamical quantum pa-
rameter due to the acceleration of electrons and positrons
by the field. This feature may be of crucial importance for
the physics of laser-matter interactions in the strong field
domain, as it was demonstrated in Ref. [10]. We have
explicitly identified this restoration mechanism in the
course of our simulations. Also, our simulations clearly
confirm the qualitative analysis of Ref. [10], including the
basic scaling relations (12) and the estimate (13) for the
cascade yield. So, they can be used to fix the remaining
numerical prefactors in Eqs. (12) and (13) (which turn out
to be of the order of unity).

The numerical approach that we adopt is based on
Monte-Carlo simulations of the cascade equations. We
have shown explicitly that contrary to some doubts ex-
pressed in the literature [25] such an approach incorporates
radiation friction acting on individual electrons and posi-
trons and, moreover, is doing this in a manner which is
consistent with intense field QED.

The code designed for our task can be readily adopted
for simulating cascades in the laser fields with more real-
istic configurations, such as tightly focused Gaussian
beams and pulses. This is required in order to make more
definite predictions on the impact of cascade production
for possible future experiments, as well as for further
corrections of the maximum value of intensity that can
be attained with optical lasers [10]. A simulation of cas-
cades in a focused laser field will be presented in a separate
publication. However, let us make several brief comments
about cascades in focused laser fields, possible experimen-
tal scenarios, and some yet unresolved technical problems
that may require further studies.
The restoration mechanism arises due to the curvature of

the trajectories of the charged particles across the field and
may be sensitive to its polarization. Although we expect
that this mechanism must work for generic field configu-
rations (e.g., for generic tightly focused laser fields), there
may exist several particular configurations for which the
restoration mechanism does not work. For example, in an
arbitrary constant electromagnetic field or a circularly
polarized propagating plane electromagnetic wave, the
dynamical quantum parameter �e is conserved exactly in
the course of motion. In the case of a generic propagating
plane wave the amplitude of oscillations of the parameter
�e for an initially slow electron does not exceed E0=ES,
i.e., always remains smaller than unity. Another example is
a linearly polarized oscillating electric field [25], since in
this case the initially slow particles are accelerated strictly
along the field and hence the growth of the transverse
component of the field is absent. In some intermediate
cases, e.g., for elliptical polarization or a weakly focused
Gaussian beam, restoration of �e must exist but may be
less effective than in the case of circular polarization.
However, in all cases at least the usual cascades would
be caused by external high-energy electrons or hard pho-
tons passing through the high-field region transverse to the
field. This means that the cascade yield remains micro-
scopic and would be determined by both the initial energy
of an external energetic particle and the laser field strength.
In order to initiate a cascade in a tightly focused laser

field, one needs to inject a primary particle into the center
of a focal region. This task may be nontrivial because the
focal region is surrounded by a ponderomotive potential

wall of the characteristic height U0 �mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

q
�

mc2a0. The external high-energy electrons will most likely
not penetrate inside, but rather will be deflected. The most
direct and elegant scenario is based on the exploration of
pairs that are created spontaneously from vacuum by the
laser field itself [10], since they are appearing exactly at the
center of the focus as required. However, this possibility
implies high intensities * 1026 W=cm2. Another possible
resolution would be the initiation of cascades by energetic
� quanta. In our opinion, the ultimate question of whether
or not cascades with macroscopic yield can arise in generic
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real experiments exploring laser-matter interaction at in-
tensities lower than�1026 W=cm2 requires further studies.
We note that for cascades that arise in the course of the
interaction of high-intensity laser radiation with material
targets it may be necessary to take into account the impact
of ordinary cascades in matter as well [34].

If the cascade yield attains macroscopic values
(Ne�eþ � 1011), the self-field of the electron-positron
plasma becomes comparable to the guiding field. In this
regime screening of the external field and its absorption by
the electron-positron plasma self-field will restrict further
pair production. Such a regime can be simulated by com-
bining our code with the particle-in-cell (PIC) method [35].
We hope to address this problem in the near future.
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APPENDIX: CASCADE EQUATIONS
AND RADIATION REACTION

The cascade equations for a uniformly rotating homoge-
neous electric field,

@f
ðpe; tÞ
@t


 eEðtÞ@f
ðpe; tÞ
@pe

¼
Z

wradðpe þ p� ! p�Þf
ðpe þ p�; tÞd3p�

� f
ðpe; tÞ
Z

wradðpe ! p�Þd3p�

þ
Z

wcrðp� ! peÞf�ðp�; tÞd3p�; (A1)

@f�ðp�; tÞ
@t

¼
Z

wradðpe ! p�Þ½fþðpe; tÞ þ f�ðpe; tÞ	d3pe

� f�ðp�; tÞ
Z

wcrðp� ! peÞd3pe; (A2)

differ from the standard equations of EAS [12,13] only by
addition of the second term to the left-hand side of
Eq. (A1), which takes into account electron and positron
acceleration. Here, f
 and f� are the distribution functions

for positrons, electrons, and photons, respectively. In our

approximation the momenta of emitted photon, as well as
of created electron and positron, are directed strictly along
the direction of motion of the parental particle. This means
that the differential probability rates can be written in the
form

wradðpe ! p�Þ ¼
Z 1

0
d	
ðp� � 	peÞ�e dWrad

d"�

��������"�¼	"e

;

wcrðp� ! peÞ ¼
Z 1

0
d	
ðpe � 	p�Þ�� dWcr

d"e

��������"e¼	"�

;

(A3)

so that the threefold integrals on the right-hand side (RHS)
of Eqs. (A1) and (A2) transform into onefold integrals.
However, the problem does not become one dimensional
since the direction of the field EðtÞ varies in time.
It is worth noting that owing to Eq. (A3) it follows from

(A1) and (A2) that

d

dt

�Z
peðfþ þ f�Þd3pe þ

Z
p�f�d

3p�

�

¼ eEðtÞ
Z
ðfþ � f�Þd3pe; (A4)

d

dt

�Z
"eðfþ þ f�Þd3pe þ

Z
"�f�d

3p�

�

¼ eEðtÞ
Z pe

"e
ðfþ � f�Þd3pe: (A5)

These relations demonstrate that in our approximation the
momentum and the energy of particles are derived from
the field only in the process of acceleration of electrons
and positrons. By turn, this means that the energy and the
momentum of the electron-positron-photon plasma are
conserved in events of photon emission and pair
photoproduction.
The first two terms on the RHS of Eq. (A1) describe the

influence of photon emission on the motion of electrons
and positrons. Let us demonstrate that the classical radia-
tion reaction is taken into account by these terms properly.
For this purpose we will consider the domain of �e
 � 1
(at the same time the particles are assumed to be ultrarela-
tivistic as before). In this case the motion of the particles
can be considered completely classical. Then the third term
on the RHS of Eq. (A1), which is responsible for pair
production, can be omitted and, hence, the total numbers
of positrons and electrons N
 ¼ R

f
d3pe are conserved.

Let us rewrite the relation between the variables �� and

x in Eq. (2) in the form

�� ¼ x3=2�2
e

1þ x3=2�e

: (A6)

Taking into account that the spectrum (2) of the emitted
photons is effectively concentrated in the range x & 1,
we get
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�� � x3=2�2
e & �2

e � �e: (A7)

As a consequence, p� � pe and in the remaining integrals

on the RHS of Eq. (A1) we can use the expansion

wradðpe þ p� ! p�Þf
ðpe þ p�Þ � wradðpe ! p�Þf
ðpeÞ
� p�

@

@pe

½wradðpe ! p�Þf
ðpeÞ	: (A8)

Now, we multiply both sides of the transformed Eq. (A1)
by pe and integrate it over pe. The result can be easily
reduced to the form

_P
ðtÞ ¼ 
eEðtÞ þ hRi
ðtÞ; (A9)

where P
ðtÞ ¼ ð1=N
Þ
R
pef
ðpe; tÞd3pe are the average

momenta of positrons and electrons,

RðpeÞ ¼ �
Z

p�wradðpe ! p�Þd3p� (A10)

is the mean rate of momentum losses of the particles due to
photon emission, and

hRi
ðtÞ ¼ 1

N


Z
RðpeÞf
ðpe; tÞd3pe

are its mean values.

Taking into account that p� � x3=2�epe and "� ¼
ð"e=�eÞ�� and using Eqs. (A3) and (2), we obtain

R ðp eÞ ¼ �"epe

Z �e

0
x3=2

dWrad

d"�
d��: (A11)

From this point, we pass to the integration over the variable

x. In the approximation �e � 1we have �� ¼ x3=2�2
e. The

main contribution to the integral in Eq. (A11) comes from
the range x� 1. Hence, we can neglect the term ��

ffiffiffi
x

p
in the brackets on the RHS of Eq. (2) and, in addition,
replace the upper limit of integration over x by infinity.
After these manipulations, we have

R ¼ 3

2

�m2c4�2
e

@

pe

"e
J;

J ¼
Z 1

0

�
x2

Z 1

x
Aið�Þd�þ 2xAi0ðxÞ

�
dx:

(A12)

The remaining integral J after integration by parts and use
of the Airy equation, Ai00ðxÞ � xAiðxÞ ¼ 0, is reduced to

J ¼ � 2

3

Z 1

0
x3AiðxÞdx ¼ � 4

9
:

Thus, in view of Eq. (1), we finally have

R ¼ � 2

3

�m2c4�2
e

@

pe

"e
¼ � 2

3

e4F2
?�

2
e

m2c4
cpe

"e
: (A13)

This is exactly the leading term of the Landau-Lifshitz
(LL) force for ultrarelativistic electrons [26]. Other terms
of the LL force do not appear in (A13) only because we

have used the approximation of ultrarelativistic particles in
our derivation from the very beginning.
In the quantum case �e � 1 the expansion (A8) is not

valid. Thus, radiation friction in the quantum regime cannot
be described by the concept of classical force in principle, as
it was attempted to do, e.g., in [9]. In addition to the
advection term in the transport equation, which could be
ascribed to the radiation reaction force as above, spreading
of the distribution functions in momentum space becomes
important as well. This spreading is associated with quan-
tum fluctuations and is observable, e.g., as quantum exci-
tation of synchrotron and betatron oscillations [36].
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