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Compton scattering of a laser beam with a relativistic electron beam has been used to generate intense,

highly polarized and nearly monoenergetic x-ray or gamma-ray beams at many facilities. The ability to

predict the spatial, spectral, and temporal characteristics of a Compton gamma-ray beam is crucial for the

optimization of the operation of a Compton light source as well as for the applications utilizing

the Compton beam. In this paper, we present two approaches, one based upon analytical calculations

and the other based upon Monte Carlo simulations, to study the Compton scattering process for various

electron and laser-beam parameters as well as different gamma-beam collimation conditions. These

approaches have been successfully applied to characterize Compton gamma-ray beams, after being

benchmarked against experimental results at the High Intensity Gamma-ray Source (HI�S) facility at

Duke University.
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I. INTRODUCTION

Compton scattering of a laser beam with a relativistic
electron beam has been successfully used to generate
intense, highly polarized, and nearly monoenergetic x-ray
or gamma-ray beams with a tunable energy at many
facilities [1–3]. These unique Compton photon beams
have been used in a wide range of basic and application
research fields from nuclear physics to astrophysics, from
medical research to homeland security and industrial ap-
plications [1].

The ability to predict the spectral, spatial, and temporal
characteristics of a Compton gamma-ray beam is crucial for
the optimization of the gamma-ray beam production as well
as for research applications utilizing the beam. While the
theory of particle-particle (or electron-photon) Compton
scattering, which is equivalent to the scattering between a
monoenergetic electron beam and a monoenergetic laser
beam with zero transverse sizes, is well documented in
literature [4–6], there remains a need to fully understand
the characteristics of the gamma-ray beam produced by
Compton scattering of a laser beam and an electron beam
with specific spatial and energy distributions, i.e., the beam-
beam scattering.

Study of beam-beam Compton scattering has been re-
cently reported in [7,8]. However, the algorithms used in
these works are based upon the Thomson scattering

cross section, i.e., an elastic scattering of electromagnetic
radiation by a charged particle without the recoil effect. For
scattering of a high-energy electron beam and a laser beam,
the recoil of the electron must be taken into account. The
Compton scattering cross section has been used to study
characteristics of Compton gamma-ray beams by Duke
scientists in the 1990s [9,10]. However, the effects of
incoming beam parameters and the effects of gamma-
beam collimation were not fully taken into account.
In this paper, we present two different methods, a semi-

analytical calculation and a Monte Carlo simulation, to
study the Compton scattering process of a polarized (or
unpolarized) laser beam with an unpolarized electron beam
in the linear Compton scattering regime. Using these two
methods, we are able to characterize a Compton gamma-
ray beam with various laser and electron-beam parameters,
arbitrary collision angles, and different gamma-beam col-
limation conditions.
This paper is organized as follows. In Sec. II, we first

review the calculation of the Compton scattered photon
energy for an arbitrary collision angle, and then introduce
the scattering cross section in a Lorentz invariant form.
Based upon this cross section, the spatial and spectral dis-
tributions as well as the polarization of a Compton gamma-
ray beam are investigated in particle-particle scattering
cases. In Sec. III, we discuss the beam-beam Compton
scattering by considering effects of the incoming beam
parameters as well as the effect of the gamma-ray beam
collimation. Two methods, a semianalytical calculation and
a Monte Carlo simulation, are then presented. Based upon
the algorithms of these methods, two computing codes, a
numerical integration code and a Monte Carlo simulation
code, have been developed at Duke University. The bench-
marking results and applications of these two codes are
presented in Sec. IV. The summary is given in Sec. V.
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II. PARTICLE-PARTICLE SCATTERING

A. Scattered photon energy

A review of the calculation of scattered photon energies
in the particle-particle scattering case is in order. Figure 1
shows the geometry of Compton scattering of an electron
and a photon in a laboratory frame coordinate system
ðxe; ye; zeÞ in which the incident electron with a momentum
~p is moving along the ze direction. The incident photon

with a momentum @ ~k (@ is the Planck constant) is propa-
gated along the direction with angles ð�i; �iÞ. The collision
occurs at the origin of the coordinate system. After the

collision, the photon with a momentum @ ~k0 is scattered into
the direction of ð�f;�fÞ.

According to the conservation of the 4-momenta before
and after scattering, we can have

pþ k ¼ p0 þ k0; (1)

where p ¼ ðEe=c; ~pÞ and k ¼ ðEp=c; @ ~kÞ are the

4-momenta of the electron and photon before the scatter-

ing, respectively; p0 ¼ ðE0
e=c; ~p

0Þ and k0 ¼ ðEg=c; @ ~k
0Þ are

their 4-momenta after the scattering; Ee and Ep are the

energies of the electron and photon before the scattering;
E0
e andEg are their energies after the scattering; and c is the

speed of light. Squaring both sides of Eq. (1) and following
some simple manipulations, we can obtain the scattered
photon energy as follows:

Eg ¼ ð1� � cos�iÞEp

ð1� � cos�fÞ þ ð1� cos�pÞEp=Ee

; (2)

where � ¼ v=c is the speed of the incident electron rela-
tive to the speed of light, and �p is the angle between the

momenta of the incident and scattered photons (Fig. 1).

For a head-on collision, �i ¼ � and �p ¼ �� �f,

Eq. (2) can be simplified to

Eg ¼ ð1þ �ÞEp

ð1� � cos�fÞ þ ð1þ cos�fÞEp=Ee

: (3)

Clearly, given the energies of the incident electron and
photon, Ee and Ep, the scattered photon energy Eg only

depends on the scattering angle �f, independent of the

azimuth angle �f. The relation between the scattered

photon energy Eg and scattering angle �f is demonstrated

in Fig. 2. In this figure, the scattered photon energies Eg are

indicated by the quantities associated with the concentric
circles in the observation plane, and the scattering angles
�f are represented by the radii R of the circles, i.e.,

�f ¼ R=L, where L ¼ 60 meters is the distance between

the collision point and the observation plane. We can see
that the scattered photons with higher energies are concen-
trated around the center (�f ¼ 0), while lower energy

photons are distributed away from the center. Such a
relation, in principle, allows the formation of a scattered
photon beam with a small energy spread using a simple
geometrical collimation technique.
For a small scattering angle (�f � 1) and an ultrarela-

tivistic electron (� � 1), Eq. (3) can be simplified to

Eg �
4�2Ep

1þ �2�2f þ 4�2Ep=Ee

; (4)

where � ¼ Ee=ðmc2Þ is the Lorentz factor of the electron
andmc2 is its rest energy. When the photon is scattered into
the backward direction of the incident photon (i.e., �f ¼ 0,

θ f
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FIG. 1. Geometry of Compton scattering of an electron and a
photon in a lab-frame coordinate system ðxe; ye; zeÞ in which the
electron is incident along the ze direction. The incident photon is
propagating along the direction given by the polar angle �i and
azimuthal angle �i. The collision occurs at the origin of the
coordinate system. After the scattering, the scattered photon
propagates in the direction given by the polar angle �f and

azimuthal angle �f. �p is the angle between the momenta of

incident and scattered photons, ~k and ~k0. The electron after
scattering is not shown in the figure.
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FIG. 2. The relation between the scattered photon energy (in
MeV) and scattering angle in an observation plane, which is 60
meters downstream from the collision point. The scattered
photons are produced by 800 nm photons scattering with
500 MeV electrons. Each concentric circle is an equi-energy
contour curve of the energy distribution of scattered photons.
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sometimes called backscattering), the scattered photon
energy will reach the maximum value given by

Emax
g ¼ 4�2Ep

1þ 4�2Ep=Ee

: (5)

Neglecting the recoil effect, i.e., 4�2Ep=Ee � 1, Eq. (5)

can be reduced to the result given by the relativistic
Thomson scattering theory [8]

Emax
g � 4�2Ep: (6)

We can see that the incident photon energy Ep is boosted

by a factor of approximately 4�2 after the backscattering.
Therefore, the Compton scattering of photons with relativ-
istic electrons can be used to produce high-energy photons,
i.e., gamma-ray photons.

Under a set of conditions �i � � and �f � 0, the un-

certainties of the scattered photon energy Eg due to the

uncertainties of the variables (Ee, Ep, �f, and �i) in Eq. (2)

can be estimated [10,11]. For example, the relative uncer-
tainty of the scattered photon energy �Eg=Eg due to the

uncertainty of the electron-beam energy �Ee=Ee is given
by taking the derivative of Eq. (2) with respect to Ee, i.e.,

�Eg

Eg
� 2

�
1� 2�2Ep=Ee

1þ 4�2Ep=Ee

�
�Ee

Ee

� 2
�Ee

Ee

: (7)

Contributions to �Eg=Eg associated with other variables

are summarized in Table I.

B. Scattering cross section

1. Lorentz invariant form

The general problem concerning the collision is to find
the probabilities of final states for a given initial state of the
system, i.e., the scattering cross section. Using quantum
electrodynamics (QED) theory, the Compton scattering
cross section in the Lorentz invariant form has been calcu-
lated in [4,12,13], and the result for unpolarized electrons
scattering with polarized photons is given by

d�

dYd�f

¼ 2r2e
X2

��
1

X
� 1

Y

�
2 þ 1

X
� 1

Y
þ 1

4

�
X

Y
þ Y

X

�

� ð�3 þ �0
3Þ
��

1

X
� 1

Y

�
2 þ 1

X
� 1

Y

�

þ �1�
0
1

�
1

X
� 1

Y
þ 1

2

�
þ �2�

0
2

1

4

�
X

Y
þ Y

X

�

�
�
1þ 2

X
� 2

Y

�
þ �3�

0
3

��
1

X
� 1

Y

�
2

þ 1

X
� 1

Y
þ 1

2

��
; (8)

where re is the classical electron radius; �f is the azimu-

thal angle of the scattered photon; �1;2;3 and �0
1;2;3 are

Stokes parameters describing the incident and scattered
photon polarizations in their respective coordinate sys-
tems; X and Y are the Lorentz invariant variables defined
as follows:

X ¼ s� ðmcÞ2
ðmcÞ2 ; Y ¼ ðmcÞ2 � u

ðmcÞ2 ; (9)

where s and u are the Mandelstam variables [4] given by

s ¼ ðpþ kÞ2; u ¼ ðp� k0Þ2: (10)

X and Y satisfy the inequalities [4]

X

X þ 1
� Y � X: (11)

Since the scattering cross section of Eq. (8) is expressed
in the Lorentz invariants, it can easily be expressed in terms
of the collision parameters defined in any specific frame of
reference.

2. Polarization description in lab frame

In the laboratory frame, three right-hand coordinate
systems are used in Eq. (8) to describe the motion and
polarization of the incident electron ðxe; ye; zeÞ, the inci-
dent photon ð~x; ~y; ~zÞ, and the scattered photon ð~x0; ~y0; ~z0Þ
(Fig. 3). The coordinate system ðxe; ye; zeÞ is fixed in the
lab frame, and its ze axis is along the incident direction of
the electron. ð~x; ~y; ~zÞ and ð~x0; ~y0; ~z0Þ are the local coordinate
systems attached to the scattering plane formed by the

momenta of the incident and scattered photons, ~k and ~k0.
For ð~x; ~y; ~zÞ, the ~x axis is perpendicular to the scattering
plane; the ~y and ~z axes are in the scattering plane with the ~z

axis along the direction of ~k. For ð~x0; ~y0; ~z0Þ, the ~x0 axis is
the same as the ~x axis for the incident photon, perpendicu-
lar to the scattering plane; and the ~z0 axis is along the

direction of ~k0.
The Stokes parameters �ð0Þ

1;2;3 of the incident and

scattered photons in Eq. (8) are defined in their local

coordinate systems, respectively. The parameter �ð0Þ
3

TABLE I. Relative uncertainty of the scattered photon energy
�Eg=Eg due to the uncertainties of various variables in Eq. (2)

under assumptions of �i � � and �f � 0.

Variables Contributions Approximated contributions

Ee 2
�
1� 2�2Ep=Ee

1þ4�2Ep=Ee

�
�Ee

Ee
2 �Ee

Ee

Ep
1

1þ4�2Ep=Ee

�Ep

Ep

�Ep

Ep

�f � �2

1þ4�2Ep=Ee
��2f ��2��2f

�i � �
4 ��

2
i � 1

4 ��
2
i
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describes the linear polarization of the photon along the ~xð0Þ

or the ~yð0Þ axis; the parameter �ð0Þ
1 describes the linear

polarization along the direction at �45� angles relative

to the ~xð0Þ axis; and the parameter �ð0Þ
2 represents the degree

of circular polarization of the photon.
The polarization of the photon is always defined in its

local coordinate system with its momentum being one of
the axes. For Compton scattering described by Eq. (8),
these local coordinate systems ð~x; ~y; ~zÞ and ð~x0; ~y0; ~z0Þ are
different for different scattering planes. However, for the
cases that the photons and electrons collide nearly head on
to produce high-energy photons with small scattering an-
gles, it becomes possible to conveniently express in an
approximate manner the polarization of the incident and
scattered photons using a fixed coordinate system, for
example, the lab-frame electron coordinate system
ðxe; ye; zeÞ.

Let us consider the incident photon with its ~z axis
approximately parallel to the negative ze axis. The Stokes
parameter of the incident photon can be related to the
degrees of polarization defined in the fixed electron coor-
dinate system through the following equations [5,14]:

�1 � Pt sinð2�� 2�fÞ;
�2 � Pc;

�3 � �Pt cosð2�� 2�fÞ; (12)

where Pt and Pc are the degree of linear and circular
polarizations of the incident photon defined in the coordi-
nate system ðxe; ye; zeÞ, respectively; � is the azimuthal
angle of the linear polarization Pt with respect to the xe
axis; and �f is the azimuthal angle of the scattering plane.

For Compton scattering involving an ultrarelativistic
electron, scattered photons are concentrated in a small
scattering angle (�f < 1=�). For these high-energy pho-

tons with small scattering angles, their ~z0 axes are approxi-
mately parallel to the ze axis. Neglecting the polar angle
(i.e., �f � 1), the Stokes parameters of the scattered pho-

ton can be expressed approximately using a set of Stokes
parameters defined in the fixed electron coordinate system
as [14]

�0
1 � � ��0

1 cos2�f þ ��0
3 sin2�f;

�0
2 � ��0

2;

�0
3 � � ��0

1 sin2�f � ��0
3 cos2�f;

(13)

where ��0
1;2;3 are the Stokes parameters defined in the coor-

dinate system ðxe; ye; zeÞ.

C. Spatial and energy distributions of scattered photons

Based upon Eqs. (8), (12), and (13), we can calculate the
spatial and energy distributions of a gamma-ray beam
produced by Compton scattering of a monoenergetic elec-
tron and laser beams with zero transverse beam sizes, i.e.,
the particle-particle scattering.
Let us consider Compton scattering of an unpolarized

electron and a polarized laser photon without regard to
their polarizations after the scattering. The differential
cross section is obtained by setting �0

1;2;3 to zero in

Eq. (8) and multiplying the result by a factor of 2 for the
summation over the polarizations of the scattered photons
[4]. Thus, the differential cross section is given by [11]

d�

dYd�f

¼ 4r2e
X2

�
ð1� �3Þ

��
1

X
� 1

Y

�
2 þ 1

X
� 1

Y

�

þ 1

4

�
X

Y
þ Y

X

��
: (14)

The total cross section can be obtained by integrating
Eq. (14) with respect to Y and �f,

�tot ¼ 2�r2e
1

X

��
1� 4

X
� 8

X2

�
logð1þ XÞ

þ 1

2
þ 8

X
� 1

2ð1þ XÞ2
�
: (15)
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e
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FIG. 3. Coordinate systems of Compton scattering of an elec-
tron and a photon in a laboratory frame. ðxe; ye; zeÞ is the
coordinate system for the incident electron ( ~p) moving along
the ze-axis direction. For the head-on collision, the incident

photon ( ~k) comes along the negative ze axis, and the scattered

photon ( ~k0) is moving along the direction given by the polar

angle �f and azimuthal angle �f. The momentum vectors ~k and
~k0 form the scattering plane. ð~x; ~y; ~zÞ is a right-hand coordinate
system attached to the scattering plane. The ~z axis is along the

direction of ~k; the ~x axis is perpendicular to the scatter plane; and
the ~y axis is in the scattering plane. ð~x0; ~y0; ~z0Þ is another right-
hand coordinate system attached to the scattering plane. The ~z0

axis is along the direction of ~k0; the ~x0 axis is the same as the ~x
axis; and the ~y0 axis lies in the scattering plane.
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Note that the Stokes parameter �3 depends on �f; how-

ever, after integration over �f the dependence vanishes.

Neglecting the recoil effect (X � 1), we can have

�tot ¼ 8�r2e
3

ð1� XÞ � 8�r2e
3

; (16)

which is just the classical Thomson cross section.

1. Spatial distribution

For a head-on collision (�i ¼ �) in a laboratory frame,
according to Eq. (9) the Lorentz invariant quantities X and
Y are given by

X¼2�Epð1þ�Þ
mc2

; Y¼2�Egð1��cos�fÞ
mc2

; (17)

and

dY ¼ 2

�
Eg

mc2

�
2
sin�fd�f: (18)

Substituting dY into Eq. (14), the angular differential cross
section is given by

d�

d�
¼ 8r2e

X2

�
½1þ Pt cosð2�� 2�fÞ	

��
1

X
� 1

Y

�
2

þ 1

X
� 1

Y

�
þ 1

4

�
X

Y
þ Y

X

���
Eg

mc2

�
2
; (19)

where d� ¼ sin�fd�fd�f and �3 has been expressed in

terms of Pt [Eq. (12)].
From Eq. (19), we can see that the differential cross

section depends on the azimuthal angle �f of the scattered

photon through the term Pt cosð2�� 2�fÞ. For a circularly
polarized or unpolarized incident photon beam (Pt ¼ 0),
this dependency vanishes. Therefore, the distribution of
scattered photons is azimuthally symmetric. However, for

a linearly polarized incident photon beam (Pt � 0), the
differential cross section is azimuthally modulated, and the
gamma photon distribution is azimuthally asymmetric.
Figures 4 and 5 illustrate the spatial distributions of
Compton gamma photons at a location 60 meters down-
stream from the collision point for both circularly and
linearly polarized incident photon beams. In these figures
we can also see that the distribution of scattered photons
peaks sharply along the direction of the incident electron
beam. This demonstrates that the gamma-ray photons pro-
duced by Compton scattering of a relativistic electron
beam and a laser beam are mostly scattered into the
electron-beam direction within a narrow cone.

2. Energy distribution

For a head-on collision in the laboratory frame, it can be
shown that

Y ¼ X
�Ee � Eg

�Ee � Ep

: (20)

Thus,

dY ¼ �X
dEg

�Ee � Ep

: (21)

Substituting dY in Eq. (14) and integrating the result with
respect to the azimuth angle �f, we can obtain the energy

distribution of scattered photons as follows:

d�

dEg

¼ 8�r2e
Xð�Ee�EpÞ

��
1

X
� 1

Y

�
2þ 1

X
� 1

Y
þ1

4

�
X

Y
þY

X

��
:

(22)

The energy spectrum calculated using Eq. (22) is shown
in Fig. 6. The spectrum has a high-energy cutoff edge
which is determined by the incident electron and photon

FIG. 4. The computed spatial distribution of Compton gamma-ray photons produced by a head-on collision of a circularly polarized
800 nm laser beam with an unpolarized 500 MeV electron beam. The distribution is calculated for a location 60 meters downstream
from the collision point. The left plot is a three-dimensional intensity distribution, and the right plot is the contour plot of the gamma-
beam intensity distribution.
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energies according to Eq. (5). In Fig. 6, we can see the
spectral intensity has a maximum value at the scattering
angle �f ¼ 0, and a minimum value around the scattering

angle �f ¼ 1=�. The ratio between them is about 2 when

the recoil effect is negligible. This will be shown in the
next section.

Note that the energy spectrum shown in Fig. 6 is for a
Compton gamma-ray beam without collimation. However,
if the gamma-ray beam is collimated by a round aperture
with a radius of R and distance L from the collision point,
the energy spectrum will have a low energy cutoff edge,

and its value can be calculated using Eq. (4) with
�f ¼ R=L.

3. Observations for a small recoil effect

For a small recoil effect (X � 1), we can approximate
Eqs. (19) and (22) to draw several useful conclusions.
For convenience, we first define

fðYÞ ¼
�
1

X
� 1

Y

�
2 þ 1

X
� 1

Y
þ 1

4

�
X

Y
þ Y

X

�
: (23)

Using the inequality Eq. (11), it can be found that

1

4ð1þ XÞ � fðYÞ � 2þ X

4
; (24)

approximately (with a negligible recoil effect, X � 1),

1
4 � fðYÞ � 1

2: (25)

Thus, the maximum and minimum spectral flux of the
Compton gamma-ray beam are given by�

d�

dEg

�
max

¼ 8�r2e
Xð�Ee � EpÞ

2þ X

4
; (26)

and �
d�

dEg

�
min

¼ 8�r2e
Xð�Ee � EpÞ

1

4ð1þ XÞ : (27)

The ratio between them is

ðd�=dEgÞmax

ðd�=dEgÞmin

¼ ð2þ XÞð1þ XÞ � 2; (28)

which is shown in Fig. 6.
When �f ¼ 0, we can have

Eg � 4�2Ep; Y � Xð1� XÞ: (29)
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FIG. 6. The computed energy distribution of Compton gamma-
ray photons produced by a head-on collision of a 800 nm laser
beam with a 500 MeVelectron beam. The scaled scattering angle
��f with the electron Lorentz factor versus the gamma-ray

photon energy is also shown in the plot. The solid line represents
the energy distribution of the gamma-ray photons, and the
dashed line represents the relation between the scaled scattering
angle and photon energy.

FIG. 5. The computed spatial distribution of Compton gamma-ray photons produced by a head-on collision of a linearly polarized
800 nm laser beam with an unpolarized 500 MeVelectron beam. The polarization of the incident photon beam is along the horizontal
direction. The distribution is calculated for a location 60 meters downstream from the collision point. The left plot is a
three-dimensional intensity distribution, and the right plot is the contour plot of the gamma-beam intensity distribution.
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Substituting Y in Eq. (23), we have fðYÞ � 1=2. Thus, the
spectral flux has a maximum value around the scattering
angle �f ¼ 0. When �f ¼ 1=�, we can have

Eg � 2�2Ep; Y � X

�
1� X

2

�
: (30)

Substituting Y into Eq. (23), we have fðYÞ � 1=4.
Therefore, the spectral flux has a minimum value around
the scattering angle �f ¼ 1=�. These results are illustrated

in Fig. 6.
Expressed in terms of the total scattering cross section of

Eq. (16), the fraction of scattered photons in the energy
range ½Emax

g ��Emax
g ; Emax

g 	 can be found approximately

as

��max

�tot

� 3ð2þ XÞ
4ð1� XÞ

�Emax
g

Emax
g

� 1:5
�Emax

g

Emax
g

: (31)

This is a simple formula which can be used to estimate the
portion of the total gamma-ray flux with a desirable energy
spread �Emax

g after collimation.

For a circularly polarized or unpolarized incident photon
beam, according to Eq. (19), it can also be calculated that
the angular intensity of scattered gamma-ray photons at the
scattering angle �f ¼ 1=� is about 1=8 of the maximum

intensity at the scattering angle �f ¼ 0, i.e.,

ðd�=d�Þ�f¼1=�

ðd�=d�Þ�f¼0

� 1

8
: (32)

In addition, integrating Eq. (14) over the entire solid
angle of the cone with a half-opening angle of 1=�,
i.e., integrating Y over the range of Xð1� X=2Þ � Y �
Xð1� XÞ and�f over the range from 0 to 2�, we can have

�1¼
Z 2�

0
d�

Z 1=�

0

d�

d�
sin�d��4�r2e

3
¼1

2
�tot: (33)

Comparing Eq. (33) to the total cross section of Eq. (16),
we can conclude that about half of the total gamma-ray
photons are scattered into the 1=� cone. This can be
explained by considering the Compton scattering in the
electron-rest frame. In this frame, the Compton scattering
process is just like ‘‘dipole’’ radiation: the gamma-ray
photons are scattered in all directions, a half of the
gamma photons is scattered into the forward direction,
and the other half into the backward direction. When trans-
formed to the laboratory frame, the gamma-ray photon
scattered into the forward direction in the rest frame will
be concentrated in the 1=� cone in the laboratory frame.

D. Polarization of scattered photons

For polarized photons scattering with unpolarized elec-
trons without regard to the final electron polarization, the
cross section is given by Eq. (8). Substituting �1;2;3 and

�0
1;2;3 using Eqs. (12) and (13), and assuming the linear

polarization of the incident photon beam is along the xe
axis, i.e., � ¼ 0, we can get

d�

dYd�f
¼ 2r2e

X2

�
�0 þ

X3
i¼1

�i
��0
i

�
; (34)

where

�0 ¼
�
1

X
� 1

Y

�
2 þ 1

X
� 1

Y
þ 1

4

�
X

Y
þ Y

X

�

þ
��

1

X
� 1

Y

�
2 þ 1

X
� 1

Y

�
Pt cos2�f;

�1 ¼ 1

2

�
1

X
� 1

Y
þ 1

�
2
Pt sin4�f

þ
��

1

X
� 1

Y

�
2 þ 1

X
� 1

Y

�
sin2�f;

�2 ¼ 1

4

�
X

Y
þ Y

X

��
2

X
� 2

Y
þ 1

�
Pc;

�3 ¼ �
�
1

X
� 1

Y
þ 1

2

�
Ptsin

22�f

þ
��

1

X
� 1

Y

�
2 þ 1

X
� 1

Y
þ 1

2

�
Ptcos

22�f

þ
��

1

X
� 1

Y

�
2 þ 1

X
� 1

Y

�
cos2�f: (35)

It should be noted that the Stokes parameters ��0
1;2;3

describe the polarization of the scattered photon selected
by a detector, not the polarization of the photon itself [4].
In order to distinguish them from the detected Stokes
parameters ��0

1;2;3, we denote the Stokes parameters of the

scattered photon itself by �f
1;2;3. According to the rules

presented in Sec. 65 of [4], �f
1;2;3 are given by

�f
i ¼

�i

�0

; i ¼ 1; 2; 3: (36)

Integrating Eq. (34) over the azimuthal angle �f gives

d�

dY
¼ 2r2e

X2

�
h�0i þ

X3
i¼1

h�iih ��0
ii
�
; (37)

where

h�0i ¼ 2�

��
1

Y
� 1

Y

�
2 þ 1

X
� 1

Y
þ 1

4

�
X

Y
þ Y

X

��
;

h�1i ¼ 0;

h�2i ¼ �

2

�
X

Y
þ Y

X

��
2

X
� 2

Y
þ 1

�
Pc;

h�3i ¼ �

�
1

X
� 1

Y

�
2
Pt:

(38)

Therefore, the averaged Stokes parameters of the scattered

photons over the angle �f are given by h�f
i i ¼ h�ii=h�0i,
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which depend on the incident photon polarization and
variables X and Y.

For example, for 100% horizontally polarized (Pt ¼ 1,
Pc ¼ 0, � ¼ 0) incident photons scattering with unpolar-
ized electrons, the average Stokes parameters of the scat-
tered photons are given by

h�f
1i ¼

h�1i
h�0i ¼ 0;

h�f
2i ¼

h�2i
h�0i ¼ 0;

h�f
3i ¼

h�3i
h�0i ¼

2ð1X � 1
YÞ2

4ð1X � 1
YÞ2 þ 4

X � 4
Y þ X

Y þ Y
X

:

(39)

Clearly, the scattered photons retain the polarization of the

incident photons. h�f
3i as a function of the scattered photon

energy is shown in Fig. 7 for 800 nm laser photons head-on
colliding with 500 MeV electrons. It can be seen that the

average Stokes parameter h�f
3i of scattered gamma-ray

photons is almost equal to 1 around the maximum scattered
photon energy as in this case the recoil effect is negligible.
It means the scattered gamma-ray photons with the maxi-
mum energy are almost 100% horizontally polarized.

III. BEAM-BEAM SCATTERING

In the previous section we discussed the spatial and
spectral distributions of a gamma-ray beam produced by
Compton scattering of monoenergetic electron and laser
beams with zero transverse beam sizes, i.e., particle-
particle scattering. However, in the reality, the incoming
electron and laser beams have finite spatial and energy

distributions, which will change the distributions of the
scattered gamma-ray beam. Therefore, there remains a
need to understand the characteristics of a Compton
gamma-ray beam produced by scattering of a laser beam
and an electron beam with specific spatial and energy
distributions, i.e., the beam-beam scattering.
In this section, we discuss the beam-beam Compton

scattering process. First, we derive a simple formula to
calculate the total flux of the Compton gamma-ray beam.
Then, we present two methods, a semianalytical calcula-
tion and a Monte Carlo simulation, to study the spatial and
spectral distributions of the gamma-ray beam. Based upon
these methods, two computing codes, a numerical integra-
tion code and a Monte Carlo simulation code, have been
developed. These two codes have been benchmarked
against the experimental results at High Intensity
Gamma-ray Source (HI�S) facility at Duke University.

A. Geometry of beam-beam scattering

Figure 8 shows Compton scattering of a pulsed electron
beam and a pulsed laser beam in a laboratory frame. Two
coordinate systems are used: ðx; y; zÞ for the electron beam
moving along the z direction; the ðxl; yl; zlÞ for the laser
beam propagating in the negative zl direction. These two
coordinate systems share a common origin. The time t ¼ 0
is chosen for the instant when the centers of the electron
beam and laser pulse arrive at the origin. The definition of
these two coordinate systems allows the study of the
Compton scattering process with an arbitrary collision
angle, i.e., the angle between the z axis and the negative
zl axis. For a head-on collision, the collision angle equals
�. In this case, the electron and laser coordinate systems
coincide.
In these coordinate systems, the electron and laser

beams with Gaussian distributions in their phase spaces
can be described by their respective intensity functions as
follows [9]:

y

x

z

laser beam 
gamma beam 

yl
xl

lz

electron
beam

FIG. 8. Compton scattering of a pulsed electron beam and a
pulsed laser beam in the laboratory frame. Two coordinate
systems are defined to describe electron and laser beams: the
first coordinate system ðx; y; zÞ is the electron-beam coordinate
system in which the electron beam is moving along the z-axis
direction; the ðxl; yl; zlÞ system is the laser-beam coordinate
system in which the laser beam propagates in the negative
zl-axis direction. The coordinate systems ðx; y; zÞ and ðxl; yl; zlÞ
share the same origin.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Gamma−ray photon energy (MeV)

<
ξf 3>

FIG. 7. The average Stokes parameter h�f
3i of Compton

gamma-ray photons produced by 100% horizontally polarized
(Pt ¼ 1, Pc ¼ 0, � ¼ 0) 800 nm laser photons head-on colliding
with an unpolarized 500 MeV electrons.
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feðx;y;z;x0;y0;p;tÞ¼ 1

ð2�Þ3"x"y�p�z

exp

�
��xx

2þ2	xxx
0 þ�xx

02

2"x
��yy

2þ2	yyy
0 þ�yy

02

2"y

�ðp�p0Þ2
2�2

p

�ðz�ctÞ2
2�2

z

�
;

fpðxl;yl;zl;k;tÞ¼ 1

4�2�l�k�
2
w

exp

�
�x2l þy2l

2�2
w

�ðzlþctÞ2
2�2

l

�ðk�k0Þ2
2�2

k

�
; �w¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0

4�

�
1þ z2l

�2
0

�s
; (40)

p is the momentum of an electron, and p0 is the centroid
momentum of the electron beam; x0 and y0 are the angular
divergences of the electron beam in the x and y directions,
respectively; 	x;y; �x;y and �x;y are Twiss parameters of the
electron beam; �p, �z, and "x;y are the electron-beam
momentum spread, rms bunch length, and transverse emit-
tance, respectively; k and 
 are the wave number and
wavelength of a laser photon, and k0 is the centroid wave
number of the laser beam; �0, �k, and �l are the Rayleigh
range, the rms energy spread, and bunch length of the laser
beam. Note that the waist of the laser beam is assumed to
be at the origin of both coordinate systems.

B. Total flux

The number of collisions occurring during a time dt and
inside a phase space volume d3pd3kdV is given by [5]

dNð ~r; ~p; ~k; tÞ ¼ �totð ~p; ~kÞcð1� ~� 
 ~k=j ~kjÞneð~r; ~p; tÞ
� npð ~r; ~k; tÞd3pd3kdVdt; (41)

where �totð ~p; ~kÞ is the total Compton scattering cross sec-
tion which is determined by the momenta of the incident

electron and laser photon, ~p and @ ~k; ~� ¼ ~ve=c is the
relative velocity of the incident electron; neð ~r; ~p; tÞ ¼
Nefeð~r; ~p; tÞ and npð ~r; ~k; tÞ ¼ Npfpð ~r; ~k; tÞ, where

feð ~r; ~p; tÞ and fpð~r; ~k; tÞ are the phase space intensity func-
tions of electron beam and laser pulse, and Ne and Np are

the total numbers of electrons and laser photons in their
respective pulses.

To calculate the total number of scattered gamma-ray
photons produced by collision, Eq. (41) needs to be inte-
grated for the entire phase space and the collision time, i.e.,

Ntot¼
Z
dNð ~r; ~p; ~k;tÞ

¼NeNp

Z
�totð ~p; ~kÞcð1

��cos�iÞfeð ~r; ~p;tÞfpð~r; ~k;tÞd3pd3kdVdt; (42)

where �i is the collision angle between the incident elec-
tron and laser photon. Assuming collisions occur at the

waists of both beams ð	x ¼ 	y ¼ 0; �w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0=ð4�Þ

p Þ,
the spatial and momentum phase space in the density
functions can be separated, i.e., feð~r; ~p; tÞ ¼ feð~r; tÞfeð ~pÞ

and fpð ~r; ~k; tÞ ¼ fpð~r; tÞfpð ~kÞ. Since the cross section

�totð ~p; ~kÞ only depends on ~p and ~k, we can have

Ntot ¼ NeNp

Z
Lsc�totð ~p; ~kÞfeð ~pÞfpð ~kÞd3pd3k; (43)

where

L sc ¼ cð1� � cos�iÞ
Z

feð~r; tÞfpð ~r; tÞdVdt (44)

is the single-collision luminosity defined as the number of
scattering events produced per unit scattering cross section,
which has dimensions of 1/area [15]. For a head-on colli-
sion (�i ¼ �) of a relativistic electron (� � 1) and a
photon, the single-collision luminosity can be simplified to

Lsc ¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0

4� þ �x"x

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0

4� þ �y"y

q : (45)

Thus, Eq. (43) can be rewritten in a simple form:

Ntot ¼ NeNpLsc�tot; (46)

where �tot is the total Compton scattering cross section
averaged over the momenta of the incident electrons and
photons. Neglecting the energy spread of the electrons and
photons, �tot can be approximated by �tot of Eq. (15),
which can be further simplified to the classical Thomson
cross section if the recoil effect is negligible.
If the beam-beam collision rate is f0, the gamma-ray

flux is given by

dNtot

dt
¼ NeNpLsc�totf0: (47)

C. Spatial and energy distributions: Semianalytical
calculation

To obtain the spatial and energy distributions of a
Compton gamma-ray beam, the differential cross section
should be used instead of the total cross section in Eq. (42).
In addition, two constraints need to be imposed during the
integration of Eq. (42) [9,10].
First, let us consider the geometric constraint, which

assures the gamma-ray photon generated at the location ~r
can reach the location ~rd shown in Fig. 9. In terms of the
position vector, this constraint is given by
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~k0

j ~k0j
¼ ~rd � ~r

j~rd � ~rj ; (48)

where ~k0 represents the momentum of the gamma-ray
photon; ~r ¼ ðx; y; zÞ denotes the location of the collision;
and ~rd ¼ ðxd; yd; zdÞ denotes the location where the scat-
tered gamma-ray photon is detected. Because of the finite
spatial distribution and angular divergence of the electron
beam, a gamma-ray photon reaching the location ~rd can be
scattered from an electron at different collision points with
different angular divergences.

The constraint of Eq. (48) projected in the x-z and y-z
planes is given by

�x þ x0 ¼ xd � x

L
; �y þ y0 ¼ yd � y

L
: (49)

Here, �x and �y are the projections of the scattering angle

�f in the x-z and y-z planes, i.e., �x ¼ �f cos�f, �y ¼
�f sin�f, and �2f ¼ �2x þ �2y, where �f and �f are the

angles defined in the electron coordinate system
ðxe; ye; zeÞ in which the electron is incident along the ze
direction (Fig. 9). x0 and y0 are the angular divergences of
the incident electron, i.e., the angles between the electron
momentum and z axis. L is the distance between the
collision point and the detection plane (or the collimation
plane). Note that a far field detection (or collimation) has
been assumed, i.e., L � j~rj and L � j~rdj.

The second constraint is the energy conservation.
Because of the finite energy spread of the electron beam,
the gamma-ray photon with an energy of Eg can be pro-

duced by electrons with various energies and scattering
angles. Mathematically, this constraint is given by

�ð �Eg � EgÞ; (50)

where

�E g ¼
4 ��2Ep

1þ ��2�2f þ 4 ��Ep=mc2
: (51)

Imposing the geometric and energy constraints in
Eq. (42), the spatial and energy distributions of a
Compton gamma-ray beam can be obtained by integrating
all the individual scattering events, i.e.,

dNðEg;xd;ydÞ
d�ddEg

�NeNp

Z d�

d�
�ð �Eg�EgÞcð1þ�Þ

�feðx;y;z;x0;y0;p;tÞ
�fpðx;y;z;k;tÞdx0dy0dpdkdVdt; (52)

where d�d ¼ dxddyd=L
2, and d�=d� is the differential

Compton scattering cross section. Note that a head-on
collision between electron and laser beams has been as-
sumed, and the density function feð ~r; ~p; tÞ has been
replaced with feðx; y; z; x0; y0; p; tÞ of Eq. (40) under the
approximation pz � p for a relativistic electron beam. In

addition, the integration
R 
 
 
 fpð ~r; ~k; tÞd3k is replaced

with
R 
 
 
 fpðx; y; z; k; tÞdk, where fpðx; y; z; k; tÞ is de-

fined in Eq. (40). Integrations over dkx and dky have

been carried out since the differential cross section has a
very weak dependency on kx and ky for a relativistic

electron beam.
Assuming head-on collisions for each individual scat-

tering event [�i ¼ � and d�=d� is given by Eq. (19)],
neglecting the angular divergences of the laser beam and
replacing x0 and y0 with �x and �y, we can integrate

Eq. (52) over dV, dt, and dp to yield the following result
(see Appendix A):

dNðEg; xd; ydÞ
dEgdxddyd

¼ r2eL
2NeNp

4�3
@c�0���k

Z 1

0

Z ffiffiffiffiffiffiffiffiffiffiffiffi
4Ep=Eg

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
4Ep=Eg

p
Z �xmax

��xmax

1ffiffiffiffiffiffiffiffiffi
�x�y

p
��x��y

�

1þ 2�Ep=mc2

�
�
1

4

�
4�2Ep

Egð1þ �2�2fÞ
þ Egð1þ �2�2fÞ

4�2Ep

�
� 2cos2ð���fÞ

�2�2f

ð1þ �2�2fÞ2
�

� exp

�
�ð�x � xd=LÞ2

2�2
�x

� ð�y � yd=LÞ2
2�2

�y

� ð�� �0Þ2
2�2

�

� ðk� k0Þ2
2�2

k

�
d�xd�ydk; (53)

where

θx

rd

r

k’

ze

L

x

z

e x’
γ

xe

detection
point

collimation plane

FIG. 9. Geometric constraint for a scattered gamma-ray pho-
ton. The diagram only shows the projection of the constraint in
the x-z plane.
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�x ¼ 1þ
�
	x � �x

L

�
2 þ 2k�x"x

�0

; �x ¼ 1þ 2k�x"x
�0

; ��x ¼
ffiffiffiffiffiffiffiffiffiffi
"x�x

�x�x

s
; �y ¼ 1þ

�
	y �

�y

L

�
2 þ 2k�y"y

�0

;

�y ¼ 1þ 2k�y"y
�0

; ��y ¼
ffiffiffiffiffiffiffiffiffiffi
"y�y

�y�y

s
; �f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x þ �2y

q
; �xmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ep=Eg � �2y

q
;

�� ¼ �Ee

mc2
; � ¼ 2EgEp=mc2

4Ep � Eg�
2
f

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ep � Eg�

2
f

4E2
pEg=ðmc2Þ2

vuut 1
A; (54)

and �Ee
is the rms energy spread of the electron beam.

In a storage ring, the vertical emittance of the electron
beam is typically much smaller than the horizontal emit-
tance. For a Compton scattering occurring at a location
with similar horizontal and vertical beta functions
(�x � �y), the vertical divergence of the electron beam

can be neglected. In addition, the photon energy spread of a
laser beam is small, and its impact can also be neglected in
many practical cases. Under these circumstances, the
cross section term in Eq. (53) has a weak dependence on
�y ( � yd=L) and k ( � k0). With the assumption of an

unpolarized or circularly polarized laser beam, Eq. (53)
can be simplified further after integrating �y and k:

dNðEg;xd;ydÞ
dEgdxddyd

� r2eL
2NeNp

2�2
@c�0

ffiffiffiffiffi
�x

p
����x

Z �xmax

��xmax

�

1þ2�Ep=mc2

�
�
1

4

�
4�2Ep

Egð1þ�2�2fÞ
þEgð1þ�2�2fÞ

4�2Ep

�

� �2�2f

ð1þ�2�2fÞ2
�
exp

�
�ð�x�xd=LÞ2

2�2
�x

�ð���0Þ2
2�2

�

�
d�x;

(55)

where �xmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ep=Eg � ðyd=LÞ2

q
.

The integrations with respect to k, �y, and �x in Eq. (53)

or �x in Eq. (55) must be carried out numerically. For this
purpose, a numerical integration Compton scattering code
(CCSC) in the Cþþ computing language has been devel-
oped to evaluate the integrals of Eqs. (53) and (53).

With the detailed spatial and energy distributions of the
Compton gamma-ray beam dNðEg; xd; ydÞ=ðdEgdxddydÞ,
the energy spectrum of the gamma-ray beam collimated by
a round aperture with a radius of R can be easily obtained
by integrating dNðEg; xd; ydÞ=ðdEgdxddydÞ over the vari-

ables xd and yd for the entire opening aperture, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d þ y2d

q
� R2.

The transverse misalignment effect of the collimator on
the gamma-ray beam distributions can be introduced by
replacing xd and yd with xd þ�x and yd þ�y in Eq. (53)
or Eq. (55), where �x and �y are the collimator offset
errors in the horizontal and vertical directions,
respectively.

D. Spatial and energy distributions: Monte
Carlo simulation

In the previous section, we have derived an analytical
formula to study the spatial and energy distributions of a
Compton gamma-ray beam. However, to simplify the cal-
culation several approximations have been made: head-on
collisions for each individual scattering event, a negligible
angular divergence of the laser beam, and far field
collimation.
A completely different approach to study the Compton

scattering process is to use a Monte Carlo simulation. With
this numerical technique, effects that cannot be easily
included in an analytical method can be properly ac-
counted for. For example, using a Monte Carlo simulation
we can study the scattering process for an arbitrary colli-
sion angle. With this motivation, we developed a
Monte Carlo Compton scattering code. In the following,
the algorithm of this code is presented.

1. Simulation setup

At the beginning of the collision, both the electron and
laser pulses are located some distance away from the origin
(Fig. 8), and two pulse centers arrive at the origin at the
same time (t ¼ 0). The collision duration is divided into a
number of time steps, and the time step number represents
the time in the simulation.
Because of a large number of electrons in the bunch, it is

not practical to track each electron in the simulation.
Therefore, the electron bunch is divided into a number of
macroparticles (for example, 106) which are tracked in the
simulation.
The phase space coordinates of each macroparticle are

sampled at time t ¼ 0. For an electron beam with Gaussian
distributions in phase space, the coordinates are sampled
according to the electron-beam Twiss parameters as fol-
lows [16,17]:
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xð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u1"x�x

p
cos�1;

x0ð0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u1"x=�x

q
ð	x cos�1 þ sin�1Þ;

yð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u2"y�y

q
cos�2;

y0ð0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u2"y=�y

q
ð	y cos�2 þ sin�2Þ;

zð0Þ ¼ �zr1;

Ee ¼ E0ð1þ �Ee
r2Þ;

(56)

where u1;2 are random numbers generated using an expo-

nential distribution with a unit mean parameter (i.e.,
e�u1;2), r1;2 are random numbers generated according to a

Gaussian distribution with a zero mean and unit standard
deviation, and �1;2 are uniformly distributed random num-

bers between 0 and 2�. The coordinates of macroparticles
at any other time (t � 0) can then be obtained by trans-
forming the coordinates given by Eq. (56).

The Compton scattering is simulated according to the
local intensity and momentum of the laser beam at
the collision point. The intensity of the laser beam at the
collision point ðx; y; zÞ in the electron-beam coordinate
system can be calculated according to Eq. (40) using the
laser-beam coordinates ðxl; yl; zlÞ transformed from

ðx; y; zÞ. The momentum direction k̂ of the photon at the
collision point ðx; y; zÞ can be calculated from the point of
view of electromagnetic wave of the photon beam. For a
Gaussian laser beam, its propagation phase c ðxl; yl; zlÞ in
the laser-beam coordinate system is given by [16,18]

c ðxl; yl; zlÞ ¼ �iklzl � iklzl
x2l þ y2l

2ð�2
0 þ z2l Þ

; (57)

the wave vector (the momentum of photon ~kl) is given by
~kl ¼ 5c ðxl; yl; zlÞ. Thus,

k̂l � � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c21 þ c22

q ðc1x̂l þ c2ŷl þ ẑlÞ; (58)

where

c1 ¼ xlzl
�2

0 þ z2l
; c2 ¼ ylzl

�2
0 þ z2l

: (59)

The unit vector k̂l expressed in the electron-beam coordi-
nate system gives the momentum direction of the laser
photon in this coordinate system.

2. Simulation procedures

At each time step, the Compton scattering process is
simulated for each macroparticle. The simulation proceeds
in two stages. In the first stage, the scattering probability is
calculated using the local intensity and momentum of the
laser beam. According to this probability, the scattering
event is sampled. If the scattering happens, a gamma-ray
photon will be generated, and the simulation proceeds to

the next stage. In the second stage, the energy and scatter-
ing angles (including the polar and azimuthal angles) of the
gamma-ray photon are sampled according to the differen-
tial Compton scattering cross section. The detailed simu-
lation procedures for these two stages are presented as
follows.

3. First stage: Scattering event

Since the energy and scattering angles of the gamma-ray
photon are not the concern at this stage, the total scattering
cross section is used to calculate the scattering probability.
According to Eq. (41), the scattering probability

Pð~r; ~p; ~k; tÞ in the time step �t for the macroparticle at
the collision point ðx; y; zÞ is given by

Pð ~r; ~p; ~k; tÞ ¼ �totð ~p; ~kÞcð1� ~� 
 ~k=j ~kjÞnpðx; y; z; k; tÞ�t;
(60)

where npðx; y; z; k; tÞ and ~k are the local density and wave

vector of the photon beam, respectively; �totð ~p; ~kÞ is the
total scattering cross section given by Eq. (15).

According to the probability Pð~r; ~p; ~k; tÞ, the scattering
event is sampled using the rejection method as follows
[19,20]: first, a random number r3 is uniformly generated

in the range from 0 to 1; if r3 � Pð~r; ~p; ~k; tÞ, Compton
scattering happens; otherwise the scattering does not hap-
pen, and the above sampling process is repeated for the
next macroparticle.

4. Second stage: Scattered photon energy and direction

When a Compton scattering event happens, a gamma-
ray photon is generated. The simulation proceeds to the
next stage to determine the energy and scattering angles of
the gamma-ray photon. For convenience, the sampling
probability for generating gamma-ray photon parameters
is calculated in the electron-rest frame coordinate system
ðx0e; y0e; z0eÞ in which the electron is at rest and the laser
photon is propagated along the z0e-axis direction.
Since the momenta of macroparticles and laser photons

have been expressed in the electron-beam coordinate sys-
tem ðx; y; zÞ in the lab frame, we need to transform the
momenta to those defined in the electron-rest frame coor-
dinate system ðx0e; y0e; z0eÞ. After transformations, the sam-
pling probability for generating the scattered gamma-ray
photon energy and direction will be calculated as follows.
In the electron-rest frame coordinate system ðx0e; y0e; z0eÞ,

according to Eq. (2) the scattered photon energy is given by

1

E0
g
¼ 1

E0
p

þ 1

mc2
ð1� cos�0Þ; (61)

where �0 is the scattering angle between the momenta of
the scattered and incident photons; E0

g and E0
p are the

energies of the scattered and incident photons, and E0
g is

in the range of
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E0
p

1þ 2E0
p=mc2

� E0
g � E0

p: (62)

In the electron-rest frame coordinate system, we can
simplify the Lorentz invariant quantities X and Y of
Eq. (14) to X ¼ 2E0

p=mc2 and Y ¼ 2E0
g=mc2. As a result,

the differential cross section is given by

d2�

dE0
gd�

0 ¼
mc2r2e
2E02

p

�
½1þ Pt cosð2�0 � 2�0Þ	

�
��

mc2

E0
p

�mc2

E0
g

�
2 þ 2

�
mc2

E0
p

�mc2

E0
g

��

þ E0
p

E0
g

þ E0
g

E0
p

�
; (63)

where �0 is the azimuthal angle of the linear polarization
direction of the incident photon beam defined in the system
ðx0e; y0e; z0eÞ, and �0 is the azimuthal angle of the scattered
photon. Note that the quantity Pt, the degree of linear
polarization of the incident photon beam, is invariant under
Lorentz transformations.

The scattered photon energy E0
g and the azimuthal angle

�0 are sampled according to the differential cross section
Eq. (63). Since Eq. (63) depends on both E0

g and �0, the
composition and rejection sampling method [19,20] is used
to sample these two variables. To sample the scattered
gamma-ray photon energy E0

g, Eq. (63) needs to be

summed over the azimuthal angle �0 and written as

d�

dE0
g
¼ �r2e

mc2

E02
p

�
2þ 2E0

p

mc2

�
fðE0

gÞ; (64)

where

fðE0
gÞ ¼ 1

2þ 2E0
p=mc2

��
mc2

E0
p

�mc2

E0
g

�
2

þ 2

�
mc2

E0
p

�mc2

E0
g

�
þ E0

p

E0
g

þ E0
g

E0
p

�
; (65)

and 0 � fðE0
gÞ � 1 for any E0

g. Now, the scattered gamma-

ray photon energy E0
g can be sampled according to fðE0

gÞ as
follows: first, a uniform random number E0

g is generated in

the range given by Eq. (62), and r4 in the range from 0 to 1;
if r4 � fðE0

gÞ, E0
g is accepted, otherwise the above sam-

pling process is repeated until E0
g is accepted. If E0

g is

accepted, the scattering angle �0 can be calculated using
Eq. (61).

After the scattered gamma-ray photon energy E0
g is

determined, the azimuthal �0 angle is sampled according
to

gð�0Þ ¼ d2�

dE0
gd�

0



d�

dE0
g

: (66)

After obtaining the gamma-ray photon energy E0
g, and

the angles �0 and �0 in the electron-rest frame coordinate
system, we need to transform these parameters to those in
the lab-frame coordinate system. In the meantime, the
momentum of the scattered electron is also computed.
This electron can still interact with the laser photon in
the following time steps, which allows one to correctly
model the multiple scattering process between the elec-
trons and laser photons.

IV. BENCHMARK AND APPLICATIONS OF
COMPTON SCATTERING CODES

Based upon the algorithms discussed in Sec. III, we have
developed two computer codes using the Cþþ program-
ming language: the numerical integration Compton scat-
tering code CCSC and the Monte Carlo Compton scattering
code MCCMPT. Below, we briefly discuss the benchmark
and applications of these two codes.

A. Energy distribution

Our Compton scattering computer codes MCCMPT and
CCSC have been benchmarked against a well-known beam-

beam colliding code CAIN2.35 developed at KEK for
International Linear Collider [16]. The energy spectra of
Compton gamma-ray beams generated using these three
codes are shown in Fig. 10. We can see that these
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FIG. 10. Compton gamma-ray beam energy spectra generated
using computer codes MCCMPT, CCSC, and CAIN2.35. The stairs
plot represents the spectrum simulated using the code MCCMPT,
the dashed line represents the spectrum calculated using the code
CCSC, and the circles represent the one using the code CAIN2.35.

The electron-beam energy and rms energy spread are 400 MeV
and 0.2%, respectively. The electron-beam horizontal emittance
is 10 nm rad, and the vertical emittance is neglected. The laser
wavelength is 600 nm with negligible photon beam energy
spread. The gamma-ray beam is collimated by an aperture
with a radius of 12 mm located 60 meters downstream from
the collision point.
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three codes can produce very close results. In terms of
computing time, the codes CCSC, MCCMPT, and CAIN2.35

took about 10, 150, and 1200 min to generate these spectra
using a single-core Pentium 4 machine, respectively.
Compared to the multipurpose beam-beam colliding code
CAIN2.35, the dedicated Compton scattering codes CCSC and

MCCMPT are much faster and easy to use.

At the HI�S facility, the Compton gamma-ray beam is
usually measured using a high-purity germanium (HPGe)
detector. Because of the nonideal response of the detector,
the measured spectrum has a structure of a full energy
peak, a single and double escape peaks, and a Compton
plateau. To unfold the measured energy spectrum, a novel
end-to-end spectrum reconstruction method has been re-
cently developed [21]. The comparison of the measured
gamma spectrum and calculated spectrum using the CCSC

code is shown in Fig. 11. A very good agreement between
them is observed.

Using the Monte Carlo simulation code, we can study
the Compton scattering process with an arbitrary collision
angle. The simulated spectra using MCCMPT are compared
to those using CAIN2.35 in Fig. 12. Again, very good agree-
ments are observed. It is clearly shown that the gamma-ray
beam produced by a head-on collision of an electron and a
laser beams has the highest energy and flux. With a 90�
collision angle, the maximum energy of the gamma-ray
beam is only half of that for a head-on collision. The energy spread of a Compton gamma-ray beam is

mainly determined by the degree of the collimation of the
gamma beam, energy spread, and angular divergence of the
electron beam [21]. The contributions of these parameters
to the gamma-ray beam energy spread are summarized in
Table I. In some literature [22,23], a simple quadratic sum
of individual contributions was used to estimate the energy
spread of the Compton scattering gamma-ray beam. Since
the electron-beam angular divergence and the gamma-
beam collimation introduce non-Gaussian broadening
effects on the gamma-beam spectrum [21], causing the
spectrum to have a long energy tail (Figs. 10 and 11), the
energy spread of the gamma-ray beam cannot be given
simply by the quadrature sum of different broadening
mechanisms. The realistic gamma-ray beam energy spread
needs to be calculated from its energy spectrum, which can
be done using either the numerical integration code CCSC,
or a Monte Carlo simulation code, MCCMPT or CAIN2.35.

B. Spatial distribution

Figure 13 shows the spatial distribution of a gamma-ray
beam simulated by the MCCMPT code for circularly and
linear polarized incoming laser beams. For comparison, the
measured spatial distributions of gamma-ray beams using
the recently developed gamma-ray imaging system at
HI�S facility [24] are also shown in Fig. 13. It can be
seen that for a circularly polarized incoming laser beam,
the distribution is azimuthally symmetric; for a linearly
polarized incoming laser beam, the gamma-ray beam
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FIG. 12. Compton gamma-beam energy spectra for different
collision angles 90�, 100�, 120�, 135�, and 180�. These spectra
are simulated using codes MCCMPT and CAIN2.35. The electron-
beam and laser-beam parameters are the same as those in Fig. 10.
The solid lines represent the spectra simulated using the code
MCCMPT, and the circles represent the spectrum simulated using

the code CAIN2.35.
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FIG. 11. Comparison between the measured and calculated
energy spectra of a Compton gamma-ray beam. The solid line
represents the calculated spectrum using the CCSC code, and the
circles represent the measured gamma-beam energy distribution
after removing the escape peaks and Compton plateau using a
spectrum unfolding technique. The gamma-ray beam is pro-
duced by Compton scattering of a 466 MeV electron beam and
a 790 nm laser beam at the HI�S facility. The rms energy spread
of the electron beam is 0.1%, and horizontal and vertical emit-
tance are 7.8 and 1.0 nm rad, respectively. The collimator with an
aperture radius of 12.7 mm is placed 60 meters downstream from
the collision point.

C. SUN AND Y.K. WU Phys. Rev. ST Accel. Beams 14, 044701 (2011)

044701-14



distribution is asymmetric, and is ‘‘pinched’’ along the
direction of the laser-beam polarization.

More applications of using CCSC and MCCMPT codes to
study characteristics of Compton gamma-ray beams can be
found in [21,25,26].

V. SUMMARY

To study characteristics of a gamma-ray beam produced
by Compton scattering of an electron beam and a laser
beam, we have developed two algorithms: one based upon
an analytical calculation and the other using a Monte Carlo
simulation. According to these algorithms, two computer
codes, a numerical integration code (CCSC) and a
Monte Carlo simulation code (MCCMPT), have been devel-
oped at Duke University. These codes have been exten-
sively benchmarked against a beam-beam colliding code
CAIN2.35 developed at KEK and measurement results at the

High Intensity Gamma-ray Source (HI�S) facility at Duke

University. Using these two codes, we are able to charac-
terize Compton gamma-ray beams with various electron
and laser-beam parameters, arbitrary collision angles, and
different gamma-beam collimation conditions.
In this work, the nonlinear Compton scattering process

is not considered, and the polarization of the electron beam
is not taken into account. Although the polarization of
the gamma-ray beam has been calculated in Sec. II, this
calculation is limited to the particle-particle scattering
case. Further studies will be carried out to address these
issues.
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APPENDIX A: SPATIAL AND ENERGY
DISTRIBUTIONS OF A COMPTON

GAMMA-RAY BEAM

The spatial and energy distributions of a Compton
gamma-ray beam produced by a head-on collision of an
electron beam and a photon beam is given by

dNðEg; xd; ydÞ
d�ddEg

�
Z d�

d�
�ð �Eg � EgÞcð1þ �Þ

� neðx; y; z; x0; y0; p; tÞnpðx; y; z; k; tÞ
� dx0dy0dpdkdVdt; (A1)

where d�d ¼ dxddyd=L
2; neðx; y; z; x0; y0; p; tÞ and

npðx; y; z; k; tÞ are the density functions of the electron

and photon beams given by Eq. (40); d�=d� is the differ-
ential cross section given by Eq. (19). For head-on colli-
sions, we can simplify the differential cross section to

d�

d�
¼ 8r2e

�
1

4

�
4 ��2Ep

�Egð1þ ��2�2fÞ
þ

�Egð1þ ��2�2fÞ
4 ��2Ep

�

� 2cos2ð���fÞ
��2�2f

ð1þ ��2�2fÞ2
�� �Eg

4 ��Ep

�
2
: (A2)

Replacing x0 and y0 with �x and �y according to Eq. (49),
and neglecting the angular divergence of the laser beam at
the collision point, we can integrate Eq. (A1) over dV and
dt and obtain

dNðEg; xd; ydÞ
dEgdxddyd

¼ L2NeNp

ð2�Þ3�0�p�k

Z kffiffiffiffiffiffiffiffiffi
�x�y

p 1

��x��y

d�

d�
�ð �Eg � EgÞ

� ð1þ �Þ exp
�
�ð�x � xd=LÞ2

2�2
�x

� ð�y � yd=LÞ2
2�2

�y

� ðp� p0Þ2
2�2

p

� ðk� k0Þ2
2�2

k

�
d�xd�ydpdk; (A3)

where

�x¼1þ
�
	x��x

L

�
2þ2k�x"x

�0

; �x¼1þ2k�x"x
�0

;

��x¼
ffiffiffiffiffiffiffiffiffiffi
"x�x

�x�x

s
; �y¼1þ

�
	y�

�y

L

�
2þ2k�y"y

�0

;

�y¼1þ2k�y"y
�0

; ��y¼
ffiffiffiffiffiffiffiffiffiffi
"y�y

�y�y

s
; �f¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xþ�2y

q
;

�x¼�f cos�f; �y¼�f sin�f: (A4)

Next, we need to integrate the electron-beam momen-
tum dp. It is convenient to change the momentum p to the
scaled electron-beam energy variable �� ¼ Ee=ðmc2Þ, and
rewrite the delta function �ð �Eg � EgÞ as

�ð �Eg�EgÞ¼�

�
4 ��2Ep

1þ ��2�2fþ4 ��Ep=mc2
�Eg

�

¼��ð ����Þð1þ�2�2fþ4�Ep=mc2Þ2
8�Epð1þ2�Ep=mc2Þ ; (A5)

where

� ¼ 2EgEp=mc2

4Ep � Eg�
2
f

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ep � Eg�

2
f

4E2
pEg=ðmc2Þ2

vuut 1
A (A6)

is the root of

Eg ¼
4�2Ep

1þ �2�2f þ 4�Ep=mc2
(A7)

with the condition of 0 � �f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4EpÞ=Eg

q
.

Substituting Eqs. (A2) and (A5) into Eq. (A3) and
integrating d ��, we can get

dNðEg;xd;ydÞ
dEgdxddyd

¼ r2eL
2NeNp

4�3
@c�0���k

Z 1

0

Z ffiffiffiffiffiffiffiffiffiffiffiffi
4Ep=Eg

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
4Ep=Eg

p
Z �xmax

��xmax

1ffiffiffiffiffiffiffiffiffi
�x�y

p
��x��y

�

1þ2�Ep=mc2

�
1

4

�
4�2Ep

Egð1þ�2�2fÞ
þEgð1þ�2�2fÞ

4�2Ep

�

�2cos2ð���fÞ
�2�2f

ð1þ�2�2fÞ2
�
exp

�
�ð�x�xd=LÞ2

2�2
�x

�ð�y�yd=LÞ2
2�2

�y

�ð���0Þ2
2�2

�

�ðk�k0Þ2
2�2

k

�
d�xd�ydk;

(A8)

where

�xmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ep=Eg � �2y

q
: (A9)
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