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In this paper, we systematically study the echo-enabled harmonic generation (EEHG) free electron laser

(FEL). The EEHG FEL uses two modulators in combination with two dispersion sections that allow one to

generate in the beam a high harmonic density modulation starting with a relatively small initial energy

modulation of the beam. After presenting an analytical theory of the phenomenon, we address several

practically important issues, such as the effect of incoherent synchrotron radiation in the dispersion

sections, and the beam transverse size effect in the modulator. Using a representative realistic set of beam

parameters, we show how the EEHG scheme enhances the FEL performance and allows one to generate a

fully (both longitudinally and transversely) coherent radiation. As an example, we demonstrate that 5 nm

coherent soft x rays with GW peak power can be generated directly from the 240 nm seeding laser using

the proposed EEHG scheme.
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I. INTRODUCTION

There has been continually growing interest in generat-
ing coherent and powerful short wavelength radiation us-
ing the free electron laser (FEL) scheme, as reflected by the
many proposals and funded projects worldwide [1]. In the
nanometer and subnanometer wavelengths, the two leading
candidates are self-amplified spontaneous emission
(SASE) configuration [2,3] and the high gain harmonic
generation (HGHG) scheme [4,5]. Since the SASE FEL
starts from electron beam shot noise, the output of SASE
FEL typically has limited temporal coherence and rela-
tively large shot-to-shot fluctuations in both the power and
the spectrum. An alternative to SASE configuration is the
HGHG scheme that allows generation of temporally co-
herent radiation by using up-frequency conversion of a
high-power seeding signal.

In the classic HGHG scheme [5], the electron beam is
first energy modulated with a seed laser in the undulator
(modulator) and then sent through a dispersion region
which converts the energy modulation into a density modu-
lation. The density modulated beam is then sent through
the second undulator (radiator) tuned at some harmonic of
the seed laser. The up-frequency conversion efficiency for
this classic HGHG scheme is relatively low: generation of
the nth harmonic of the seed laser requires the energy
modulation amplitude approximately equal to n times the
slice energy spread of the beam. Because a considerable
increase of the slice energy spread would significantly
degrade the lasing process in the radiator, the harmonic
numbers n used in the classic HGHG scheme are typically
no larger than 6. In order to generate coherent soft x rays
with a wavelength in the range of a few nanometers using
an ultraviolet (UV) wavelength seeding laser with the
wavelength �200 nm, multiple stages of the classic
HGHG FEL are to be used [6].

In order to get higher harmonics while keeping the
energy spread growth within an acceptable level, a
double-undulator HGHG scheme was recently suggested
[7] where the modulator is subdivided into two pieces with
a � phase shifter between them. This allows for generation
of substantial bunching at higher harmonics while simul-
taneously limiting the growth of the energy spread.
However, the double-undulator HGHG scheme still re-
quires a high laser power and small beam slice energy
spread, which may limit its practical applications.
Recently one of the authors (G. S.) proposed a new

method for generation of high harmonics using the beam
echo effect [8]. The echo scheme has a remarkable up-
frequency conversion efficiency and allows for generation
of high harmonics with a relatively small energy modula-
tion. The echo scheme uses two modulators and two dis-
persion sections. In general, the frequencies of the first,!1,
and the second,!2, modulators can be different. The beam
modulation is observed at the wavelength 2�=kE, where
ckE ¼ n!1 þm!2, with n and m integer numbers. The
first dispersion section is chosen to be strong enough, so
that the energy and the density modulations induced in the
first modulator are macroscopically smeared due to the
slippage effect. At the same time, this smearing introduces
a complicated fine structure into the phase space of the
beam. The echo then occurs as a recoherence effect caused
by the mixing of the correlations between the modulation
in the second modulator and the structures imprinted onto
the phase space by the combined effect of the first modu-
lator and the first dispersion section. The key advantage of
the echo scheme is that the amplitude of high harmonics of
the echo is a slow decaying function of the integer numbers
n and m.
In this paper we systematically study the echo-enabled

harmonic generation (EEHG) FEL. We first introduce the
principles of the EEHG FEL in Sec. II. We then proceed to
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present the physical mechanism of the echo effect in
Sec. III. The issues that may affect the performance of
EEHG FEL are studied in Sec. IV. With realistic beam
parameters, we show in Sec. V that 5 nm coherent soft
x ray with GW peak power can be generated directly from
the 240 nm seeding laser using the EEHG scheme. The
conclusions are summarized in Sec. VI.

II. PRINCIPLES OF EEHG FEL

The schematic of the EEHG FEL is shown in Fig. 1. The
EEHG FEL consists of two modulators, two dispersion
sections, and one radiator. Similar to the classic HGHG
scheme, a laser pulse is used to modulate the beam energy
in the first undulator (modulator 1). If the bunch length is
much larger than the wavelength of the modulation, we can
neglect the variation of the beam current within the bunch
and assume a longitudinally uniform beam.

Following the notation of Ref. [8], we assume an initial
Gaussian beam energy distribution with an average energy
E0 and the rms energy spread �E, and use the variable p ¼
ðE� E0Þ=�E for the dimensionless energy deviation of a
particle. The initial longitudinal phase space distribution

can then be written as f0ðpÞ ¼ N0ð2�Þ�1=2e�p2=2, where
N0 is the number of electrons per unit length of the beam.

After passage through the first undulator, the beam
energy is modulated with the amplitude �E1, so that the
final dimensionless energy deviation p0 is related to the
initial one p by the equation p0 ¼ pþ A1 sinðk1zÞ, where
A1 ¼ �E1=�E, k1 ¼ !1=c, and z is the longitudinal coor-
dinate in the beam. The distribution function after the

interaction with the laser becomes f1ð�; pÞ ¼
N0ð2�Þ�1=2 exp½�ðp� A1 sin�Þ2=2�, where we now use
the dimensionless variable � ¼ k1z. Sending then the
beam through the first dispersion section with the disper-

sive strength Rð1Þ
56 converts the longitudinal coordinate z

into z0, z0 ¼ zþ Rð1Þ
56p�E=E0 (where p now refers to the

value at the entrance to the first dispersion section), and

makes the distribution function

f2ð�; pÞ ¼ N0ffiffiffiffiffiffiffi
2�

p exp

�
� 1

2
½p� A1 sinð� � B1pÞ�2

�
; (1)

where B1 ¼ Rð1Þ
56 k1�E=E0.

The final distribution function at the exit from the sec-
ond dispersion section can be easily found by applying
consecutively two more transformations to (1), similar to
the derivation outlined above. The first of these two trans-
formations corresponding to the modulation of the beam
energy with dimensionless amplitude A2 is p0 ¼
pþ A2 sinðk2zþ�Þ, where � is a phase of the second
laser beam; and the second one corresponding to the pas-

sage through the second dispersive element is z0 ¼ zþ
pRð2Þ

56�E=E0 (where p now refers to the value at the en-

trance to the second dispersion section). The resulting final
distribution function ff is

ffð�; pÞ ¼ N0ffiffiffiffiffiffiffi
2�

p exp

�
� 1

2
fp� A2 sinðK� � KB2pþ�Þ

� A1 sin½� � ðB1 þ B2Þp
þ A2B1 sinðK� � KB2pþ�Þ�g2

�
; (2)

where B2 ¼ Rð2Þ
56 k1�E=E0, and K ¼ k2=k1.

Integration of this formula over p gives the beam density
N as a function of � , Nð�Þ ¼ R1

�1 dpffð�; pÞ. We define

the bunching factor b as

b ¼ 1

N0

jhe�ia�Nð�Þij; (3)

where a is a number, and the brackets denote averaging
over the coordinate � . As we show in the Appendix, the
bunching factor is not zero only if

a ¼ nþ Km; (4)

which means presence of a modulation with the wave
number kE � ak1 ¼ nk1 þmk2, where n and m are inte-
ger numbers. Note that n and m can be either positive or
negative, with a negative kE meaning a modulation with a
wavelength 2�=jkEj. Using the notation bn;m for the

bunching factor (3) with a defined by Eq. (4), we find in
the Appendix

bn;m ¼ je�ð1=2Þ½nB1þðKmþnÞB2�2Jm½�ðKmþ nÞA2B2�
� Jnf�A1½nB1 þ ðKmþ nÞB2�gj: (5)

We will now show how to choose the dimensionless
parameters A1, A2, B1, and B2 to maximize the absolute
value of the bunching factor bn;m for given n, m, and the

ratio of the frequencies K. Analysis shows that the bunch-
ing factor attains its maximum when n ¼ �1 and de-
creases as the absolute value of n increases. As we will
see below, in order for B1 and B2 to have the same sign

FIG. 1. (Color) Schematic of the EEHG FEL. The beam energy
is modulated in the first undulator (modulator 1) tuned at
frequency !1 due to the interaction with the first laser beam.

After passing through the first dispersion section with Rð1Þ
56 , the

beam energy is then modulated in the second undulator (modu-
lator 2) tuned at frequency !2 due to the interaction with the
second laser beam. The beam passes through the second disper-

sion section Rð2Þ
56 and emits radiation in the last undulator

(radiator).
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(which means that one can use either two chicanes or two
doglegs as dispersion elements), n and m need to have
opposite signs. So we will limit our consideration by the
case n ¼ �1 andm> 0 only. Other cases can be studies in
a similar way. We start from

b�1;m ¼ jJm½ðKm� 1ÞA2B2�J1fA1½B1 � ðKm� 1ÞB2�g
� e�ð1=2Þ½B1�ðKm�1ÞB2�2 j: (6)

Note that for m> 4, the maximal value of the Bessel

function Jm is about 0:67=m1=3 and is achieved when its

argument is equal to mþ 0:81m1=3 [9]. So in order to
maximize the Jm factor in Eq. (6), we choose

ðKm� 1ÞA2B2 ¼ mþ 0:81m1=3: (7)

To find the parameters that maximize the product

J1fA1½B1 � ðKm� 1ÞB2�ge�ð1=2Þ½B1�ðKm�1ÞB2�2 , we intro-
duce the variable � ¼ B1 � ðKm� 1ÞB2, differentiate
with respect to �, and set the derivative equal to zero

A1½J0ðA1�Þ � J2ðA1�Þ� ¼ 2�J1ðA1�Þ: (8)

It is easy to find that among the infinite number of roots of
Eq. (8), only two roots that have minimal absolute value
maximize the expression. The bunching factor is maxi-
mized when Eqs. (7) and (8) are both satisfied. The maxi-

mal value of J1ðA1�Þe��2=2 is plotted in Fig. 2 as a function
of parameter A1. From Fig. 2 we see that the maximal value
of this function increases linearly with A1 when A1 is
smaller than 2. When A1 becomes larger than 3, the growth
of the maximal values slows down, and when A1 tends to
infinity, the maximal value approaches 0.58. In this limit, as
it follows from Eq. (6), the maximal bunching factor
becomes (assuming m> 4)

jb�1;mj � 0:39

m1=3
: (9)

It should be pointed out that the bunching factor will
decrease if the dispersion strengths are not at the optimized
values [8]. In practical design of an EEHG FEL, efforts
should be made to make the energy modulation amplitudes
and the dispersion strengths close to the optimized values.

III. PHYSICAL MECHANISM OF THE ECHO
EFFECT

To illustrate the physical mechanism behind the echo
effect, we first recall the mechanism of the classic HGHG
scheme. For simplicity, we consider a longitudinally uni-
form beam, assume a one-dimensional phase space p� z,
and neglect the transverse emittance and the finite beam
size effects. The initial longitudinal phase space of the
beam is shown in Fig. 3(a). After the first modulator, the
longitudinal phase space evolves to Fig. 3(b) (we assumed
here the relative amplitude of the energy modulation A ¼
3). In the classic HGHG scheme, the dispersion is chosen
to approximately satisfy R56�E=E � �=4 (assuming
�E � �E), where � is the laser wavelength, so that the
electrons in the peak and those in the valley move towards
the zero crossing by �=4 after the dispersion, see Fig. 3(c).
With this optimized dispersion strength, the energy modu-
lation is converted to current modulation and the localized
current bumps contain higher harmonic components.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

A
1

M
ax

FIG. 2. (Color) Maximal value of J1ðA1�Þe��2=2 as a function of
parameter A1.

FIG. 3. (Color) The phase space evolution in the classic HGHG scheme. Different colors indicate four regions of unit laser wavelength
in the initial phase space of the beam.
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As we will see below, the echo modulation scheme
utilizes much larger dispersion strength in dispersion sec-
tion 1. When the dispersion strength is increased, at a given
longitudinal position z, one observes particles that arrive
from different wavelength ranges of the initial phase space.
This results in a complicated structure in the phase space
illustrated by Fig. 4. Looking at the coordinate z ¼ 0 in
Figs. 4(a) and 4(b), we see that the beam at this position is
split into three and five beamlets, respectively, separated in
energy. From Eq. (1), we find that the energy distribution of
the electrons at z ¼ 0 can be written as

f2ð0; pÞ ¼ N0ffiffiffiffiffiffiffi
2�

p exp

�
� 1

2
½pþ A1 sinðB1pÞ�2

�
: (10)

This energy distribution function (normalized by N0) for
various values of B1 is shown in Fig. 5. As follows from
this figure, an increase of R56 generates more energy bands
in the phase space. The presence of the separated energy
bands at the same longitudinal position indeed allows for
the generation of high harmonics of the density modulation

after these separated energy bands are again modulated in
the second modulator and then converted to separated
density bands in the second dispersion section.
To illustrate a possible application of EEHG in a system

with realistic parameters, we take the nominal parameters
of the Fermi@Elettra FEL project [10] and show below
how the 24th harmonic of the seed laser can be generated
with a relatively small energy modulation using the EEHG
scheme. The electron beam energy of the Fermi@Elettra
FEL is 1.2 GeVand the slice energy spread is 150 keV. We
assume the wavelength of the seed laser 240 nm with the
frequency of the first and the second modulators equal,
!1 ¼ !2. The energy modulation amplitudes in modulator
1 and modulator 2 are chosen to be A1 ¼ 3 and A2 ¼ 1,
respectively. Note that the energy modulation amplitude in
our example is much smaller than the nominal value of the
modulation amplitude in the Fermi@Elettra project. The
optimized dispersion strengths obtained from Eqs. (7) and
(8) that maximize the bunching factor for the 24th har-
monic are found to be B1 ¼ 26:83 and B2 ¼ 1:14, corre-

sponding to Rð1Þ
56 ¼ 8:20 mm and Rð2Þ

56 ¼ 0:35 mm,

respectively. The maximal displacement change of the
electrons after passing through the first dispersion section
is about A1B1=k � 13� that is small compared to the
overall bunch length. So the assumption of a longitudinal
uniform beam in Sec. II is well justified.
The longitudinal phase space of the beam after passing

through the dispersion section 1 is shown in Fig. 6(a) where
the presence of separated energy bands is clearly seen. A
second laser with the same wavelength is used to modulate
the beam energy in modulator 2. At the exit of modulator 2,
the longitudinal phase space is shown in Fig. 6(b). It is
worth pointing out that the inherent energy spread of each
energy band is much smaller than that of the whole beam.
After passing through the dispersion section 2, the longi-
tudinal phase space evolves to that in Fig. 6(c), where we
clearly see that the energy modulation for each energy
band is converted to a density modulation. When projected
onto the z axis, the phase space of Fig. 6(c) clearly shows a
current modulation, shown in Fig. 6(d), with approxi-
mately 24 spikes in one wavelength region, which indicates

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

p

f(
p)

FIG. 5. (Color) Energy distribution at z ¼ 0 for various values
of R56. Solid blue curve: R56�E=E ¼ �=4; dashed magenta line:
R56�E=E ¼ �; and dash-dotted green line: R56�E=E ¼ 2�.

FIG. 4. (Color) Longitudinal phase space after beam passing through a dispersion section with strength (a) R56�E=E ¼ �, and
(b) R56�E=E ¼ 2�.
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a presence of the 24th harmonic of the seed laser. Fourier
transform of the current distribution in Fig. 6(d) gives the
bunching factor at various harmonic numbers shown in
Fig. 7. For convenience of comparison, the bunching factor
for the optimized classic HGHG scheme with the same
energy modulation amplitude is also shown in Fig. 7. From
Fig. 7 we see that for the classic HGHG scheme the
bunching factor exponentially decreases as the harmonic
number increases. However, for the echo scheme, we can

intentionally maximize the bunching factor for some spe-
cific harmonic number while most of the other harmonic
components are effectively suppressed. In addition to gen-
erating the 24th harmonic, the echo signal also contains
noticeable components for the 48th and 72th harmonic.

IV. ISSUES AFFECTING PERFORMANCE OF
EEHG FEL

The unique feature of EEHG FEL is utilization of two
laser beams and relatively large dispersion strength for the
dispersion section 1. We will discuss in this section such
issues as effect of incoherent and coherent synchrotron
radiation (ISR and CSR, respectively), as well as the
transverse size of the laser beams, that may affect the
performance of the FEL.
For the classic HGHG scheme, CSR and ISR effects in

the dispersion section are generally neglected, due to the
fact that the R56 is relatively small. For the EEHG case, the
dispersion strength is approximately 1 or 2 orders of mag-
nitude larger, and these effects may play important roles in
generation of the beam modulation. Quantum fluctuations
in the process of incoherent synchrotron radiation lead to
diffusion in energy. If the rms value of the energy spread
caused by this diffusion exceeds the spacing of two adja-
cent energy bands, it may result in the overlapping of the
bands, which will smear the fine structures of the longitu-
dinal phase space and thus degrade the EEHG perfor-
mances. The z-dependent CSR wake introduces an
additional energy modulation inside the dispersive section,
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FIG. 7. (Color) Comparison of the bunching factors from the
EEHG scheme (red dots) and that from the classic HGHG
scheme (blue circles).

FIG. 6. (Color) Longitudinal phase space evolution in the EEHG scheme. (a) Phase space at the exit of dispersion section 1. (b) Phase
space at the exit of modulator 2. (c) Phase space at the exit of dispersion section 2. (d) Current distribution at the exit of dispersion
section 2.
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which may result both in emittance growth of the beam and
distortion of the echo modulation.

To find the spacing between the adjacent energy bands,
we take the derivative of Eq. (10) and equate it to zero. We
have

½1þ A1B1 cosðB1pÞ�½pþ A1 sinðB1pÞ� ¼ 0: (11)

A detailed analysis shows that Eq. (10) attains its minimum
when 1þ A1B1 cosðB1pÞ ¼ 0, and it attains its maximum
when pþ A1 sinðB1pÞ ¼ 0. These equations can be easily
solved numerically. As an example, we consider parame-
ters of a modulator used in the previous section to max-
imize the 24th harmonic: A1 ¼ 3 and B1 ¼ 26:83.
Numerically solving Eq. (11), we find that the spacing
varies with p: in the central region of the phase space
where p is small, the spacing between adjacent energy
bands is about 0:09�E, and it increases to about 0:25�E

for large p. So we can expect that the fine structures in the
central part of the phase space where p is small are most
vulnerable to the energy diffusion caused by ISR.
Assuming �E ¼ 150 keV, we find that the smallest spac-
ing between the energy bands is about 13 keV.

To compare this spacing with the energy spread intro-
duced by passing a length L in a bend with the bending
radius �, we use the following formula [11]:

��2
EjISR ¼ 55e2@c

48
ffiffiffi
3

p L

�3
�7; (12)

where � is the relativistic factor. We calculated the ISR
induced energy spread for a very compact dispersion sec-
tion design consisting of a symmetric 4-dipole chicane
with a dispersion strength of 8.20 mm. The length of
each dipole is 20 cm and the distances between the first
and second dipoles and that between the third and fourth
dipoles are both 25 cm. The distance between the second
and third dipoles is 10 cm and the bending angle is about
5.9 degrees. We found that the ISR induced energy spread
is about 2.9 keV, which is not negligible as compared to the
spacing of the separated energy bands. To find out the
degradation of the bunching process caused by ISR we
carried out simulations with the computer code ELEGANT

[12]. The effect of transverse emittance and second order
elements of the transport matrix were included in the
simulation. When the parameters of the laser and disper-
sion strength were optimized to maximize the bunching
factor for the 24th harmonic, we found out that turning on
the ISR tracking option in the code decreased the bunching
factor by about 20% compared to the case when the ISR
option was turned off. The simulation results also imply
that the emittance and the second order effect has no
noticeable effect on the smearing of the longitudinal phase
space.

It is worth pointing out that the diffusion caused by ISR
strongly depends on the design of the dispersion section. In
the example above we used a very compact dispersion

section to be able to demonstrate the ISR effect. In prac-
tical design, for a given dispersion strength, one can in-
crease the spacing between the dipoles and thus decrease
the magnetic field of the dipole to mitigate the deleterious
effect of ISR. Another option is to increase the energy
modulation amplitude in modulator 2 which would reduce
the optimized strength of the dispersion sections.
The ISR effect in the dispersion section 2 is negligible

because of its relatively small dispersion strength and the
main concern is the CSR that may result in additional
energy modulation of the beam if it has a density modula-
tion in the dispersion section. A detailed study of CSR
effect is beyond the scope of this paper, and we limit our
consideration here by a simple estimate. For the same
configuration as that used in estimation of the ISR effect
above, the second dispersion section has the bending angle
of 1.2	 to provide a dispersion strength of 0.35 mm.
Because of the presence of R51, the bunching is smeared
out everywhere inside the chicane and it only occurs at the
very end of the last dipole where R51�x is much smaller
than the wavelength of the generated harmonic. Assuming
the beam peak current is 800 A and the bunching factor 0.1
at this region and using the steady-state CSR impedance
per unit length of path (see, e.g., [13])

ZCSRðkÞ ¼ ð1:63þ 0:94iÞ k
1=3
E

�2=3
; (13)

we estimate the CSR induced slice energy to be about
1.8 keV. Considering the fact that the energy change in
the 4th dipole only slightly affects the longitudinal position
of the particle, the CSR effect does not seem significant to
affect the bunching process. As for the first dispersion
section, even though there exists a position in the second

dipole where Rð1Þ
56 ðsÞ�E1=E0 � �=4 is satisfied, the energy

modulation does not effectively convert to density modu-
lation due to the considerable R51 at this position and the
CSR effects do not play a role.
Another issue that affects the efficacy of the echo modu-

lation is the finite transverse size of the electron and laser
beams. Because of the finite size of the laser beam, elec-
trons with different radial positions will see the laser field
of various amplitudes, which will cause a slice energy
spread and may result in degradation of the density modu-
lation. This effect is also present in the classic HGHG
scheme. To minimize it, in the design of a HGHG FEL,
one requires the rms laser spot size in the modulator to be
much larger than that of the electron beam.
To evaluate this effect for the echo harmonic generation,

we assume a Gaussian profile for the laser beam with an
rms transverse size �r. We can calculate the energy modu-
lation (expressed in units mc2) for an electron located at
radius r using the following equation [14]:
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��ðrÞ ¼
ffiffiffiffiffiffi
PL

P0

s
KuLu

��r

�
J0

�
K2

u

4þ 2K2
u

�
� J1

�
K2

u

4þ 2K2
u

��

� exp

�
� r2

4�2
r

�
; (14)

where PL is the peak laser power, P0 ¼ IAmc2=e �
8:7 GW, Lu is the undulator length, Ku is the undulator
strength parameter, � is the relativistic factor for the elec-
tron beam, and J0 and J1 are the Bessel functions of the
zeroth and first order.

We simulated the 24th harmonic bunching factor for
various ratios of the laser beam size �r to the electron
beam size �e. The bunching factor for various �r=�e

ratios normalized to the limiting value of an infinitely large
laser spot size is shown in Fig. 8. For comparison, the

normalized bunching factor for the 48th harmonic is also
shown with red circles. The bunching factors for the 24th
and 48th harmonics in the limit when the laser spot size
tends to infinity are 0.113 and 0.088, respectively. Note
that, in order to keep the modulation amplitude the same,
the laser power should scale as a square of the laser spot
size. Figure 8 suggests that, to avoid a significant degra-
dation of the EEHG FEL performance for the 24th (48th)
harmonic, the rms laser size should be at least 3 times
larger than that of the electron beam.
We have also studied the sensitivity of the bunching

factor to the shot-to-shot fluctuations of the laser power
by introducing random fluctuations of the laser power in
both modulators within�5%. The resulting fluctuations of
the 24th harmonic are shown in Fig. 9. We see that, with the
5% tolerance on the laser peak power, the bunching factor
of about 0.11 can be well maintained.

V. PERFORMANCES OF THE EEHG FEL

To illustrate a possible performance of the EEHG
scheme we will use parameters of the Fermi@Elettra
FEL project, and show how one can operate such a device
at 10 nm wavelength. Note that the FEL-2 stage of the
Fermi@Elettra project uses two-stage HGHG to generate
10 nm soft x ray seeded by a 240 nm laser. In the cascading
HGHG scheme, the 6th harmonic (40 nm) of the seed laser
is generated in the first stage and further used as a seed
signal for the second stage. The nominal beam energy is
1.2 GeVand local energy spread is 150 keV [10]. Because
the jitter requirement for the EEHG scheme is less strin-
gent than that for the cascading HGHG scheme, in our
calculations we take the peak current of the beam to be
800 A, in accordance with the parameters of one stage
HGHG FEL project.
The energy modulation and dispersion strengths in our

example were chosen to be the same as described in Sec. III
to maximize the bunching factor for the 24th harmonic.
The first modulator was chosen to be 135 cm long with the
undulator period length of 15 cm. The input laser had a
waist of 310 microns and the peak power of 64 MW. The
corresponding energy modulation amplitude was A1 ¼ 3.
The second modulator was 45 cm long and had just three
undulator periods. The laser parameters were the same and
the corresponding normalized energy modulation ampli-
tude was A2 ¼ 1.
The simulation was performed with the upgraded code

GENESIS [15,16] and consisted of three separate runs. In the

first run, the energy modulation from the 240 nm seed laser
in the first modulator was simulated and the particle dis-
tribution was dumped at the exit of modulator 1. The
particle distribution was imported, transported through
dispersion section 1, and further sent to modulator 2 for
the other energy modulation. At the exit of modulator 2,
the particle distribution was dumped again. Finally, the
particle distribution was reimported for the third run and
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the undulator period of the radiator was tuned to the 24th
harmonic of the seed laser. The radiator undulator had a
period of 5 cm and was divided into six sections of 2.5 m
separated by 0.5 m drift for focusing and beam diagnostics.

During the simulation, the dispersion strength and power
of the seed laser were finely tuned to maximize the bunch-
ing factor for the 24th harmonic at the entrance to the
radiator. The evolution of bunching factor and radiation
power are shown in Fig. 10. The significant enhancement
of the performance using the EEHG scheme is clearly seen
in Fig. 10(b) where the peak power of the 24th harmonic
radiation exceeds 1.6 GW and it saturates after five undu-
lator sections (the total magnet length is 12.5 m). The large
bunching factor at the entrance to the radiator offered by
the EEHG scheme is responsible for the initial steep qua-
dratic growth of the power. The high peak power and short
saturation length should be attributed to the initial large
bunching factor and the small energy modulation in the
modulators. Indeed, the local energy spread at the entrance
to the radiator is only about 2.45 times larger than the
initial local energy spread.

With the same beam and laser parameters, we also
simulated EEHG performance at the 48th harmonic, with
the radiation wavelength of 5 nm. In order to avoid large

ISR effects in the first dispersion section, we raised the
value of A2 to 2 by increasing the length of the modulator 2
to 90 cm. As it follows from Eq. (7) and (8), simultaneous
increase of A2 and the harmonic numberm does not change
much the optimal value of the parameter B1, and hence
does not increase the strength of the first dispersion section.
We first simulated the phase space evolution for the 48th

harmonic with our 1D code. The longitudinal phase space
at the exit of the dispersion section 2 is shown in Fig. 11(a),
and the calculated bunching factors for various harmonics
are shown in Fig. 11(b). We found that the 1D code gives
the maximized bunching factor for the 48th harmonic
about 0.088. In a GENESIS simulation, after additional tun-
ing of the strength of the dispersion section 2, we found a
somewhat smaller bunching factor of about 0.07. The slight
difference between the bunching factors in the GENESIS

simulation and that in our 1D code is probably due to the
finite laser spot size effect in the modulators. The beam
with the modulation at the 48th harmonic was then sent to
the radiator in which the undulator period was tuned to the
5 nm wavelength by shortening the period by a factor of 2
with other parameters being the same. The simulated
bunching factor and power evolution along the radiator
from GENESIS is shown in Fig. 12. From Fig. 12 we see
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FIG. 11. (Color) (a) Longitudinal phase space at the exit of dispersion 2. (b) Bunching factors for various harmonics.
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that the peak power for the 5 nm radiation is about 1.1 GW
and the power saturates after five undulator sections of
2.5 m.

VI. CONCLUSIONS

We have demonstrated a new working scheme of har-
monic generation in FELs. The EEHG FEL significantly
improves the performance of single-stage harmonic gen-
eration FEL. Using the realistic beam parameters (beam
energy: 1.2 GeV; slice energy spread: 150 keV; peak
current: 800 A; normalized emittance: 1.5 mm mrad), we
have shown that 5 nm coherent soft x ray with peak power
exceeding 1 GW can be generated directly from the
240 nm seeding laser using the EEHG scheme. It is worth
pointing out that the parameters used in our simulations
and calculations are representative rather than fully opti-
mized design sets. A more careful optimization might lead
to further improvements of the scheme.

In addition to generation of high harmonics, the EEHG
FEL also offer a flexibility of adjusting the x-ray pulse
duration by simply adjusting the overlapping region of the
two lasers. This may allow the generation of ultrashort
(< 10 fs) x-ray pulse with the EEHG scheme that could
open up investigations of many new areas of sciences.
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APPENDIX

Using notation introduced in Sec. II, we write the phase
space variables transformation for the passage through the
first modulator and dispersion section 1 as follows:

p0 ¼ pþ A1 sin�; � 0 ¼ � þ B1p
0; (A1)

where � , p are the initial coordinates before the entrance to

the system, and � 0, p0 are the final coordinates at the exit
from the first dispersion section. Similarly, for the passage
through the second modulator and dispersion section 2 we
have

p00 ¼ p0 þ A2 sinðK� 0 þ�Þ; � 00 ¼ � 0 þ B2p
00; (A2)

where � 00, p00 are the space phase variables at the exit from
the second dispersion section. Expressing the initial coor-
dinate p through the final variables � 00 and p00 and sub-
stituting it into the initial distribution function f0ðpÞ, we
obtain the final distribution function given by Eq. (2).
The bunching factor is defined by Eq. (3):

b ¼ 1

N0

jhe�ia�Nð�Þij

¼ 1

N0

��������
Z 1

�1
dp00he�ia� 00ffð� 00; p00Þi

��������; (A3)

where in the last integral we use the double prime variables
to emphasize that these are the phase space variables in the
final state of the beam, after the passage through the
system. Unfortunately, the direct integration in Eq. (A3)
cannot be carried out analytically.
There is an alternative way to calculate the bunching

factor which leads to relatively simple expressions. It is
based on observation that the averaging in Eq. (A3) can be
understood as

h
 
 
i ¼ lim
L!1

1

2L

Z L

�L
d� 00h
 
 
i: (A4)

If we now transform from the final variables � 00, p00 to the
initial variables � and p, using the fact that ffð� 00; p00Þ ¼
f0ðpÞ and d� 00dp00 ¼ d�dp, we obtain

b ¼ 1

N0

��������
Z 1

�1
dpf0ðpÞhe�ia� 00ð�;pÞi

��������; (A5)

where � 00 is expressed in terms of � and p, and the angular
brackets are understood as averaging over � :

h
 
 
i ¼ lim
L!1

1

2L

Z L

�L
d�h
 
 
i: (A6)

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

z (m)

b 48

a

0 2 4 6 8 10 12 14 16 18

10
4

10
5

10
6

10
7

10
8

10
9

z (m)

P
ow

er
 (

W
)

b
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The expression for � 00 in terms of � and p can be found
from Eqs. (A1) and (A2):

� 00 ¼ � þ ðB1 þ B2Þpþ A1ðB1 þ B2Þ sin�
þ A2B2 sinðK� þ KB1pþ KA1B1 sin� þ�Þ:

(A7)

Substituting this expression into Eq. (A5) gives

b ¼ 1

N0

��������
Z 1

�1
dpe�iapðB1þB2Þf0ðpÞhe�ia�e�iaA1ðB1þB2Þ sin�

� e�iaA2B2 sinðK�þKB1pþKA1B1 sin�þ�Þi
��������: (A8)

Two exponential factors in this equation can be expanded
in series:

e�iaA1ðB1þB2Þ sin� ¼ X1
k¼�1

eik�Jk½�aA1ðB1 þ B2Þ�; (A9)

and

e�iaA2B2 sinðK�þKB1pþKA1B1 sin�þ�Þ

¼ X1
m¼�1

eimðK�þKB1pþKA1B1 sin�þ�ÞJmð�aA2B2Þ;

(A10)

and then in turn the factor eimKA1B1 sin� appearing on the
right-hand side of Eq. (A10) can also be expanded:

eiA1B1Km sin� ¼ X1
l¼�1

eil�JlðA1B1KmÞ: (A11)

Now collecting all the terms in (A8) that have � depen-
dence, we find that they are given by the following ex-
pression:

heiðkþlþmK�aÞ� i: (A12)

Recalling that the angular brackets denote averaging over
� , we conclude that the above expression does not vanish
only if

a ¼ nþmK; (A13)

where n ¼ kþ l is an integer, in which case the averaged
value (A12) is equal to 1. Hence we obtain Eq. (4).
Substituting Eqs. (A9)–(A11) into Eq. (A8) and carrying
out integration over p with the help of

1

N0

Z 1

�1
dpe�iapðB1þB2ÞþimKpB1f0ðpÞ

¼ e�ð1=2Þ½apðB1þB2Þ�mKpB1�2 ; (A14)

and also using the identity

Jsðaþ bÞ ¼ X1
k¼�1

JkðbÞJs�kðaÞ;

we arrive at Eq. (5).
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