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We apply a recently developed Vlasov solver to the study of the microbunching instability generated by
shot noise in the beam delivery systems of x-ray free electron lasers (FELs). We discuss two lattices
presently under consideration for the FEL Fermi project at Elettra and show that at least one of the two
lattices appears capable of delivering a beam with the desired quality in the longitudinal phase space.
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I. INTRODUCTION

The microbunching instability in linacs can limit the
performance of single-pass x-ray FELs by significantly
degrading the beam quality [1]. The instability stems
from small irregularities in the longitudinal charge density,
which can be amplified by self-field induced energy varia-
tions when the beam travels through dispersive regions.
Accurate and efficient modeling of this instability is im-
portant for linac design but is challenging because of the
high resolution needed to capture small fluctuations in
phase space. Macroparticle simulations are valuable but
using a number of macroparticles significantly smaller than
the bunch population introduces spurious noise that may
overshadow the small fluctuations responsible for the
genuinely physical instability [2].

Immune to this problem direct methods [3–9] to solve
the Vlasov equation offer an interesting alternative. In [10]
we proposed a 2D Vlasov solver tailored to the specific
features of beams (like a strong energy/position correla-
tion) in the delivery systems for x-ray FELs. Direct meth-
ods are generally more computationally intensive than
macroparticle simulations but the strong dependence of
the computational load on the dimensionality of the prob-
lem makes them particularly attractive for 2D simulations.

Being 2D, the solver we developed would seem to apply
only to beams with vanishing transverse emittance. At first
this would not appear to be a significant limitation as the
microbunching instability is essentially a longitudinal
phase-space phenomenon, where longitudinal charge den-
sity fluctuations give rise to an electric self-field affecting
the beam energy through the longitudinal component.
However, the longitudinal slippage, which is central to
the development of the instability, can be substantially
affected by a finite horizontal emittance. A realistic repre-
sentation of the beam dynamics should then include some
account of the horizontal degree of freedom. In [10] we
proposed a model for the smearing effect of a transverse
emittance on the microbunching instability consisting of a
low-pass filter applied to the kernel for the evaluation of

the collective force. Effectively, this enables the modeling
of beams with finite transverse emittance by a 2D solver.
The generally good agreement found with the 4D linear
theory, in the regime where linear theory applies, has
encouraged us to pursue application of this solver to the
study of systems of practical interest.

The core of the paper (Sec. IV) is a discussion of two
linac designs proposed for the Fermi@Elettra FEL [11]
and their response to the microbunching instability seeded
by shot noise—the random charge density fluctuations
caused by the granularity of the elementary charge and
the most fundamental source of the microbunching insta-
bility. Our main result is an estimate of the beam (uncorre-
lated) energy spread at the exit of the linac showing that at
least one of the two lattices considered meets the required
maximum 150 keV specification.

As for the rest of the paper, in Sec. II we summarize the
main aspects of the method introduced in [10] and report
on some features added to the solver, like the option to
enforce periodic-boundary conditions. In the same section
we also report testing of the 2D Vlasov solver by compari-
son against the 4D linear theory. In Sec. III we describe the
model adopted to represent shot noise and, finally, in the
Appendix we show how the existing 4D linear theory for
the microbunching gain function was extended to include
acceleration.

II. OUTLINE OF THE 2D SOLVER AND
VALIDATION AGAINST LINEAR THEORY

The method proposed in [10] is based upon the replace-
ment of the coordinate pair �z; E� with the pair (ẑ � z, Ê �
E� �), where the correlation function, or energy ‘‘chirp,’’
� � ��ẑ; s� has been subtracted. Here E and z denote the
particle energy and the longitudinal position relative to the
reference orbit (z > 0 for particles in the bunch head).

The method in [10] was developed with the possibility of
representing the entire longitudinal phase space of a beam
in mind. This may not be needed, though, if one is ex-
clusively interested in the study of the microbunching
instability. We can substantially reduce the computation
time by choosing to follow only the dynamics of particles
belonging to a window of length Lb � 2lb, smaller than the*mventurini@lbl.gov
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bunch length. In practice, this can be accomplished by
imposing the periodic-boundary condition in ẑ. The pres-
ence of the boundaries will not alter the description of the
beam dynamics significantly if Lb is sufficiently larger
than the characteristic length scale of the microbunching
instability.

In the calculations presented in this paper, we always
enforce periodic-boundary conditions. The initial beam
density f�ẑ; Ê�, is represented on a Cartesian grid with
cell sizes �ẑ and �Ê spanning the region ��l�0�b ; l

�0�
b � �

��Ê�0�max; Ê
�0�
max�, where Ê�0�max is chosen so that f�ẑ; Ê� is

negligible for jÊj> Ê�0�max. The normalization is such that
Nbf�ẑ; Ê��ẑ�Ê represents the number of electrons con-
tained in the cell �ẑ�Ê centered at �ẑ; Ê�, and Nb is the
total number of electrons contained in the region spanned
by the grid.

Propagation of the density function is done by interleav-
ing kicks under the collective force and advancements
carried out under the action of the external forces. At
each step, the values of the density function off-grid points
are determined by local interpolation using cubic polyno-
mials. During propagation the support of the beam is
adapted to follow compression in ẑ and dilation in Ê, i.e.
at the current position s along the lattice the domain
spanned by the grid is ��lb; lb� � �Êmax; Êmax�, with lb �
l�0�b =C and Êmax � CÊ�0�max, where C � C�s0; s� is the com-
pression factor from the start s0 to s.

A. Mapping under collective force

The mapping for collective kicks separated by �s is
given by

 Ê 0 � Ê� F�ẑ; s��s; (1)

 ẑ 0 � ẑ; (2)

where the collective force in frequency space is defined in
terms of the impedance (per unit length) Ẑ�k� as

 F�z; s� � �e2Nb�c
2�
Lb

X1
n��1

Ẑ�kn�~��kn; s�e
iknze�k

2
n�2
?
=2

(3)

and ~��k� � �2���1
Rlb
�lb

dze�ikz��z� is the Fourier integral
of the normalized charge density ��z� �

R
dEf�z; E�, with

normalization
Rlb
�lb

dz��z� � 1, and kn � 2�n=Lb is the
wave number.

The smearing effect of a finite horizontal emittance is
modeled by the insertion of a low-pass filter e�k

2
n�2
?
=2 [last

term in Eq. (3)], where �? �
��������������
2"xH

q
, yielding a cutoff

wavelength �c ’ 2�
������������
"xH

q
. Here H � �xD2 �

2�xDD
0 � �x�D

0�2 is the dispersion invariant and �x,
�x, �x the familiar Twiss functions.

The only sources of collective effects considered for the
present study are coherent synchrotron radiation (CSR),
treated in the free-space model of Refs. [10,12] (1D line
charge in uniform circular motion with no account of
transients), and space charge. The model adopted for the
latter is given by [10,13,14]

 Ẑ�k� �
iZ0

��rb

1� xK1�x�
x

��������x�krb=�
; (4)

where K1�x� is the modified Bessel function and Z0 �
120� �, the vacuum impedance. This formula applies to
a bunch with transversally uniform density and circular
cross section of radius rb in free space and yields the
electric field on the beam axis. To model a transversally
Gaussian beam with rms sizes �x and �y, we set rb �
1:7��x � �y�=2, as suggested in [13]. For a discussion of
the range of validity of this impedance, see [15].

B. Mapping under external force

We assume ultrarelativistic motion and neglect any slip-
page along the longitudinal coordinate not due to disper-
sive effects.

Propagation under external fields in a bending magnet
from location s to location s0 > s is provided by the map-
ping

 ẑ 0 �
ẑ

C�s; s0�
�

Ê
Er�s�

dR56�s; s0�; (5)

 Ê 0 � ÊC�s; s0�; (6)

where C�s; s0� � 1=�1� h�s�dR56�s; s
0�� is the compres-

sion that the beam undergoes from s to s0, dR56�s; s
0� �

R56�s
0� � R56�s� the increment of the R56 entry of the

transfer matrix describing slippage by off-momentum par-
ticles. A linear energy/position correlation is assumed,
��z; s� � zh�s�Er�s� � Er�s�, where Er�s� is the design
beam energy.

In a bend, the linear chirp evolves according to h�s0� �
h�s�=�1� h�s�dR56�s; s

0��, while in an rf structure, where
the energy of the reference particle varies according to

 Er�s0� � Er�s� � �s0 � s�
�Ecav

Lcav
sin�s; (7)

�1�s� � h�s�Er�s� evolves as

 �1�s0� � �1�s� � �s0 � s�
�Ecav

Lcav

!rf

c
cos�s: (8)

In the rf structures as well as in all other lattice elements,
with the exception of bends, the dynamics in the coordi-

MARCO VENTURINI Phys. Rev. ST Accel. Beams 10, 104401 (2007)

104401-2



nates �ẑ; Ê� in the absence of collective effects is simply the
identity (ẑ0 � ẑ, Ê0 � Ê).

C. Validation against linear theory

We investigated the accuracy of our model for
emittance-induced smearing of microbunching (the low-
pass filter mentioned in Sec. II A) by comparing the small-
amplitude gain function calculated from the numerical
solution of the Vlasov equation and the 4D linear theory
(see Appendix A). The gain function between locations
si and sf along the linac is defined as the ratio
�Af=Ai�=C�si; sf�, where Ai is the amplitude of a small

sinusoidal perturbation at si evolving into a perturbation of
amplitude Af at sf, and C�si; sf� is the compression factor.
In [10] we reported good agreement for a section of linac
encompassing a single bunch compressor. We have later
verified that the agreement remains very satisfactory
through longer sections spanning two bunch compressors.
This is illustrated in Figs. 1–3, referring the Fermi lattices
that will be discussed in detail in Sec. IV. A disagreement
between numerical and linear theory becomes noticeable
(but is still acceptable) only when collective effects outside
the bunch compressors are turned off, as in Fig. 3.
Incidentally, notice the relative unimportance of CSR in
comparison to space charge (Fig. 3 vs Fig. 1) and the
considerable lower gains offered by the one-BC lattice
compared to the two-BC lattice (Fig. 2 vs Fig. 1). Also,
from these pictures one can appreciate the beneficial effect
of a larger beam energy spread.

III. MODEL OF SHOT NOISE

Shot noise, caused by the granularity of the elementary
electron charge, is an unavoidable and the most fundamen-
tal source of undesired fluctuations. Other sources (e.g.
noise in the photo-gun laser) may be significant but will
not be considered in this study.

We model shot noise in the electron beam by applying a
random perturbation to a smooth density function f0

ij �

f0�zi; Ej� defined on the grid nodes �i; j� at the start of the
simulation. In the calculations for this paper f0�z; E� is
assumed to be uniform in z and Gaussian in E.

Let Nij be the number of electrons occupying the area
�z�E of phase space centered on the grid node �zi; Ej�. We
regard Nij as a stochastic process [16] obeying the Poisson
statistics with average hNiji � Nbf

0
ij�z�E and variance

h�Nij � hNiji�2i1=2 � hNiji1=2. If Nij is sufficiently large
we can write

FIG. 1. (Color) Gain functions from the start of the linac through
the second bunch compressor (BC) for the two-BC lattice dis-
cussed in Sec. IVA. Good agreement is found between the 4D
linear theory (solid lines) and the numerical solutions of the
Vlasov equations (dots). Three choices of initial beam uncorre-
lated rms energy spread are shown (the maximum gain for the
�E0 � 10 keV case is about 450 and occurs at wavelength � ’
65 	m). Both space charge and CSR are included in the calcu-
lation of the collective force.

FIG. 3. (Color) Gain functions from the start of the linac through
the second bunch compressor for the two-BC lattice of Sec. IVA
with space charge turned off. The discrepancy between numeri-
cal solutions (dots) and linear theory (lines) is noticeable but still
acceptable.

FIG. 2. (Color) Gain function for the one-BC lattice (see
Sec. IV B) for two values of the beam initial uncorrelated energy
spread. The lighter dots represent the gain from the start of the
linac through the bunch compressor as calculated using the
Vlasov solver (the solid lines are from the 4D linear theory).
The darker dots represent the gain function beyond the bunch
compressor to the end of the linac (including the spreader).
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 Nij � hNiji � hNiji1=2
ij; (9)

where 
ij is an uncorrelated, bivariate normal stochastic
process with zero average and variance equal to unity
h
2
iji � �ij. Dividing both sides of the above equation by

Nb�z�E yields the following prescription for the per-
turbed beam density:

 fij � f0
ij

�
1�


ij
hNiji

1=2

�
: (10)

We end this section with two observations. An obvious
limitation in the above model is represented by the use of a
finite-density grid. While the power spectrum of shot noise
is uniform, a finite grid cell size introduces a natural high-
frequency cutoff. Care has to be taken to make sure that the
grid density can support the physically meaningful part of
the spectrum of the perturbation. Fortunately, very high-
frequency components of the noise spectrum are not ex-
pected to undergo appreciable magnification because of the
presence of mixing mechanisms smearing the microbunch-
ing (finite energy spread and transverse emittance).
Therefore, excluding the high-frequency part of the noise
spectrum should have limited consequences on the accu-
racy of the model.

A second observation concerns the potential problems
posed to the Vlasov solver by propagation of a nonsmooth
density. A key element of a solver is an interpolation
scheme to reconstruct the value of the density function
off-grid points after each time step. The interpolation
algorithm (in our case using cubic polynomials [10]) pre-
supposes a certain smoothness of the underlying function
in order for the interpolation errors to remain bounded.
Clearly the random perturbation we impose to the initial
density violates this smoothness assumption and one may
fear that it could result into an unacceptable error. A
possible solution to this difficulty is to have the noisy
density function first defined on a coarser grid and then
extended to a denser grid by interpolation before starting
propagation by the Vlasov solver. In our code we imple-
mented this option but have found that, when applied, it did
not affect the results significantly.

IV. APPLICATION TO FERMI@ELETTRA

We illustrate the application of our Vlasov solver to the
study of two lattice designs under consideration for the
Fermi project. Fermi is a tunable, soft x-ray, seeded FEL
4th generation light source presently under design at the
Elettra laboratory in Trieste with a target radiation wave-
length in the 10–100 nm range [11].

Starting from a photoinjector, a 1.2 GeV linac will feed a
beam with assumed �E � 150 keV maximum uncorre-
lated energy spread and transverse (normalized) rms emit-
tance below 1:5 	m to two distinct undulator lines. A
0.8 kA peak current will be needed to meet the desired
brightness specifications.

Other important beam requirements (concerning, for
example, the linearity of the energy chirp) are not affected
by (or have any consequence on) microbunching and are
not of concern in our study.

The desired peak current will be achieved by using
bunch compressors to enhance the beam density by about
a factor 10. At this time two alternate lattices are being
considered employing one and two bunch compressors. In
either case it is anticipated that a laser heater will be
installed to increase the beam energy spread as a way to
control the microbunching instability [13,17]. In our simu-
lations we have yet to implement a model for the beam-
laser interaction in the heater and the energy distribution of
the initial beam is assumed to be Gaussian.

In the simulations, the beam is followed from the start of
the main linac at about 96 MeV beam energy. The only
collective effects considered are those relevant for micro-
bunching, i.e. space charge and coherent synchrotron ra-
diation. We propagate the beam density function through
the linac with the exact account of the linear optics for
determination of the transfer matrix and local beam trans-
verse sizes (needed for evaluating the space-charge force).
We assume that through the linac the beam maintains a
Gaussian transverse density with constant emittances. In
the simulations discussed here "x � "y � 1 	m (normal-
ized rms emittances).

The effect of rf wakefields is neglected. This does not
represent a serious omission as the spectrum of the imped-
ance for the rf structures is not expected to overlap sig-
nificantly with the regions of the spectrum relevant for the
microbunching instability. However, rf wakes affect the
evolution of the beam energy chirp [18]. To compensate
for the absence of the rf wakes, we adjusted the rf cavities
in the lattice so as to give the beam the z=E correlation
required to achieve the desired compression.

A. The two-BC Lattice

A two bunch-compressor lattice represents the current
baseline for the Fermi project [19]. The section of the linac
considered in our simulations is approximately 160 m long
including the spreader (however, in the calculation dis-
cussed here the bends in the spreader were replaced by
drifts). The two bunch compressors (which we will refer to
as BC1 and BC2) are placed at locations along the linac
where the beam energy is about 220 and 600 MeV, respec-
tively. They yield an overall 10.5 compression factor
partitioned about equally between the two (3.5 and 3,
respectively).

Snapshots of the longitudinal phase space (uncorrelated
energy deviation vs longitudinal position) at selected loca-
tions along the lattice are shown in Figs. 4 and 5 together
with the normalized longitudinal density. In this example
the initial uncorrelated energy spread is�E0 � 13 keV and
the final peak current If � 1 kA, 25% larger than the
Fermi specifications.
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FIG. 4. (Color) Phase space (top pictures) and normalized charge density (bottom pictures) at selected locations along the two-BC
lattice. The phase-space pictures show only half of the z support for the beam density. The beam has an initial I � 95:5 A peak current
(If � 1 kA at the end of the linac), 96 MeV energy, and �E0 � 13 keV rms energy spread.

FIG. 5. (Color) The phase space at the exit of BC2 in the two-BC lattice shows evidence of instability saturation (top-left picture). The
rms energy spread at the end of the linac averaged over z is 186 keV, about 50% of which is accumulated after BC2.
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The three sets of pictures in Fig. 4 are taken at the start of
the linac, exit of BC1, and at the entrance of BC2. The
random noise present in the initial distribution can be seen
to have evolved into a 	2% charge density fluctuation by
the exit of BC1. At this location the energy modulation is
still small compared to the beam energy spread but it
increases noticeably by the time the beam enters BC2
(top-right picture). A cursory inspection of this picture
shows a dominant modulation somewhat below � ’
10 	m, consistent with a maximum gain at wavelength
� ’ 24 	m=3:5 � 7:1 	m indicated by linear theory (see
the gain function in Fig. 6). Notice that between the two
bunch compressors the charge density profile remains un-
changed as the beam is ‘‘frozen’’ outside the dispersive
regions of the lattice.

The left phase-space picture of Fig. 5 at the exit of BC2
shows clear evidence of instability saturation (the folding
of the beam density in phase space). The instability satu-
ration leaves behind fairly large fluctuations (about 5%) in
the charge density, with a frequency spectrum roughly
delimited from above by the wavelength of the maximum
gain predicted by linear theory (� ’ 8 	m). These rela-
tively large fluctuations remain unchanged to the end of the
linac, and result into additional space-charge induced en-
ergy modulation. At the exit of BC2 where the energy Er ’
600 MeV and the effective transverse radius is rb ’
200 	m, the space-charge impedance (per unit length)
at � ’ 8 	m is about Ẑ ’ 90 �=m. A relative modulation
in the charge density of A � 0:05 results into an energy
change of the order �E �keV�=�s�m� ’ 10�3 �

AI�Ampere�Ẑ ��=m� ’ 4:5 keV=m, which projected
over the remaining 60 m of linac adds up to a 270 keV
energy modulation. The amplitude of the actual energy
modulation gained after BC2 as determined from the
simulations turns out to be a bit smaller, as the doubling
of the beam energy by the end of the linac tames the effect
of space charge (at the end of the linac where Er �

1:2 GeV, �E �keV�=�s �m� ’ 1:4 keV=m), but can be
clearly seen in the phase space in the top-right picture of
Fig. 5. At the end of the linac the uncorrelated rms energy
spread averaged over z as determined from the beam 2D
distribution equals about 190 keV, or	50% larger than the
136 keV � 10:5� 13 keV beam energy spread induced
by compression alone (i.e. in the absence of collective
effects). About half of this incremental energy spread is
accumulated in the linac section past BC2.

Such a large energy spread at extraction would not be
acceptable for Fermi. One might hope to reduce the effect
of the instability by further increasing the energy spread
�E0 at the start of the linac with a modified tuning of the
laser heater. However, because a lower bound to the energy
spread at extraction is the zero-current limit �E � C�E0, it
is clear that a compression factor C ’ 10:5 leaves limited
room for maneuver. Indeed, the systematic study of �E vs
�E0 reported in Fig. 7 shows that for If � 1 kA, �E �
190 keV is close to the minimum attainable energy spread.
Figure 7 reports the average energy spread at extraction
from 10 different realizations of random perturbation to the
initial beam density modeling shot noise. The error bars
delimit the range of the results. At the design peak current,
If � 0:8 kA, the minimum attainable energy spread is
lower but still above the 150 keV target value.

B. The one-BC lattice

In an attempt to reduce microbunching, a second lattice
design has been proposed [19,20] consisting of a single
bunch compressor providing at once the desired factor	10
compression. The version discussed in this section is about
200 m long and includes the small chicane for laser heating
(which was excluded in the lattice considered in IVA). The
beam interacts with the laser in the middle of the laser-

FIG. 7. (Color) Average of uncorrelated rms energy spread at the
exit vs rms energy spread at the entry of the linac for the two-BC
lattice. The averages are over 10 random realizations of the
initial perturbation modeling shot noise. The error bars span the
result ranges. The black and red boxes correspond to If � 1 kA
and 0.8 kA (end of the linac) peak currents. The dashed line is
the expected rms energy spread in the absence of collective
effects (resulting from compression).

FIG. 6. (Color) Gain function from the start of the two-BC
lattice through the first bunch compressor. The maximum occurs
at wavelength (before compression) � ’ 24 	m corresponding
to a compressed wavelength 24=3:5 	m ’ 7:1 	m at the exit of
BC1.
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heater chicane but in our simulations the beam is assumed
to have from the start the rms energy spread resulting from
the interaction with the laser. Also, in contrast to the
simulations in IVA, the dipoles in the spreader are treated
as actual bending elements.

The single bunch compressor of this lattice is compa-
rable with BC1 of the two-BC lattice of Sec. IVA and
provides only a slightly larger R56. The larger compression
is therefore mostly due to a larger energy chirp. The
location of the bunch compressor within the linac and the
beam energy are also comparable to those of BC1.

Full compression of the beam early on in the linac
causes an unfavorable enhancement of the self-fields, as
they scale with the beam peak current. However, this is
abundantly compensated by a larger uncorrelated energy
spread experienced by the beam over a longer section of
the linac.

Evidence of the better standing of the one-BC lattice is
already apparent from the linear-theory gain curves of
Fig. 2. The linear gain is an order of magnitude smaller
than in the two-BC lattice for comparable initial energy
spread (Fig. 2 vs Fig. 1).

In Fig. 2 the additional gain experienced by microbunch-
ing past the bunch compressor (the darker vs the lighter
dots) is due to the dispersive region of the spreader. We
should mention that care was taken to minimize the varia-
tion of R56 through the spreader by suitable setting of the
spreader dipoles. In an earlier version of this lattice, before

such an optimization was made, the gain function through
the end of the machine turned out to be considerably larger
than in Fig. 2. (A detailed discussion of the spreader design
and its impact on microbunching will be reported
elsewhere.)

Phase-space snapshots are shown in Fig. 8 for the case of
a beam with If � 1 keV peak current and �E0 � 7 keV
initial energy spread (about half the energy spread used for
the calculations of Figs. 4 and 5). The final energy spread is
seen to remain below �E � 120 keV and the charge den-

FIG. 8. (Color) Phase space at selected locations along the one-BC lattice. The three observation points (from left to right) are at the
entrance and exit of the bunch compressor, and at the end of the linac. The initial beam rms energy spread is �E0 � 7 keV. The rms
energy spread at the end of the linac is 117 keV, the peak current If � 1 kA.

FIG. 9. (Color) Average of uncorrelated rms energy spread at the
exit vs rms energy spread at the entry of the one-BC lattice. The
averages are over 30 realizations of shot noise. (See also the
caption of Fig. 7.)

MICROBUNCHING INSTABILITY IN SINGLE-PASS . . . Phys. Rev. ST Accel. Beams 10, 104401 (2007)

104401-7



sity fluctuations at a modest 1% level. Also, observe the
absence of saturation (the energy modulation in phase
space remains ‘‘upright‘‘, top-right picture).

The generally more attractive behavior shown by the
one-BC lattice is confirmed by the study of the rms un-
correlated energy spread at extraction vs the initial beam
rms energy spread (Fig. 9) showing that energy spreads
smaller that 110 keV would be within reach at If �
0:8 kA. The figure indicates an optimum tuning of the
laser heating in the neighborhood of 7–8 keV.

V. CONCLUSION

This paper contains the first attempt to apply direct
Vlasov solver methods to the study of the microbunching
instability in single-pass systems.

We have discussed two lattices proposed for the Fermi
project at Electra and limited our study to consideration of
the microbunching instability stemming from shot noise.
This is the most fundamental but not the only source of
undesired charge density fluctuations, and therefore our
results should be interpreted as providing, within the limi-
tations of our model, a lower bound to quality degradation
experienced by the beam. In the current baseline lattice
(with two bunch compressors), we found that the micro-
bunching instability from shot noise alone would be suffi-
cient to cause an energy spread at extraction larger than the
desired 150 keV. In contrast, the one bunch-compressor
lattice we have considered would meet the required speci-
fications and leave a comfortable buffer provided that the
laser heater be tuned to generate an initial energy spread of
7–8 keV. Additional studies are needed to verify that the
desired beam quality would be maintained in the transverse
phase space as well.

Because of a number of approximations involved in the
model (including a simplified treatment of the longitudinal
space charge), some caution should be exercised at this
time in assessing our results.

A validation of our solver against macroparticle simula-
tions is in our plans. We have yet to carry out a detailed
comparison. However, preliminary contacts with results
from IMPACT simulations using 1B macroparticles for
the Fermi two-BC lattice are quite encouraging [21]. We
should point out that a meaningful comparison with simu-
lations employing a limited number of macroparticles
could be made as well provided that in our Vlasov solver
the amplitude of the initial random perturbation to the
beam density be adjusted to reflect the shot noise of the
macroparticle distribution.

While we do not expect the level of accuracy of a 2D
Vlasov solver to be the same as that of multibillion macro-
particle simulations in a full 6D phase space, we should
emphasize that the value of our model is in its simplicity
and speed of execution [22], which should make it a useful
tool for optimization and comparative studies.
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APPENDIX A: LINEAR THEORY IN THE
PRESENCE OF ACCELERATION

The bunching function for a coasting beam with density
function f�z� � �x; px; z; �� in a 4D phase space is defined
as the Fourier integral

 b�k; s� �
Z
e�ikzf�z; s�z: (A1)

In linear approximation, a sinusoidal charge perturbation
of amplitude b�k0; s0� at s � s0 with wave number k0 will
evolve into a sinusoidal modulation of amplitude b�k; s�
and wave number k�s� � C�s0; s�k0 at s > s0, where
C�s0; s� is the compression experienced by the beam
from s0 to s. A Volterra-type integral equation for b�k; s�
was derived in [12] (see also [23] whose notation we follow
more closely) in the absence of acceleration. In this
Appendix we show how with few modifications the same
equation can be extended to include the more general case
with acceleration.

Consider the unperturbed dynamics (no collective
effects) in terms of the horizontal coordinate x, the
longitudinal position z, and the energy deviation �̂ � �E�
Er�s��=E0 scaled with respect to the beam energy E0 �
Er�s0� at s � s0:

 x00 � r�s�x0 � kx�s�x �
�̂
R�s�

E0

Er�s�
; (A2)

 

d
ds
�̂ � �q�s�z;

dz
ds
� �

x
R�s�

; (A3)

where r�s� � E�1
r �dEr=ds� is the (relative) energy gain

due to acceleration and q�s� � �Ecav

E0Lcav

!rf

c cos�s, with both
r�s� and q�s� vanishing everywhere outside the rf
structures.

The motion in these coordinates is non-Hamiltonian.
However, it is well known that we can recover canonical
equations of motion if r�s� 
 1 by introducing the new
coordinate x̂ � x�E0=Er�

�1=2. Upon inserting this expres-
sion into (A2) and (A3) and neglecting slow varying terms,
we find

 x̂ 00 � kx�s�x̂ �
�̂
R�s�

�
E0

Er�s�

�
1=2
; (A4)

 

d�̂
ds
� �q�s�z; (A5)
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dz
ds
� �

x̂
R�s�

�
E0

Er�s�

�
1=2
: (A6)

Denote with R̂s!s
0

the transfer matrix yielding the solu-
tions of (A4)–(A6) in terms of the coordinates ẑ �
�x̂; p̂x � dx̂=ds; ẑ � z; �̂�.

The transfer matrix has the general form

 R̂ s!s0 �

R̂s!s
0

11 R̂s!s
0

12 0 R̂s!s
0

16

R̂s!s
0

21 R̂s!s
0

22 0 R̂s!s
0

26

R̂s!s
0

51 R̂s!s
0

52 R̂s!s
0

55 R̂s!s
0

56

0 0 0 R̂s!s
0

66

0
BBBB@

1
CCCCA: (A7)

Written in terms of the new coordinates ẑ and transfer
matrix R̂, the integral equation for the bunch function is
formally the same as in [12,23]. The only difference is in
the expression of the compression factor C�s; s0� �
1=�R̂s!s

0

55 � h�s�R̂s!s
0

56 �, where in the case with acceleration
R̂s!s

0

55 is in general different from unity.
Specifically, the above-mentioned integral equation for a

beam matched to the lattice with horizontal Gaussian
density, rms normalized emittance "x0, and Gaussian en-
ergy distribution with rms spread ��̂0 reads

 b�k�s�; s� � b0�k�s�; s� �
Z s

s0

K��; s�b�k�s�; s�d�; (A8)

where the kernel K��; s� is defined by

 

K��; s� � ik�s�R̂�!s56

I���
IA

Z�k���; ��
�0

exp
�
�
k2

0

2
U2�2

�̂0

�

� exp
�
�

k2
0"x0

2�0�x0
T
�
; (A9)

with IA ’ 17:045 kA (the Alfvén current),

 U � U�s; �� � C�s�R̂56�s� � C���R̂56���; (A10)

and T � T�s; �� � ��x0V � �x0W�2 �W2. In turn,

 V�s; �� � C�s�R̂51�s� � C���R̂51���; (A11)

 W�s; �� � C�s�R̂52�s� � C���R̂52���: (A12)

In the above expressions we used the shorthand notation
R̂ij�s� � R̂s0!s

ij , and C�s� � C�s0; s�. The beam peak cur-
rent I�s� and wave number k�s� at s scale according toC�s�:
k�s� � C�s�k0 and I�s� � C�s�I0, where k0 and I0 are the
values at the start of the linac. The relativistic factor �0 �
��s0� and Twiss functions �x0 � �x�s0�, �x0 � �x�s0� are
also understood to be the values at s � s0.

Finally, the inhomogeneous term b0�k�s�; s� on the right-
hand side of (A8) has the expression

 b0�k�s�; s� � b0�k0; s0� exp
�
�
k2�s�R̂2

56�s��
2
�̂0

2

�

� exp
�
�
k�s�2H �s�"x0

2��s�

�
: (A13)

The dispersion invariant H can be written as

 H �s� �
��s�
�0

��x0R̂51�s� � �x0R̂52�s��
2 � R̂2

52�s�
�x0

:

(A14)
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