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Colossal band gap response of single-layer phosphorene to strain predicted
by quantum Monte Carlo
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Straintronics is an emerging field enabling novel tuneable functionalities of electronic, optical, magnetic,
or spin devices with advances being fuelled by new developments in van der Walls (vdW) heterostructure
engineering and materials design. Here we show, using state-of-the-art quantum Monte Carlo (QMC) methods,
that a single phosphorene monolayer exhibits outstanding straintronics functionalities due to discovered colossal
strain tunability of its semiconducting electronic gap. First, we determine the equilibrium atomic structure that
differs appreciably from available bulk phosphorene experimental data. That enables us to precisely analyze
the quasiparticle band gaps for any uniaxial (armchair and zigzag) and biaxial strains which we describe by
a quadrivariate paraboloid function of lattice and internal structure parameters. Using the fixed-node QMC
calculations fitted by analytical formulas we localize the following excited state crossings: (i) between the direct
(� → �) and direct but reordered (� → �′) excitations that also imply substantial differences of corresponding
transport properties; and (ii) between the direct � → � and indirect � → X excitations. Based on this highly
accurate many-body treatment, we predict the gauge factor ≈100 meV/% and an unusual behavior with the band
gap remaining direct even if strained by several percent. Consequently, we suggest there is a colossal band gap
tunability window, larger by an order of magnitude when compared to quintessential straintronic materials such
as MoS2. In addition, we ascertain that the ground state deformation energies exhibit an out-of plane negative
Poisson’s ratio and auxetic behavior.
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I. INTODUCTION

Two-dimensional (2D) materials have already revolution-
ized science and provide ample opportunities for technolog-
ical breakthroughs due to their unique electronic, optical,
thermal, spin, and magnetic properties [1–7]. Electronic struc-
ture of a variety of 2D systems exhibit a wide range of
electronic states and phases, from metallic to wide band gap
insulators, with perhaps the most technologically interesting
being 2D semiconductors [8,9]. In particular, materials fea-
turing band gaps in the intermediate range of ≈0.3–2 eV
are the most promising for prospective device applications.
Due to reduced dimensionality and screening, presence of a
sizable band gap is often accompanied also by the sought
after high carrier mobility. In this respect, some of the most
prominent examples of such materials are the transition metal
dichalcogenides (TMD) [9] and phosphorene [8].
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Once prepared by exfoliation or epitaxy, 2D materials in
their natural form may lack the desired properties, such as
technologically relevant band gaps. Among many options for
further processing, one of the most obvious is layer engineer-
ing. For instance, the band gap can be modulated from ≈ 2 eV
in a single layer phosphorene (SLP) [8,10], to intermediate
values in few-layer black phosphorus (FLP) exfoliated from
the bulk black phosphorus (BP) [1,2,11], to 0.3 eV in BP [8].
This range is remarkably large, exhibiting almost an order of
magnitude in the band-gap reduction. Less dramatic but still
very significant gap change is observed in MoS2 from 2.15 eV
(single-layer) to 1.29 eV in 2H-MoS2 [9]. Interestingly, the
band gap is direct at � in SLP, FLP, and still direct at Z in BP,
whereas it is direct only in the single-layer MoS2.

2D materials are typically supported by a substrate (quartz,
sapphire, etc.) and, as in case of phosphorene, also by capping,
which provides dielectric embedding. This offers another pos-
sibility for band-gap engineering, for instance, single-layer
MoS2 band gap can be modulated from 2.8 eV to 1.9 eV by
dielectric environment [12]. Similar experimental range was
reported also for single-layer phosphorene [10].

The other widely used tuning tool, which we explore here,
is application of strain [13,14] which can tune such properties
continuously. 2D materials are very strainable. For instance,
MoS2 could experimentally be elastically deformed up to 11%
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without breaking the material [15] and monolayer phospho-
rene in a modeling study was found to sustain tensile strain
up to 27% and 30% in the zigzag and armchair directions,
respectively [16], offering an outstanding potential for use in
flexible electronics and for tuning via applied strain. Many
straintronic experiments have been performed on 2D MoS2.
For example, tensile strains of up to ≈0.5% have been applied
with gauge factors of the order of 100 meV/%, i.e., with band
gap tuning of few dozens of meV [17]. In contrast, using
the highly accurate quantum Monte Carlo methods (QMC)
[10,18,19], we predict that single-layer phosphorene not only
exhibits a similar band-gap gauge factor to MoS2 of ≈100
meV/%, but, at the same time, it keeps the direct � → �

nature of band gap over a very large window of applied
compressive/tensile strains, making the tuning of band gap
accessible within ≈ ±0.5 eV.

Our use of the benchmark-quality quantum Monte Carlo
methods is motivated by our previous result for free-standing
SLP in equilibrium [10]. The major mainstream methods,
such as Density Functional Theory (DFT) or Many-body per-
turbation theory within GW approximation (GW), depending
on the approximations used, exhibited spreads of the quasipar-
ticle band gaps of the order of ≈1 eV. Benchmarking of these
various results against experimental results is complicated
by experimental uncertainties due to impacts from dielectric
embedding, capping, presence of defects, and different sen-
sitivity of experimental probes to their presence, leading to
a comparable spread of the experimental values of ≈1 eV.
Such uncertainty is fairly typical for electronic properties of
2D materials. Therefore, a high quality many-body calcula-
tion is highly desirable for understanding the various factors
affecting the results and for opening up a path of educated
tuning [10].

One can assume that both theoretical and experimen-
tal biases will only increase if the material is subjected to
strain. Indeed, several DFT straintronic studies of single-
layer [20–23] phosphorene exist which predict strongly
exchange-correlation potential dependent results of limited
predictability. They all suggest favorable potential for tuning
of electronic structure properties. However, as shown below,
all DFT models predict too small band gaps, some models,
such as PBE [24] by as much as ≈2 eV, others, such as hybrid
functionals HSE06 [25] or B3LYP [26], improve somewhat
the band gap but result in less accurate equilibrium structures.
Furthermore, the tuning area over which the band gap can be
tuned without change of the direct nature of the � → � band
gap is also determined with very limited accuracy, irrespective
of the functional. Hence, the DFT models do not provide a re-
liable basis for determination of the stress tuning of electronic
properties.

In order to consolidate the situation and fully rational-
ize the effect of strain on the band gap, we employ here a
highly accurate many-body fixed-node QMC study of the key
electronic quantities for the free-standing phosphorene under
strain. In particular, benchmark-quality quasiparticle band gap
has been determined for a wide range of applied strain and the
boundaries between the different band-gap types determined:
(i) between the direct (� → �) and direct but reordered
(� → �′) excitations that also imply substantial differences
of corresponding transport properties; and (ii) between the

direct � → � and indirect � → X excitations, see Fig. 4 for
details. In our previous study of single-layer phosphorene in
equilibrium [10] the unit cell parameters, a necessary pre-
requisite for any straintronic study, were only obtained from
the experimental structure of 3D black phosphorus [27]. Here
we obtained much better fundamentally anchored insights
since all structural parameters have been relaxed in and out
of equilibrium at the QMC level and therefore offer also
improved equilibrium data [10]. In addition, the computed
deformation potentials indicate out-of-plane auxetic behavior.
For the purpose of methods benchmarking, our QMC results
are compared with the ubiquitous DFT methods in commonly
used approximations (GGA, hybrids) so as to offer insights
into their biases.

II. METHODS

The electronic fundamental band gap is calculated as
singlet-singlet vertical excitation energy

� f ≈ Ess
v = Es

1 − Es
0, (1)

with E0/E1 being the ground-/first-excited-states. We use pe-
riodic setups where E0/E1 were computed by the diffusion
Monte Carlo (DMC) method in fixed-node approximation us-
ing variational Monte Carlo (VMC) trial wave functions with
the nodal hypersurfaces determined by DFT orbitals using
the generalized gradient approximation DFT-PBE [24], at the
� point of the Brillouin zone, with short-range correlations
described by the Jastrow factor [18]. DFT calculations, in
addition to the DFT-PBE, have also been performed with
PBE-HSE [25] and PBE-B3LYP [26] functionals.

The strain was applied in both armchair and zigzag direc-
tion by adjusting the a and b lattice parameters, see Fig. 1,
considering deformations of up to ≈ ±10%. Determination
of strained properties is treated as a full optimization problem
in the space of four structural variables: lattice parameters a,
b and two internal parameters x, y, see Fig. 1. Around the
minima the data for E0 were fitted by 4D paraboloid functions
used to find the lowest point on the x, y subspace, leaving
us to further minimize only bivariate functions E0 = f (a, b).
The excited state E1 is computed only at the minimum for the
internal parameters x, y.

Finite-size scaling was performed for a series of periodic
supercells, see Fig. 2, with N/Ne = 11/220, 16/320, 18/360,
and 22/440 primitive unit cells/number of electrons for

FIG. 1. Structure and basic structural parameters of single-layer
phosphorene. (a) Structure of phosphorene with the two characteris-
tic directions, armchair and zigzag, indicated. Note that the zigzag
direction is along the a and armchair along the b lattice parameter.
(b) Definition of the four basic structural parameters a, b, x, y.
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FIG. 2. Structural approximants. Various structural supercell
sizes considered for selection of finite-size scaling: supercells con-
taining 4 × 3, 4 × 4, 6 × 6, 8, 11, 14, 16, 18, 22, and 32 primitive
unit cells. Note that all these supercells refold the � point but not all
do refold the X point, for instance, 11 or 4 × 3.

� → � transitions and with 14/280, 16/320, 18/360, and
22/440 supercells for the � → K transition, using linear
scaling with 1/N [10]. The convergence study in Table II
in Appendix C shows that starting from the 11 structure, the
energies per unit cell are converged within a few hundredths
of an eV. The DFT convergence of lattice parameters exhibits
similar trends. Figure 3 depicts the scaling behavior for the
seven points bracketing the zero-strain state in the ab plane,
see Fig. 1 and Fig. 4, used in the real calculation for con-
structing Fig. 5 (� → �) and Fig. 7 (� → �′ and � → X).
The band gaps are believed to be statistically converged to
within the chemical accuracy.

FIG. 3. Finite-size scaling for all seven points, see the inset,
used in the paraboloid approximation for the � → �, � → X, and
� → �′ transitions.

FIG. 4. The effect of strain. (a) The effect of strain on the
nature of the band gap in single-layer phosphorene in the DFT-
PBE description. The different black lines outline the different
band gaps. The region corresponding to the direct � → � transi-
tion is indicated as well as the related � → �′ transition with the
LUMO/LUMO + 1 bands interchanged, and the � → X transition;
for more details, see panel (b), the text, and Fig. 11 in Appendix E.
The seven points are the primary points on which the fixed-node
DMC calculations were performed; the circle indicating the point
corresponding to unstrained structure. The inset depicts the 2D Bril-
louin zone of phosphorene. Positive/negative strain correspond to
tensile/compressive strain. (b) Illustration of the different band gap
types � → � (ζa=+0.32%, ζb=+0.11%), � → �′ (ζa=+5.93%,
ζb=+1.62%), and � → X (ζa=-2.09%, ζb=+8.49%) in the DFT-
PBE description.

The strained gap surfaces were constructed as follows. For
each supercell choice two paraboloids, one for the ground
state (E0) and one for the excited state (E1) were constructed,
see Fig. 9 in Appendix C. From four gap values (11, 16,
18, and 22 approximants for the � → � excitations and 14,
16, 18, and 22 approximants for the � → X excitations) the
infinite-size limit was extracted. This gave seven explicitly
QMC calculated values (1−7, see Fig. 3) through which a
quadratic form was fitted for the � → �, � → �′, and � →
X transitions:

� f (a, b) = c0 + c1 × a + c2 × b + c3 × a2 + c4 × b2

+ c5 × a × b. (2)

The same Eq. (2) was also used to fit the deformation energies
E0. The results are compiled in Table I in Appendix B.

QMC calculations were mostly performed with the QM-
CPACK suite of codes [28]. Part of the QMC calculation
was also done using the TurboRVB package [29]. All
DFT calculations were done with the Quantum Espresso
package [30].

Further technical details can be found online [31].
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FIG. 5. Fundamental gap under strain. Fundamental gap � f as
calculated in fixed-node QMC and in DFT with various exchange-
correlation (xc) functionals (PBE, HSE, B3LYP). The QMC data is
represented by the red points with error bars corresponding to the
symbol size.

III. RESULTS AND DISCUSSION

In order to set the stage, we first scan the band gap response
to strain by DFT-PBE techniques. The results are shown in
Fig. 4(a). In equilibrium, the band gap in phosphorene is
direct at � [32]. As shown in detail in Appendix E, applica-
tion of strain in general modifies the nature of the band gap
and a number of gap types corresponding to different transi-
tions occur. However, as Figs. 4 and 11 indicate, the region
where application of strain does not change the nature of the

FIG. 6. Gauge factor. Change of � f from applied diagonal strain
with respect to the equilibrium � f within each approach. The inset
shows the locations of corresponding minima including the minima
for a bilayer (2L) and black phosphorus crystal (3D) obtained by
using the PBE + D3 functional [33]. Zero corresponds to the fixed-
node QMC result shown by blue cross.

excitation (direct at �) is remarkably large in SLP. Accord-
ingly, we have selected our QMC calculations to be confined
primarily to that region. In principle, the QMC boundaries
of the direct � → � transition could all be determined. We
have localized two such boundaries: (i) the boundary between
the � → � and � → �′ where the order of LUMO (Lowest
Unoccupied Molecular Orbital) and LUMO + 1 is exchanged,
and (ii) the boundary between the � → � and � → X transi-
tion, see Figs. 4 and 7.

A. Band-gap response to strain and gauge factor

The corresponding QMC and DFT-PBE/HSE/B3LYP
fundamental/quasiparticle gaps are shown in Fig. 5; pa-
rameters of the paraboloid fit are compiled in Table I in
Appendix B. For DFT we consider ζa, ζb ∈ 〈−4,+4〉% as
a sufficiently large range for the � → � band gap. Our cal-
culations below indicate that the � → � QMC band gap
may cover a significantly wider interval, see Fig. 7 where
we outline part of the boundaries. For our QMC optimized
structure at equilibrium we obtain a = 3.30 ± 0.003 Å, b =
4.61 ± 0.006 Å, x = 0.405 ± 0.001 Å, y = 2.109 ± 0.001 Å,
and � f = 2.53 ± 0.020 eV. This value of the quasiparticle
gap is in excellent agreement with the experimental value for
freestanding SLP of 2.46 eV [34], keeping in mind that ne-
glect of adiabatic, vibronic, and zero-point vibrational energy
tends to increase the gap value compared to the experiments.
The QMC optimized structure exhibits noticeable differences
w.r.t. the structure derived from the 3D black phosphorus
crystal [27] especially in the b parameter (a=3.324 Å and
b=4.376 Å), see the inset in Fig. 5(b). All gaps in the DFT
treatment are appreciably smaller than our QMC value. As
expected, the smallest value by about 2 eV is obtained by the
commonly used DFT-PBE functional. The hybrid functionals
yield larger values but fail badly in predicting the equilibrium
geometries, see the inset in Fig. 6, and also deformation ener-
gies as explained below.

The band-gap change due to applied biaxial strain is de-
picted in Fig. 6. This enables calculation of the gauge factors.
Here QMC and DFT predict similar gauge factors of ≈110
meV/% strain. This rate is comparable to that experimen-
tally determined for TMDs. For instance, in the quintessential
straintronic material MoS2, experimental values for the uni-
axial gauge factors for A/B excitons vary in a wide range
of ≈ (40 − 125) meV/% [35]. Experimentally, the biaxial
gauge factors are found 2.3 times the uniaxial strain ones
[36] which would correspond to experimental biaxial gauge
factors of ≈ (92 − 288) meV/%, placing our calculated biax-
ial gauge factor for phosphorene into the window determined
experimentally for MoS2. The main difference between phos-
phorene and MoS2 is in the region of tunability without
affecting the direct nature of the band gap. This limits the
applicable (tensile) strains to ≈ 0.5% in MoS2 [37]. By con-
trast, in SLP the QMC predicts the tunability range over many
percent, equally both in armchair and zigzag direction, see
below. The finding that the band-gap tuning is fairly isotropic
in a very anisotropic material, as phosphorene [8], is surpris-
ing. Hence, compared to TMDs, phosphorene opens a huge,
larger by an order of magnitude, window for band-gap strain
tunability.
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FIG. 7. Boundaries between � → �, � → �′, and � → X. (a) The boundary between � → � and � → �′, see the text, as calculated in
fixed-node QMC. (b) The same but for the � → � and � → X. (c) The boundaries between the different gap types as calculated in fixed-node
QMC. Blue lines correspond to fixed-node QMC results with the overlays outlining the ±1σ error bar, hatched regions correspond to DFT-PBE
results. For color coding, see Fig. 11. Note that additional points have been included for the QMC � f surfaces in order to cover a wider range of
strains; for their precise location see Fig. 11 in Appendix E. The error bars are given by the symbol sizes. (d)−(f) The corresponding DFT-PBE
results; the contour plots show, in addition to the DFT-PBE results (red line), also the DFT-HSE (green line) and DFT-B3LYP results (orange
line).

B. Boundaries between different excitations

The different band gaps corresponding to different exci-
tations are studied in the DFT-PBE model in Appendix E
(Fig. 11). In order to demonstrate the much wider range of

strains maintaining the � → � nature of the band gap, we
have calculated the boundary between the � → � and a band
gap at � formed by interchange of LUMO and LUMO + 1
states (� → �′) and the boundary between the � → � and
� → X due to applied strain, see Fig. 7 and Fig. 11 in

FIG. 8. Ground-state properties. (a) Deformation energies, in eV/unit cell, in fixed-node QMC and with DFT-PBE, HSE, and B3LYP
functionals. Panel (b) shows the QMC result with the error bars superimposed. (c) Relations between in-plane (ζa, ζb) and out-of-plane (ζz)
strains showing positive Poisson’s ratio between in-plane strains and negative ratio between in-plane and out-of-plane strains.
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FIG. 9. Parabolloids corresponding of ground- and excited-state
energies under strain. Example of the paraboloids (internal degrees of
freedom at equilibrium) of the ground- (Es

0) and excited-states (Es
1)

for a 4 × 4 approximant. The red/green lines indicate the offset of
the ground- (green) and excited-state (red) paraboloids in the (ζa, ζb)
plane.

Appendix E. The band gap strain tuning in those three areas
(� → �, � → �′, � → X) is determined as well. As for the
first boundary, while both gaps are direct at �, the nature
of the excited state is different if the order of unoccupied

FIG. 10. Simulation of exfoliation of single-layer phosphorene
onto quartz. Each point corresponds to a particular type of exfoliation
dictated by the angle between the quartz and phosphorene lattices.
The angle of the phosphorene lattice is kept rectangular.

states is interchanged (� → �′). The new LUMO state has
a differing curvature, hence, the transport properties in the
conductance band are expected to be significantly modified.
Figure 7 shows the boundary in the (ζa, ζb) plane calculated as
an intersection between energies with the LUMO/LUMO+1
occupation. This boundary is seen to be shifted to significantly
larger strains of ≈ +8% in ζa, compared to ≈ +5% in the
DFT-PBE/HSE/B3LYP models. We note that the discovered
huge area of the � → �′ strain-induced excitations induces
also change of transport properties through the excitation. A
similar huge increase in the boundary between � → � and
� → X is seen in the QMC description. Complete QMC
and DFT maps are shown in panels (c) and (f), respectively.
Hence, in reality, both boundaries are pushed rather close
to the mechanical breakdown of the material. We note that
the QMC-outlined boundaries outline a strain tuning area for
the direct � → � band gap more than twice larger than that
determined by DFT and that it extends mostly into the region
of tensile strain, Fig. 7(c). We presume tensile strain to be
more easily applied compared to the compressive strain which
may induce wrinkling at higher compressive loads. Hence, the
range of band-gap tuning by applied strain while maintaining
the direct band gap at � is truly huge with achievable values
of the band gap in the range 2.1–3.8 eV. In reality the tuning
interval may be larger still as the boundaries to indirect gap
regions corresponding to compressive strains have only been
determined by DFT-PBE and we expect the boundaries to
shift more further out to larger compressive strains and, hence,
lower band gaps.

C. Deformation energies and negative Poison’s ration

Finally, we discuss the deformation energies (QMC
and DFT-PBE/HSE/B3LYP) which we have determined as
byproducts of the calculated strained band gaps, Fig. 8; pa-
rameters of the paraboloid fits can be found in Appendix B.
Deformation energy confirms the isotropic response of single-
layer phosphorene to strain. The various DFT models lead to
quantitative differences mainly caused by variations in equi-
librium lattice parameters, see the inset in Fig. 6 and Ref. [31].
Since the equilibrium lattice parameters in the DFT-PBE are
very accurately described by PBE and the curvature of E0

is akin to that of fixed-node QMC, the deformation energy
follows similar behavior. DFT-HSE exhibits similar curvature
but the equilibrium geometry is slightly offset which translates
to a less accurate description of the deformation energy. DFT-
B3LYP has a very different equilibrium geometry, especially
in the b parameter and much steeper curvature, and hence,
represents the least accurate description of the deformation
energy.

Negative Poisson’s ratio was claimed to be present
in single- [38] and few-layer [39] phosphorene. However,
the cross-plane interlayer negative Poisson’s ratio primarily
probes the weak van der Waals interactions, while the property
in single-layer phosphorene was obtained only via DFT-PBE
modeling. Our fixed-node QMC data allow an accurate analy-
sis of this property. In Fig. 8(c) the relation between in-plane
(ζa, ζb) and out-of-plane (ζz) strains is shown. The in-plane
strain relation clearly indicates a positive Poisson’s ratio. At
variance, the relation between in- and out-of-plane strains
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FIG. 11. The effect of strain on the nature of the band gap in single-layer phosphorene. The figure details the information in Fig. 4 of
the main text, except that the nature of the band gap is demonstrated in detail by showing the representative PBE-calculated band structures
with the excitation forming the band gap indicated. The areas depicted in red/light blue outline the � → �/� → X transitions which are of
primary interest here. The blue lines indicate the QMC-calculated boundaries outlining the change in the LUMO state forming the gap; the
corresponding gap is labeled as � → �′ and the � → X transitions, see also the band structures in the dark blue rectangles. The DFT-calculated
boundaries in the PBE/HSE/B3LYP models are outlined by red/green/orange lines. For more details, see Fig. 7 of the main text. The blue
dots/pentagons depict the points on which the fixed-node QMC calculations were performed for the � → �/� → X transitions.

leads to a negative Poisson’s ratio, for more details, see
Ref. [31].

The strong band-gap response to strain may also explain
the strong effect induced by the substrate on the band gap.
The experimental scatter of the band gap in single-layer phos-
phorene is on the order of ≈1 eV [10]. The presence of
the substrate combines two different contributions: dielectric
embedding and strain. The effect induced by strain in a hetero-
junction, such as SLP/quartz or SLP/sapphire, is very hard
to estimate as the formed moiré structures exhibit twist-angle
dependence, and introduce inhomogeneous strain and an addi-
tional k-point dependence of the band gap. Disregarding these
complexities and approximating the heterointerface by inter-
locked supercells, one can induce strains by several percent
which could change the band gap in the range of ≈1 eV as
also found in experiments, see Fig. 10 in Appendix D.

IV. SUMMARY AND CONCLUSIONS

In summary, using benchmark-quality diffusion Monte
Carlo methods, we have calculated the effect of applied strain
on quasiparticle band gap in phosphorene. Our study has
revealed a huge tuning window, mostly in tensile region, for
applied strain, about an order of magnitude larger than in
MoS2, regarded to be the model straintronic material. This
huge tuning window is due to a combination of a high gauge
factor and large window of applied strains leaving the direct
� → � nature of band gap unchanged. The width of the tun-
ing window is close to the mechanical breakage point of the
material. In addition, we have also determined the equilibrium
structure of the free-standing material, which is not known
experimentally. Our calculated quasiparticle band gap in equi-
librium is within chemical accuracy from the experimental
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value for the free-standing phosphorene. The QMC results are
compared with results of several DFT functionals providing
insights into corresponding DFT inaccuracies and making an
educated use of the much cheaper DFT calculations possible.
We expect that the QMC methods, still rarely used to the
growing family of 2D materials, to become the method of
choice in future high accuracy studies of 2D materials.
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APPENDIX A: CHARACTER OF GROUND- AND
EXCITED-STATE STRAINED ENERGY SURFACES

From Fig. 3 follows that the scaling curves corresponding
to various strain for a given excitation are mutually paral-
lel. This finding is highly nontrivial, considering the way
they are calculated, Eq. (1). This finding can be rationalized
by inspecting the ground- and excited-state paraboloids in
Fig. 9. The linear scaling with the system size essentially
means that the shape of the paraboloids has converged and the
only parameter evolving is the vertical (energy) offset of the
paraboloids. Furthermore, the gaps are not constant, meaning
that there is also a “horizontal” offset of the paraboloids in the
(ζa, ζb) plane, see the red and green lines in Fig. 9.

APPENDIX B: FITTED PARAMETERS OF STRAINED GAP
AND DEFORMATION ENERGIES

Equation (2) was used to fit the strained band gaps and
deformation energies E0. The results are compiled in Table I.

APPENDIX C: CONVERGENCE OF STRUCTURAL
PARAMETERS WITH THE SUPERCELL SIZE

Various structural approximants were considered for finite-
size scaling, see Fig. 2. The selection of approximants was

TABLE I. Parameters of strained gap and deformation energy.
Fitted parameters of Eq. (2) for � → �, � → �′, and � → X tran-
sitions and for deformation energies in various DFT and fixed-node
QMC treatments.

Band gap

Transition c0 c1 c2 c3 c4 c5

� → � (QMC) 3.947 −17.177 5.040 39.583 17.995 −14.222
� → �′ (QMC) 3.950 −16.063 3.998 38.781 −7.039 −1.553
� → X (QMC) 3.340 2.384 −2.441 20.798 −6.051 −8.975

Deformation energy

QMC 0.000 0.127 0.375 46.817 28.157 12.402
DFT-PBE 0.000 0.000 0.000 47.072 11.012 17.126
DFT-HSE 0.004 0.246 0.319 53.277 12.694 16.788
DFT-B3LYP 0.018 −1.637 −1.166 55.878 17.282 17.688

based on a DFT study of convergence of ground-state energy
and structural parameters [31]. While the 4 × 3 and 4 × 4
approximants do not represent suitable supercells based on
the ground-state energy convergence, starting from the 11
structure, the energies per unit cell are converged within a
few hundredths of an eV. The DFT convergence of lattice
parameters exhibits similar trends, see Table II.

APPENDIX D: THE EFFECT OF SUBSTRATE

Any 2D structure needs to be supported on a substrate
in order to be able to conduct any experimental study on
it. Phosphorene is typically exfoliated on SiO2, sapphire, or
h-BN. Specifically for phosphorene which is reactive, a cap-
ping layer is needed for longer term stability [32,40]. The
support/capping layer modifies the dielectric embedding and
possibly also subject the phosphorene to strain. The combina-
tion of these factors will modify the band gap from the value
of the free-standing phosphorene studied here. We limit our-
selves just to the effect of the strain induced by the substrate.
Strain induced by substrate on a 2D material in a heterointer-
face is very complex due to formation of moiré structures. The
moiré structure is twist-angle dependent, the strain induced
is heterogeneous and the additional periodicity of the moiré
structure introduces an additional k-point dependence of the
band gap. Here we introduce much more a simplified picture
by enclosing the interface into a supercell with edges much
smaller than the moiré periodicity. In Fig. 10 we show a
simulation of that effect by considering phosphorene exfoli-
ation onto quartz. As can be seen, the points are scattered
throughout the entire range of the strain window of ±5%
considered here. The equivalent band-gap tuning due to this
strain is in the range of ≈1eV, which explains the huge scatter
in the band gaps experimentally observed.

APPENDIX E: CHARACTER OF THE BAND GAP UNDER
STRAIN: DFT RESULTS

Prior to performing the costly fixed-node QMC calcu-
lations we have prescreened the response of single-layer
phosphorene to strain at a DFT level. This study is based
on the DFT-PBE xc functional which gives the equilibrium
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TABLE II. Convergence of structural parameters. Evolution of structural parameters of the equilibrium structures (a, b, x, y, see Fig. 1 of
the main text) and of energies of the ground- and excited-state (Es

0 , Es
1) with the size of the approximant. Structural parameters are in a.u.,

energies are in eV/primitive unit cell. 3D-BP stands for the experimental structural parameters of 3D black phosphorus [27].

QMC 11-cell QMC 16-cell QMC 22-cell DFT-PBE 3D-BP

Ground state

a 6.229 ± 0.008$ 6.238 ± 0.002$ 6.230 ± 0.002$ 6.235 6.2618
b 8.651 ± 0.017$ 8.688 ± 0.008$ 8.707 ± 0.006$ 8.711 8.2700
x 0.748 ± 0.005$ 0.759 ± 0.002$ 0.765 ± 0.001$ 0.770 0.6367
y 3.987 ± 0.007$ 3.978 ± 0.003$ 3.985 ± 0.002$ 3.975 4.0280
Es

0 −716.563 ± 0.002$ −716.498 ± 0.0008$ −716.469 ± 0.0007$ −717.711 NA

Excited state

a 6.227 ± 0.027$ 6.222 ± 0.003$ 6.224 ± 0.003$ 6.222 NA
b 8.515 ± 0.178$ 8.607 ± 0.012$ 8.664 ± 0.010$ 8.543 NA
x 0.728 ± 0.044$ 0.747 ± 0.003$ 0.761 ± 0.002$ 0.739 NA
y 4.053 ± 0.018$ 4.031 ± 0.002$ 4.020 ± 0.002$ 4.051 NA
Es

1 −716.415 ± 0.005$ −716.375 ± 0.0007$ −716.375 ± 0.001$ −717.643 NA

geometry in very good agreement with our QMC modeling.
The results are shown in Fig. 11 which outlines the various
types of band gap which arise due to applied strain. Our
conclusions at the DFT level are similar to those reached in
the other DFT studies [20–23]. Only in the region in red is
the gap strictly direct � → �. Note that the � → � region
(in red) borders with the � → X (in light blue) and a region
where the DFT top of the valence band displaces slightly
from the � point towards the X point, making the band
gap indirect (in orange). Unlike the � → X which, similarly
to � → �′, is fairly easy to determine by fixed-node QMC
techniques, the latter (orange) boundary is much tougher
as it would require use of approximants with exorbitant
sizes.

In summary, we have explicitly outlined using the fixed-
node QMC techniques on the boundaries between the � → �

and � → �′ band gaps which arise due the change of the order
of the LUMO and LUMO + 1 states under pressure and the
� → � and � → X, see the illustrative band structures in the
blue boxes of Fig. 11. Note that the two bands involved in
the � → �′ transition are significantly different as will be
the electronic/transport properties in those two states. Due
to inherent numerical limitations, no attempt was made to
determine the other boundaries. Note also that the DFT- and
QMC-calculated boundaries are significantly different and
that the QMC boundaries are shifted to significantly larger
strains, see also Figs. 4, 7, and the accompanying discussion
in the main text.
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