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A superconducting particle accelerator like the LHC (Large Hadron Collider) at CERN, can only be
controlled well if the effects of the magnetic field multipoles on the beam are compensated. The demands
on a control system solely based on beam feedback may be too high for the requirements to be reached at
the specified bandwidth and accuracy. Therefore, we designed a suitable field description for the LHC
(FIDEL) as part of the machine control baseline to act as a feed-forward magnetic field prediction system.
FIDEL consists of a physical and empirical parametric field model based on magnetic measurements at
warm and in cryogenic conditions. The performance of FIDEL is particularly critical at injection when the
field decays, and in the initial part of the acceleration when the field snaps back. These dynamic
components are both current and time dependent and are not reproducible from cycle to cycle since
they also depend on the magnet powering history. In this paper a qualitative and quantitative description of

the dynamic field behavior substantiated by a set of scaling laws is presented.
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I. INTRODUCTION

The baseline of the LHC control system includes feed-
forward control intended to reduce the burden on the beam
based feedback. Known as the field description for the
LHC (FIDEL) [1], this feed-forward system will predict
the main field and the harmonics of the superconducting
magnets during the whole machine operation cycle. This
system is particularly critical during the beam injection and
the initial phase of the particle acceleration where the
machine magnetic state is dynamic and its reproducibility
is, to some extent, unknown.

During beam injection, the LHC superconducting mag-
nets need to have a constant magnetic field of 0.537 T and
therefore are kept at a constant current of 760 A. However,
the magnetic field multipoles drift when the magnets are on
a constant current plateau. This appears as a “decay” of
the persistent current contribution to the multipoles and
causes significant changes in the beam tune and machine
chromaticity [2]. The present understanding of the origin
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of this dynamic magnetic behavior is the diffusion of a
nonuniform current distribution along the Rutherford cable
originating from spatial gradients in the field sweep rate
and gradients in the cable properties (e.g. cross-contact
resistances). Even at constant transport current, as is the
case on the injection plateau, these currents produce spa-
tially modulated changes in the local field. These field
changes locally reduce the magnetization and hence cause
the decay [3-7].

In turn, when the external field is increased during the
first few seconds of the current ramp, the magnetization is
restored to its original hysteresis state, hence canceling out
the decay. This phase, called snap-back [8], can be too fast
to be compensated solely using beam diagnostics.

In addition, these dynamic field changes are not repro-
ducible from one powering cycle to another and they are
dependent on the powering history of the magnet [9].

Extensive research on these phenomena has been done at
the hadron electron ring facility (HERA) [10,11] and for
the superconducting super collider (SSC) [12]. These ef-
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fects were also measured at the relativistic heavy ion
collider (RHIC) [13]. The aim of this paper is not to
investigate the physical origin of these effects but to
present a general model of them based on cryogenic mag-
netic measurements. In addition, through the use of simple
but effective scaling laws, it will be shown that this dy-
namic model is universal and can be applied to one single
magnet as well as extrapolated to the whole magnet popu-
lation. The scope of the study is limited to the dipole
magnets of which a large sample has been measured and
substantial statistics have been performed. The attention is
restricted to the first allowed multipoles b, b5, and bs, for
which the effects are systematic. Where relevant, results
from other magnet productions are quoted, and, in particu-
lar, the experience at Fermilab on the Tevatron dipoles, to
which CERN has participated actively, and from the HERA
reference magnets that have been extensively exploited to
steer and optimize operation.

II. TIME DEPENDENCE OF DECAY
A. Time dependence in LHC dipoles

The LHC dipole magnets have a cost-saving twin-
aperture design, where two particle beam apertures with
separate coil systems are incorporated within the same
magnet [14]. The standard decay magnetic measurements
executed on dipoles consist of rotating coil measurements
[15] in both apertures during a 1000 s simulated particle
injection plateau at 0.537 T. The injection conditions are
reached following a standard powering cycle consisting of
a cleansing quench, a ramp to 8.33 T at 50 A/s, a 1000 s
flattop, and a ramp-down to 0.25 T at 50 A/s. The purpose
of this precycle is to simulate the LHC operation at 7 TeV,
while the purpose of the cleansing quench is to erase the
memory of previous powering cycles and thus make the
measurements comparable. The sample measured consists
of 352 apertures (corresponding to 176 magnets) and is
almost equally distributed amongst the three different
manufacturers (Alstom®, Ansaldo Superconduttori®,
and Babcock Noell®).

As generally accepted for accelerator magnets and for
use in beam optics simulations, the magnetic field B in the
2D imaginary plane (x,y) can be expressed using the
harmonic expansion:

d x + iy\n—1
B(x,y) = C,|l—— , 1
=Y a5 1)
where C,, indicates the generic non-normalized complex
harmonic of order n given in the reference frame aligned
with the main field direction. R is the reference radius
(=17 mm for the LHC) and is representative of the
maximum beam size. For convenience, the normalized
harmonic coefficients, indicated as c,, can be defined as

c
. 2)
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B,, is the main magnetic field expressed in a reference
frame where the main skew component is zero. b, and a,,
are the normal and skewed multipole coefficients, respec-
tively. The factor 10* is used to produce practical relative
dimensions for the normalized coefficients. The normal-
ized ¢, are expressed in the form above in so called
“units.”

Figure 1 shows the variation of b, b3, and b5 during
injection, arbitrarily shifted along the vertical axis to make
the initial value at injection equal to zero. Note that only 58
apertures are included in Fig. 1 so as to limit the amount of
data in one graph. However, the average decay is computed
from the entire magnet population.

A quantity of specific interest to analyze the properties
of the magnet population is the decay amplitude at the end
of the injection. This is summarized in Fig. 2 and Table I,
reporting, respectively, the average decay amplitude dq of
the main field and the harmonics. It should be noted that in
Table I the entry “(unit)”” means the ratio of the multipole
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FIG. 1. (Color) (a) Decay of by, (b) b3, and (c) b5 (units @
17 mm), measured during a 1000 s simulated injection plateau
following a standard cleansing cycle. The values have been
shifted arbitrarily along the y-axis to cancel the initial value
that is magnet dependent.
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FIG. 2. (Color) The average decay amplitude of the main field
and the harmonics after 1000 s.

TABLE I. The average decay amplitude at 1000 s for the 352
apertures and the 99% confidence interval for the allowed
harmonics.

Dimension b, by bs

(units) 1.41 201 —-0.34

Average decay amplitude
after 1000 s (64q)
99% confidence interval

(units) 0217 007  0.02

to the dipole field at 17 mm reference radius multiplied by
10~* as indicated in Eq. (2).

From Fig. 2 we clearly see that the decay manifests itself
as a systematic behavior only in the allowed harmonics,
and hence it must be modeled and compensated in the
machine. From this observation, the decay modeling is
limited to the main field and the first two allowed harmon-
ics which can be compensated by using corrector magnets.

We use our understanding of the physical origin of the
decay to develop a mathematical formulation that can be
derived to describe the decay evolution in time. In particu-
lar, we assume that the decay driver is current diffusion in
the superconducting cable. Making the hypothesis that the
cable current distributes continuously among the strands of
a uniform cable, the time evolution of the currents is
governed by an infinite series of harmonic modes damped
by an exponential with time constants 7,, = 1)2 [3]. The

time constants depend on the cable geometry (affectmg the
line inductance) and the interstrand resistances. A direct
solution of current diffusion is not practical, as it depends
on too many parameters that are not measured (such as the
cross-contact resistance and its variation along the coils).
In our model we substitute these unknowns by constants
that can be determined by fitting to cold magnetic mea-
surement data. Under these assumptions, the normalized
decay can be modeled by the following equation:

A(t, tiyy, 7, d) = d(1 — el =0/7)
+ (1 - d)(l - e(ti"jit)/(gT)) + HOT, (3)

which holds for I = I;,; and ¢ > f;;. t is the instantaneous
time, f;,; is the time when injection starts, Ij,; is the current
at injection, 7 is the time constant, and HOT stands for
higher order terms in the series expansion. Neglecting this
last, the parameter d gives the normalized weight of the

fast mode of the decay and its complement to one, 1 — d,
gives the normalized weight of the slow mode. In practice,
using Eq. (3) the main field decay is given by

By, L A(L, tinjy Ty dyy)

— 4
"0 TGS b )

B(’Lecay —

where the parameter §,, represents the decay amplitude at
a reference time tfrtl‘; Bbi"a is the field at the beginning of
injection, [j,; is the injection current. The contribution of

decay to the transfer function is modeled by

Bbmj Iinj A(t tinj: Tms m)
104 |1|2 A(tg[d tln]’ Tm’ dﬂ’l)

inj’

TFdecay — 5

&)

where the transfer function (TF) is defined as the ratio of
field generated and operating current:

B
TF =

m
—. 6
7 (6)
The contribution to the harmonics is given by
Cdecay _ Imj A(l tinj’ Tus d ) (7)
n "1 ARY, by, 70 dy)’

where 6,, and §,, are in units.

Figure 3 shows the decay model for b5 for an injection
plateau of 10000 s. The values of the parameters obtained
as a result of the fits of the average decay as well as the
standard deviation of the difference between the sample
average and the model are reported in Table II. The two-
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FIG. 3. (Color) The b; decay model of one aperture on an
injection plateau of 10000 s. The residual error between the
model and the data is below 0.1 units over the whole range.

TABLE II. Parameters obtained fitting the model of Egs. (3)—
(7) to the average decay in the population analyzed, representing
the behavior of the LHC.

Parameter Dimension b, by bs

T (s) 227.58 189.04  284.15
d () 0.978 0.660 0.660
o (units) 1.41 2.01 —-0.34
Max residual error  (units) 0.32 0.13 0.04
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terms approximation described above is enough to main-
tain the residual fit error to acceptable bounds, i.e.,
0.32 units for by, 0.13 units for b3, and 0.04 units for bs.

B. Decay scaling

So far we have discussed modeling of a finite population
in one specific cycling condition. Operation in the LHC
will depend on many factors that will surely cause devia-
tions from the measurement conditions used during cold
tests. For this reason, it is planned to improve the model
using data from direct beam measurements as well as
offline reference magnet measurements. The adjustment
will be effective only if the model of the average or a
reference magnet measurement can be scaled to be repre-
sentative of the whole magnet population, which is not
obvious in principle. Observing the single magnet data, it
seems that a simple scaling factor applied to the decay of a
single magnet, i.e. stretching the measured data in the y
direction, could be enough to match the average curve.
This is clearly true if the dynamics of the decay do not
change from magnet to magnet. Starting with this assump-
tion, it was sought whether the scaling law,

8;1 — (rilecay . 5ln’ (8)

produces a satisfactory result. In Eq. (8) J,, is the average
decay (i.e. the value for the sector or for the ring), &, is the

decay of the reference magnet i, and fo® is the scaling
factor. The latter is determined as the ratio of the measured
decays for the sample average and for the reference magnet
chosen at the end of the simulated injection, i.e., in the

above notation:

decsy _ On o0y — 1000 9)
8,
It should be noted that there is no free parameter in the
above scaling, all quantities being known once the mea-
surement on the beam is performed or once the reference
magnet, or a suitable sample, have been measured in cold
conditions.
Equations (8) and (9) have been used to scale the decay
of each magnet measured, producing curves of the type
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FIG. 4. (Color) Example of scaling and comparison of scaled
sextupole decays in magnet 3154, aperture 1.

represented in Fig. 4 for a selected magnet (in this case the
sextupole harmonic of magnet 3154 aperture 1). The dif-
ference between the scaled decay and the average of the
magnet population has been computed at all times during
the injection plateau. To quantify the goodness of the
scaling, we have taken the maximum of the absolute value
of this difference.

A histogram of the maximum residual error of all the
magnets as well as a log-normal distribution for b, b3, and
bs, respectively, are shown in Fig. 5. The log-normal
distribution is used because it can fit a data set that is
skewed and can also be used to describe data that cannot
fall below zero but that might increase without limit. The
goodness of fit is tested using the Kolmogorov-Smirnov
test [16], which is satisfied for b5 and bs. b; does not pass
the test, and we attribute this to the noise inherent in the
measurement (see Fig. 1).

The scaling law tested produces typical maximum re-
sidual scaling errors in the range 0.1 to 5 units @ 17 mm for
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FIG. 5. (Color) (a), (b), (c) Histograms and log-normal distribu-
tion of the maximum residual error for b;, b3, and bs, respec-
tively, between the scaled harmonic decay and the average
harmonic decay of the magnet set analyzed.
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b1,0.01t0 0.26 units @ 17 mm for b3, and 0.005 to 0.1 units
@ 17 mm for bs. There are few outliers that are not shown
in the figure. These are generally related to magnets that
have a large scaling factor or that have anomalous behavior
and that appear as a tail in the distributions.

Since the data distribution is skewed as shown in the
histograms, the most probable residual errors (i.e. the
mode) are less than the medians of the distribution. A
conservative choice can be made by taking the median as
an indication for the typical scaling, i.e., 0.5 units @ 17 mm
for by, 0.06 units @ 17 mm for b5 and 0.02 units @ 17 mm
for bs. In fact, in principle, it would be possible to achieve
better results by defining the scaling factor based on a
general optimization over the time span available in mea-
sured data. This is not done here to keep the reasoning
simple and because it has little influence on the final
conclusions.

C. Tevatron dipoles

As a part of the overall optimization of the Tevatron run
II, several dipole magnets were remeasured at the magnet
test facility in Fermilab [17,18] aiming at reducing beam
losses associated to residual correction errors during injec-
tion and snap-back. Thanks to the copious results obtained
in this measurement campaign, it was possible to compare
the behavior of the sextupole during injection in specific
magnets to the chromaticity measurements taken during
the injection plateau in the accelerator [19]. The result of
this test is shown in Fig. 6, which demonstrates that the
good agreement between the average behavior of a magnet
population and the scaled results from a single magnet is
not accidental.

In the case reported in Fig. 6, the scaled magnet behavior
reproduces the dynamics of the Tevatron chromaticity
evolution to within 0.04 units @ 254 mm over a time
span of nearly 2 hours. Beyond this time, there is a devia-
tion which is due to a difference in the dynamics of the

29r O
O average b3 from TeV chromaticity measurements

3aF dﬁf@
[ -0~ TB0834 (5 min BP, 60 min FT), shifted by -4.5 units

33F  —scaled TB0834 results (factor 1.75)

35F
37F

39F

b; (units @ 25.4 mm)

4.1F

time at injection (min)

FIG. 6. (Color) Comparison of the sextupole deduced from
chromaticity measurement during an injection at Tevatron, and
the scaled measurements in a spare dipole. The scaling factor
was optimized to minimize the residual error over the complete
injection plateau, of 100 minutes.

decays. However, the deviation remains small. This gives
confidence that the scaling of Eq. (8) can produce results
accurate enough for precise control.

D. HERA dipoles

The correction scheme employed by HERA at DESY
makes use of online reference magnets and look-up tables.
Two reference magnets, one for each magnet production
line, have been chosen to represent the behavior of the two
halves of the proton ring. The reference magnets were
chosen to be at the center of the drift spread of their
respective magnet family.

The beam parameters can be controlled automatically
using NMR probes in the reference magnets to detect the
b, change, and rotating coils to measure the drift of the b5
component [20]. The corrections obtained are applied
without scaling to the corrector magnets in the ring. This
corresponds to the scaling procedure outlined above for the
LHC magnets, where the scaling factor fe,y of the single
magnet to the average of the population is 1 because of the
magnet selection adopted.

As shown in [21,22], the effect of decaying persistent
currents leads to a change in the horizontal and vertical
chromaticities in opposite directions. Without correction,
the chromaticity reaches unacceptable values within a few
minutes. However, if the correction system is switched on,
the use of reference magnet data counteracts the decaying
persistent current sextupole fields and the chromaticity in
both planes is kept close to the desired values. As in the
case of the Tevatron dipoles, these results show that a
single magnet can be taken to represent the behavior of a
whole family and support the scaling property observed for
the LHC magnets.

III. SNAP-BACK CORRELATION

A. LHC dipoles

Figure 7 shows typical LHC snap-back curves for b3, as
measured on the dipole 2211. The vertical line at 760 A
corresponds to the decay at constant current, while the
snap-back is the change in b5 that takes place during the
first 50 A of the acceleration ramp, when the b5 is observed

2
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FIG. 7. (Color) (red) The b3 decay during the injection plateau
of an LHC cycle (at 760 A) and the subsequent snap-back when
the current begins to ramp, measured on LHC dipole 2211.
(blue) b3 hysteresis curve without an injection plateau.
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to return to the hysteresis branch that would have been
measured without the injection stop (dashed line). The
measurement of the snap-back was performed with a
snap-back analyzer [23] that outperformed rotating coils
[15] which are too slow to provide the time resolution
necessary for accurate modelling (1 to 10 Hz). A typical
snap-back measurement campaign consists of several LHC
cycles with the precycle parameters changed so as to vary
the decay amplitude. The cycles are separated by a quench
to erase the memory of previous powering.

It was found experimentally [24], and proven analyti-
cally in [25], that during the snap-back the first allowed
harmonics b3 and b5 follow an exponential law. For the
normal sextupole, this law was written as follows:

bsnap—back (l‘) — bdecay e*[l(t)flmj]/(Al),

3 3 (10)

where b3“P™™(1) is the sextupole variation during the

snap-back, I() is the instantaneous value of the current,

initially at the injection value /;,;. The amplitude b of

the snap-back and the current change AT are the two fitting
constants. However, given that the multipoles are continu-
ous in time, the snap-back amplitude is equal and opposite

to the magnitude of the decay at the end of the injection.
decay

This implies that b,
the overall model.
Figure 8 shows the exponential fit of the sextupole snap-
back data of Fig. 7, demonstrating that the model is well
suited to the data. The standard deviation of the fit is in
general less than 0.03 units during the whole snap-back.
Based on this observation, the snap-back of the main field,
transfer function, and all harmonics is modeled as follows:

is not an independent parameter in

B;;\ap-back _ B;i:cay(tramp)e(lmj -1)/(AlL,) (11)
TP shap-back — Tdecay (l»ramp)e(linj —N/(AL,) (12)
C;nap—back _ Cgecay(tramp)e(lmj —I)/(AI,,)’ (] 3)

where the factors B‘,i,,ecay(tramp), TF% (£,4p), and

ci““y(zmmp) are the change of the main field, the transfer
function, and the normalized harmonics, respectively, dur-
ing the decay evaluated at the time of the beginning of the

- data
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FIG. 8. (Color) Exponential fit of measured sextupole change
during snap-back on the LHC dipole 2211.

ramp f,;,,. These parameters can hence be determined
from the double exponential fit of Eq. (3). The only re-
maining parameter is the characteristic currents for the
exponential change, Al,, and AI,.

Analyzing data obtained for a single magnet during
measurements of snap-back following different magnet
powering sequences, it can be observed that both the

amplitude parameters (Bﬂfcay(tramp), TF (113p), and

cﬂecay(tmmp)), as well as the characteristic currents A,

and AT, change from run to run. This corresponds to the
well-known fact that the snap-back (as the decay) is a
function of the magnet powering history. We have found
however, that the two sets of fit parameters are strongly
correlated, and once represented in a scatter plot they lie on
a straight line. Furthermore, a very interesting property is
that the correlation between the fit parameters is approxi-
mately the same for all magnets tested. An example of this
correlation on the sextupole fit parameters bgl“ay(rramp) VS
Al is shown in Fig. 9 for the 138 measurements on LHC
dipoles tested to date using the snap-back analyzer [23].
This finding is substantiated by the fact that the magnets
tested were not specially selected (e.g. with respect to
cable properties) and comparable results are found per-
forming the same measurements and data analysis on both
the LHC and Tevatron dipoles, as discussed later. Hence, it
seems that the correlation plot can be used to characterize
the behavior of the dipoles in the whole accelerator, i.e., it
can act as a scaling law.

The implication is that only one of the two fit parame-
ters, either ciecay(tmmp) or Al,, is strictly necessary to
predict the sextupole change.

In practice, the waveform of the snap-back can be pre-
dicted by taking the observed decay cﬂecay(tramp) at the end
of injection [e.g. computed using Eq. (7)], and computing
the corresponding A, using the linear correlation coeffi-
cient g3B:

Cgecay(tramp) = gEB AV (14)

* measurements

— measurements correlation

— theoretical correlation

5% (tamp) (UNitS@ Ry = 17 mm)

0 5 10 15 20
AL(A)

FIG. 9. (Color) Scatter plot of the sextupole fit parameters
bgecay(tmmp) (units @ R,;17 mm) and A/, that correspond to
sets of different powering cycles in the LHC dipoles tested and
analyzed to date. The data has been fitted with a linear regression
and is compared to the theoretical prediction presented in [25].
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FIG. 10. (Color) The histogram and log-normal distribution of
the difference between the sextupole snap-back amplitudes and
the correlation line.

For the sextupole, which is in practice the only harmonic
that could be sampled reliably, the value obtained from
measurements is g3° = 0.172 units/A which is compa-
rable to the theoretical value ggB‘“””“C“‘ = 0.19 units/A
calculated in [25]. The R-squared value of the correlation
line is 0.882. To have a better indication of the quality of
the snap-back scaling law, the same procedure as used in
the decay scaling analysis described above is employed.
This is done by taking the residual error as being the
maximum deviation of the fit parameter bgecay(tmmp) from
the correlation of Eq. (14) for all measurement sets ana-
lyzed. The histogram and the log-normal distribution of the
difference between the sextupole snap-back amplitudes
and the correlation line are shown in Fig. 10. The use of
the log-normal distribution is justified by the same reason-
ing discussed earlier. The residual errors range from 0.01 to
0.6 units @ 17 mm, with a median value of 0.14 units @
17 mm. The above values for the median residual error can
be taken as an estimate for the deviation between the
predicted and the actual snap-back waveforms in the
accelerator.

B. Tevatron dipoles

In support of the above discussion, we report here a
summary of the sextupole snap-back measurements of

2.5

5" (trmp) (units @ R, =25 mm)

Al (A)

FIG. 11. (Color) Scatter plot of the fit parameters bgmy(tmmp)
(units @ R, = 25 mm) and Al; that correspond to sets of
different powering cycles in four Tevatron dipoles tested and
analyzed to date. g32 = 0.198.

the same type as described above that were performed on
12 Tevatron dipoles [26]. Following the same analysis
procedure as for the LHC dipoles, the result is represented
in the scatter plot of Fig. 11, and leads to the same con-
clusion, namely, that the two parameters cﬂecay(tmmp) and
AI, are strongly correlated.

The fact that the same result is obtained on two different
families of dipole magnets, with major design and manu-
facturing differences (both on the superconducting cable
and coil) supports the idea that the correlation found has
some fundamental origin, and can thus be used for a robust
prediction.

IV. MODEL OF THE POWERING HISTORY
DEPENDENCE

The decay and snap-back of allowed multipoles in the
LHC magnets is known to be strongly dependent on the
powering history of the magnet [4,5,8,9,27]. This depen-
dence can be explained by the way the nonuniform current
distributions are formed and are diffused in the Rutherford
cable during magnet powering. The studies and analysis
performed over short dipole models, dipole prototypes, and
series dipole magnets have concentrated on the measure-
ment of decay and snap-back following a quench, erasing
all previous memory, and a current cycle whose current
values and duration have been varied parametrically. The
prototype of this cycle is shown in Fig. 12, which also
defines the main parameters varied.

The measurements cited above have shown that three
parameters mostly affect the injection decay amplitude and
subsequent snap-back. These are the flattop current /&, the
flattop time #gr, and the time spent on the preinjection
plateau tpreparation‘

In terms of the notation introduced in the previous
section, the change in the decay amplitude can be de-
scribed through a change of the parameter 6 in Eq. (3),
where, taking the example of the harmonic of order n, we

have in general that
6n = 511(IFT’ Ir1s tpreperation)' (15)

To model the changes in 0, we use the following parame-

current

injection plateau (760 A)

parabolic acceleration
start

Tpreperation - = =

preparation plateau

FIG. 12. (Color) A typical precycle and the main parameters
defining its shape.

precycle
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trization:

En — EeUm/tridifn]

5,, = Ogd ES — E,llef[lgg/(fgdl/dt)]
» T6l — Ti’lef(tFT/T;) PS — P?ei(lprcpm‘alion/‘r[ns)

ny’

T — T?e—(t;‘%/ﬁ) Pl — P']"e_(t;ﬁparmion/’rp

(16)

where d4y4 is the decay measured for a standard precycle,
i.e., with flattop current of I = 11850 A, flattop time
fif = 1000 s, and no preinjection time £5% . . ion = 0's.
The time constants 7%, 77, and 7} describe the length of
the magnet memory vs the flattop current, flattop time, and
preinjection time, respectively. dI/dt is the precycle cur-
rent ramp rate which is taken to be 50 A/s for both ramp-
up and ramp-down. The fitting parameters in Eq. (16) are
the above time constants and the variables Ejj, EY, Tj, T7,

g, and P}. Equation (16) can be seen as a direct conse-
quence of the assumption of exponential decay during
constant current excitation, i.e., Eq. (3), where only the
longest time constant has been retained for simplicity. The
same equation can be applied to J,,.

The parametrization was tested against the measured
effect of the three precycle parameters, as sampled on a
total of 19 magnets, listed in Table III. When testing the
influence of one parameter (e.g. the flattop current), the
second and third parameters were held constant (e.g. the

TABLE III. Magnets considered in the analysis of the influ-
ence of powering history on decay and snap-back at injection.
Magnet Ier Ipr Tpreparation
1004 J

1007 J

1010 J

1011 J

1012 J

1018 J

1225 J J

2010 J

2123 J J J

2168 J

2254 J J

2290 J J

3007 J

3028 J

3042 J

3117 J J J

3130 J J J

3219 J J J

3284 J J J

@ 5
4 .
g Y
E
s 1
< 04
-14
-2 T T T T T
0 2000 4000 6000 8000 10000 12000
Ier (A)
® 35
3 .
g 2.5
.
£ 159
< 14
0.5
0 — T T T T
0 2000 4000 6000 8000 10000 12000
Ipr (A)
© 0.1
0 B
Z 011
s
2 -0.24
2 03]
0.4
-0.5 T T T T T
0 2000 4000 6000 8000 10000 12000
Ier (A)
1004 apl —= 1004 ap2 —— 1007 apl —= 1007 ap2 1012 apl 1012 ap2
2123 apl 2123ap2 ——2254apl —=—2254ap2 ——2290apl —=—2290 ap2

3007 ap2 3007 apl 3117 apl 3117 ap2 3130 apl 3130 ap2
——3219apl _—=-3219ap2 —+—3284apl —=—3284ap2 8= Average

FIG. 13. (Color) The variation of the decay amplitude with
flattop current for (a) by, (b) b3, and (c) bs.

@@ 5
4
— 31
)
£ 2
E
= 1
CIE
-1 4
0 500 1000 1500 2000 2500 3000 3500 4000
ter (5)
() 35
3<
3 257
E 2
2
- 1.5
=
a
0.5
0 500 1000 1500 2000 2500 3000 3500 4000
ter (5)
© o
014 -
P ——
:,,} =
£ =
2
.:'{‘
2
0.7

0 500 1000 1500 2000 2500 3000 3500 4000

ter (5)
——1010apl = 1010ap2 = 1011apl = 1011ap2  — 1018 apl
—=— 1018 ap2 1225 apl 1225ap2  ——2010apl  —=—2010 ap2
2123 apl 2123 ap2 —+—3028 apl —=—3028 ap2 3042 apl
3042 ap2 ——3219 apl —=—3219 ap2 ——3117 apl —=—3117 ap2
3284 apl 3284 ap2 3130 apl 3130ap2  —@ Average

FIG. 14. (Color) The variation of the decay amplitude with
flattop duration for (a) b;, (b) b3, and (c) bs.
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_
&
v

Ab, (units)
(3}

0 500 1000 1500 2000

~
o
=

35

= N
- o W

(=]
wn
o4ttt

Abj; (units)

o i

500 1000 1500 2000

toreparation (S)

Abs (units)

1000 1500 2000

preparation (s)

—— 1225 apl —=— 1225 ap2 ——2123 apl —=—2123 ap2 2168 apl
2168 ap2 —e—2254 apl —=—2254 ap2 —+—2290 apl —=—2290 ap2
3219 apl 3219 ap2 ——3117 apl —=—3117 ap2 3130 apl
3130 ap2 ——3284 apl —=-3284 ap2 == Average

FIG. 15. (Color) The variation of the decay amplitude with
preparation duration for (a) by, (b) b3, and (c) bs.

TABLE IV. The effect of each powering history parameter on
the allowed harmonics.

b, (units) b3 (units) bs (units)
Ier 1.42 1.98 0.34
ter 0.02 0.46 0.03
tpreparation 0.43 0.67 0.05

TABLE V. Parameters obtained fitting the model of Eq. (16) to
the b; decay measured as a function of flattop current, flattop
time, and preinjection time variations from the magnet popula-
tion analyzed.

Dimension b, by bs
E, () —1.8696 0.0857 —1.7896
E, () —1.9930 0.0917 —1.9845
TE (A) 395.1 244.4 2104
Ty (-+*) 1.3406
T, (GRED)] 0.3436
Tr (s 504.9
P, () 1.7472
P, () —0.7568
Tp (s 3754

flattop time and the preinjection time) at the value corre-
sponding to the standard precycle. In addition, it should be
noted that, due to the long test time (each measurement
requires a quench and a complete precycle that last several
hours), in some cases only the influence of one of the three
parameters was measured.

Figure 13 shows the measurement results and the aver-
age variation of decay amplitude vs precycle flattop current

(a)

I

15000

15000

5000

pre-inj time (s) flat top current (A)

4000

pre-inj time (s)

flat top time (s)

FIG. 16. (Color) Plot of the surface of 85 in the space defined by
variations of (a) flattop current and flattop time, (b) flattop
current and preinjection time, (c) preinjection time and flattop
time as generated with the parameters of Table V and represen-
tative for the LHC behavior. The measured values are depicted
by the blue points.
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for the measurements shown in Table III. b, b5, and b5 all
have an approximate linear dependence on Iwr. We remark
however that the b, dependence is very close to the mea-
surement accuracy limit.

Figures 14 and 15 show the measurement results and the
average variation of decay amplitude vs precycle flattop
duration and the decay amplitude vs preparation duration,
respectively, for the measurements shown in Table III. b,
b3, and b5 all have a general asymptotic exponential de-
pendence. However, the dependence for b; and b5 in both
cases is considered to be negligible since it is comparable
to the rotating coils measurement repeatability and is not
reproducible on a magnet by magnet basis. Therefore,
these dependencies are only considered to be important
for b3.

We can assess the importance of the three precycle
parameters on the main field and the harmonics being
considered by comparing the range of variation of the
measurements average. The effect of each powering his-
tory parameter on the decay amplitude is summarized in
Table I'V. The It dependence is relevant for the main field,
sextupole, and decapole, while in practice the other two
parameters fgp and fpreparaion ONly affect the sextupole. The
fit of the parametrization of Eq. (16) yields the parameters

@ o

<
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2 151
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S 101
-
°
§ 51
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20 ; ‘
o o < © oo} ~— o < © ©
= =] =] = <} - - - -
o o o o o o o o
ter maximum b; error (units)
(b)
’?7
< 5
w 6
£ 51
§ 41
Qo
o 3
k]
s 21
8 1
: 0000 [ [
3 04— —
o — o [so] < [Xe} © ~ oo} [} — — o (2] < w0 ©
e @ 9 @ @ 9 9 9 Q@ g T T o T T
o o o o o o o o o o o o o o o
Ier maximum bg error (units)
(c)
10
=
<
o 84
g
26
Q
&
- 41
(<]
=
3 2
E 1
20
=] 0 - ) o 0 ] 0 < [T} 0
= =} - =] N o ] o < o
o o o o o

toreparation Maximum by error (units)

FIG. 17. (Color) (a), (b), (c) Histograms and log-normal distri-
bution of the maximum residual error for Igr, tpr, and fpreparation
respectively, between the scaled harmonic decay and the average
harmonic decay of the magnet set analyzed.

reported in Table V. The surfaces in Fig. 16 show how the
parametrization of Eq. (16) describes the average magnet
data scaled to the entire magnet population using Eq. (8).

The parameters of Table V can be used in Eq. (16) to
compute the difference between the scaled behavior of a
single magnet [using Eq. (8)] and the 4D fits. The maxi-
mum residual error between these two can be taken as a
measure of the quality of the scaling. The histograms and
the log-normal distribution for the three powering history
parameters are shown in Fig. 17. The use of the log-normal
distributions is justified by the reasons described in
Sec. II B. Because of the modest number of measurements,
Fig. 17 may not indicate a log-normal distribution, how-
ever the goodness of fit is confirmed by checking with the
Kolmogorov-Smirnov test [16].

As done earlier, the medians can be taken as an indica-
tion of the residual error in a magnet selected at random.
For the b5 flattop current dependence, the maximum resid-
ual error ranges from 0.004 to 0.15 units, with a median
value of 0.03 units. For the b5 flattop time dependence, the
maximum residual error ranges from 0.001 to 0.18 units,
with a median value of 0.02 units @ 17 mm. For the b;
preinjection time dependence, the maximum residual error
ranges from 0.008 to 0.46 units, with a median value of
0.07 units.

For the b, flattop current dependence, the maximum
residual scaling error ranges between 0.33 and 2.5 units
with a median value of 0.835 units. For the b5 flattop
current dependence, the maximum residual scaling error
ranges between 0.005 and 0.11 units with a median value of
0.016 units.

V. CONCLUSIONS

The decay and snap-back behavior of a set of several
magnets in different magnetic states can be deduced using
simple models of the data. We have given suitable mathe-
matical models for the scaling laws, and shown how to
apply them to represent a portion or the whole LHC ring.
Following the discussion of our result, the basic informa-
tion to establish and adapt the scaling can be derived from

TABLE VI. Summary of the maximum residual error expected
due to the dynamic model and scaling procedure. (All values are
in units @ R.).

b, by bs

Decay model 0.32 0.13  0.04
Decay scaling 0.5 0.06 0.02
Powering history scaling  Igr 0.835 0.03 0.016

Ter . 002 ---

Tpreparation e 007 -
Total decay residual error 1.02 016 0.05
Snap-back model R 0.03 0.03
Snap-back correlation s 014 ---
Total snap-back error e 0.14
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(a) the series measurements in operating conditions, avail-
able on a sample of the dipole magnets, (b) extended
measurements on selected magnets that will be available
as an offline reference for LHC operation, and (c) direct
beam measurements, e.g., taken during machine develop-
ment time.

In the case of measurements on a single magnet, the
residual error of the scaled predictions does not depend
drastically on the magnet selected, so that the scaling of a
single magnet to a portion or the whole LHC ring will not
be a critical process. In practice, following the reasoning of
this chapter, half of the magnets produced can be used as
LHC references.

Table VI reports a summary of the maximum expected
residual errors due to the dynamic model and the scaling
procedure. For the injection plateau, this estimate is ob-
tained as the quadratic sum of the residual error on the
decay and on the prediction of the powering history de-
pendence. To put these values in perspective, the maximum
residual sextupole error corresponds to about 7 units of
chromaticity in the LHC, which is an excellent result.
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