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Because the attractors of biological networks reflect stable behaviors (e.g., cell phenotypes), identifying
control interventions that can drive a system towards its attractors (attractor control) is of particular relevance
when controlling biological systems. Driving a network’s feedback vertex set (FVS) by node-state override
into a state consistent with a target attractor is proven to force every system trajectory to the target attractor,
but in biological networks the FVS is typically larger than can be realistically manipulated. External control
of a subset of a biological network’s FVS was proposed as a strategy to drive the network to its attractors
utilizing fewer interventions; however, the effectiveness of this strategy was only demonstrated on a small set
of Boolean models of biological networks. Here, we extend this analysis to ensembles of biologically inspired
Boolean networks. On these models, we use three structural metrics—PRINCE propagation, modified PRINCE
propagation, and CheiRank—to rank FVS subsets by their predicted attractor control strength. We validate the
accuracy of these rankings using three dynamical measures: To control, away control, and logical domain of
influence. We also calculate the propagation metrics on effective graphs, which incorporate each Boolean model’s
functional information into edge weights. While this additional information increases the predicting power of
structural metrics, we find that the increase with respect to the unweighted network is limited. The propagation
metrics in conjunction with the FVS can be used to identify realizable driver node sets by emulating the dynamics
that are prevalent in biological networks. This approach only uses the network’s structure, and the driver sets are
shown to be robust to the specific dynamical model.
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I. INTRODUCTION

In the modeling of complex systems, networks are a pow-
erful tool for capturing the interplay between many interacting
components. A network G(N , E ) is a set of nodes N of size N
that represent the components of a system and are connected
by a set of edges E that represent the interactions between
components. Once built, networks can illuminate emergent
properties that are not visible at the individual component
level [1–3]. For example, in cell biology, networks are cre-
ated to model interactions among (macro)molecules and the
totality of these interactions determine cellular behaviors. In
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these models, the nodes represent biological macromolecules
such as genes or proteins and the edges represent different
types of interactions such as transcription, chemical reactions,
or regulation [4,5].

A dynamic model appended to the network structure de-
scribes the time evolution of the biological system [6–10].
In the discrete time case, which we will focus on in this pa-
per, each node’s state is represented as xi(t + 1) = Fi(XIi (t )),
where xi(t ) represents the state of node i at time t , and Fi

represents its update function. Fi depends on the vector XIi (t )
consisting of the states of the nodes in the set Ii, which is the
set of nodes with edges incident on node i in the network.
The network at any time can be fully described by the state
vector X (t ) = {x1(t ), . . . , xN (t )}. Here, we focus on Boolean
discrete dynamical models, in which each node only has two
possible states X (t ) ∈ {0, 1}N . We use the well-established
stochastic asynchronous updating scheme, where at each time
step, a randomly selected node is updated according to its
update function. This update scheme thoroughly probes the
state space, omits unstable oscillations that depend on node
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synchrony, and preserves the long-time stationary states of the
system [11].

If we allow the model to naturally evolve in time, the
system will eventually enter and be trapped in a region of the
state space, called an attractor [12,13]. Attractors can be clas-
sified as point attractors (steady states) or complex attractors
made up of multiple states. In cell-level biological networks,
the attractors represent the cell’s different phenotypes, which
can be either desirable (e.g., healthy states) or undesirable
(e.g., cancerous states). Studying biological network mod-
els’ attractor repertoires constitutes an in silico approach to
understanding how phenotypes arise. Exploring the structure
of the state space reveals control interventions that alter the
trajectories within the state space, which prevent undesirable
phenotypes or elicit desirable phenotypes, thus driving the
network to or away from one of its attractors. In the area of
network control, the domain of research focused on driving
complex systems to their attractors is referred to as attractor
control [14–21]. Attractor control is particularly well-suited to
study biological systems because of the relationship between
attractors and biological cell states. Attractor control poses
three questions: What is the best choice of nodes to drive a
network to a target attractor? How can we manipulate the state
of these nodes to guarantee convergence to a target attractor?
And how do we implement this control action? We will focus
on the first question here. One answer to the second question
is the theory of feedback vertex set (FVS) control established
by Mochizuki et al. [20–22], which informs our search for
driver nodes. For the third question, we assume that control
by node-state override is possible, which has been shown for
many cellular biological systems [23–26].

Attractor control through FVS control guarantees the con-
vergence of a system into any of its attractors. A FVS of
a network is a set of nodes that when removed makes the
network acyclic. Here, when referring to a FVS, we consider
minimal FVSs, i.e., the minimal number of nodes necessary
to render the network acyclic. The minimal FVSs are not
necessarily unique. It was proven that each FVS is a set of
determining nodes of the dynamics of a regulatory network
[20,22]. That is, if we drive every FVS node into its state
in a corresponding attractor, then the system will converge
to that attractor. Mochizuki et al. originally formulated this
approach on systems of nonlinear ODEs, but here we ap-
ply it to systems of Boolean update functions, which is a
natural extension of the approach. For more on the formal-
ization of the FVS and its extension to Boolean systems, see
Appendix B.

While FVS control answers the first two questions posed
by attractor control, here, to enhance applicability, we inves-
tigate how to reduce the number of driver nodes. The size
of a minimal FVS in biological networks is typically too
large to realistically drive every required node. Previously, we
have shown for Boolean models of biological networks that
three propagation metrics: PRINCE propagation, modified
PRINCE propagation, and CheiRank—can accurately rank
FVS subsets by their ability to drive a network [27], so driv-
ing the full FVS is not necessary for attractor control. While
these results were consistent for multiple biological models,
they were not an exhaustive analysis of the relationships be-
tween FVSs, propagation metrics, and the systems’ dynamical

models. Here we use multiple ensembles of Boolean models
with biologically inspired network structures to comprehen-
sively probe these relationships and the manner in which the
structure of networks influences their controllability, without
requiring the creation and validation of many real Boolean
biological models.

II. RESULTS

A. Biologically inspired networks and dynamic models

1. Networks were randomly generated with topologies
that emulate biological networks

To create a test ensemble of models, we generated net-
works that reflect the structural properties of biological
networks and are random otherwise. A meta-analysis of 132
Boolean models of biological networks performed by Kadelka
et al. found that these networks have a Poisson in-degree
distribution and a power law out-degree distribution with an
average in (out) degree of 2.37 [28]. Utilizing the configu-
ration model [29], we generate networks of 50 nodes whose
edges are distributed according to degree distributions found
by Kadelka et al. We add outgoing stubs to each node fol-
lowing a power law out-degree distribution and connect the
stubs to nodes uniformly at random. Because the outgoing
connections are chosen uniformly at random, the in-degree
distribution will follow a Poisson distribution [30]. The av-
erage out degree of a power law with exponent −3 is 1.37, so
to get an out-degree distribution with an average of 2.37, we
only enforce the power-law distribution for nodes with an out
degree of 2 or more. We reduce the probability that a node has
an out degree of 1 to be equal to the probability that a node has
an out degree of 2. Kadelka et al. also found that, on average,
75.1% of edges are activating, so we randomly specified with
probability 0.75 that the created edge was positive; it was
negative otherwise.

After creating random networks, we pruned any repeated
edges and reduced each network to its largest strongly con-
nected component. We removed the source nodes of each
network because we wanted to focus on the effect of FVSs
on the attractor repertoire, not on the selection of specific
attractors in response to source nodes. Outside of the source
nodes, the largest SCC is the largest contributor to multista-
bility because it contains most nodes of the minimal FVS,
so we focus our analysis on it by removing any out compo-
nents. If a network is composed of many large SCCs, our
analysis can easily be adapted by treating each large SCC
as an individual network and then aggregating the results.
Only networks that consist of at least 30 nodes after reduction
were kept. We confirmed that the reduction to the strongly
connected component did not strongly affect the degree dis-
tribution of the networks. Over the nine remaining network
topologies, the average in (out) degree is 2.27, with average
degrees ranging from 1.75 to 3.02. Figure 1 shows the com-
plementary cumulative in- and out-degree distributions for the
nine networks. After reduction, the in-degree distributions still
follow a Poisson distribution [Fig. 1(a)] and the out-degree
distributions still follow a power-law distribution [Fig. 1(b)],
so the pruned networks still reflect the properties found by
Kadelka et al.

033009-2



STRUCTURE-BASED APPROACH TO IDENTIFY DRIVER … PHYSICAL REVIEW RESEARCH 5, 033009 (2023)

FIG. 1. Complementary cumulative distribution functions
(CCDFs) of in- and out-degree distributions of the nine generated
networks after pruning. On these plots, the value on the y-axis
indicates the probability that the degree is greater than or equal to
the degree on the x-axis. The in-degree distributions along with the
Poisson’s CCDF (a) and the out-degree distributions along with the
power law’s CCDF (b) show that the networks still have the correct
degree distributions after pruning. Panel b includes a guide to the
eye indicating slope 2 to show that the complementary cumulative
out-degree distributions follow a power law with power 2, which
shows that the out-degree distributions follow a power law with
power 3. Note: The power-law CCDF solid line does not approach
1 as the degree goes to 1 because the actual degree distributions
only follow a power law for degrees of 2 or more and thus have a
different normalization factor.

These reduced networks have FVSs of sizes ranging from
5 to 9. Because identifying minimal FVSs is an NP-hard
problem, we follow Zañudo et al. and identify FVSs using a
simulated annealing algorithm that efficiently identifies near-
minimal FVSs [21,31]. When determining FVS subsets, we
consider every subset of any identified FVS. For example,
in one generated network topology every minimal FVS is
of size 9, but if we look at every possible minimal FVS on
the network, there are 20 unique nodes that participate in at
least one of the minimal FVSs. We call the union of FVS
subsets of all minimal FVSs the set of candidate FVS subsets.
Each topology has between 9 and 20 candidate one-node FVS
subsets, which indicates that there are multiple near-minimal
FVSs for every network. We label the nine networks according
to the number of candidate one-node FVS subsets from great-
est to smallest with ties arbitrarily broken, so network No. 1 is

the network with the largest number of one-node FVS subsets.
Going forward, we will refer to the set of all candidate FVS
subsets as just the set of FVS subsets.

2. Random nested canalizing functions were used to populate
the networks with ensembles of biologically inspired

Boolean models

For each network, we generate an ensemble of 100 dy-
namical Boolean models consistent with the topology. In
Boolean models of biological networks, a vast majority of
the Boolean rules are nested canalizing functions [28,32–35].
Nested canalizing functions are a set of Boolean functions
in which every input variable is either canalizing or con-
ditionally canalizing [36]. If a canalizing input ni is fixed
to a specific value xi = ai, then the function F (XIi ) is fixed
F = bi. Fixing a canalizing variable into its noncanalizing
state yields a reduced function. This reduced function can
itself be canalizing, then the canalizing variables of this func-
tion are considered conditionally canalizing. If every reduced
function is also canalizing, then the original function is a
nested canalizing function. In nested canalizing functions, the
variables can be labeled with their canalizing layer, which
denotes the number of reductions required before a node be-
comes canalizing. Nested canalizing functions are prevalent
in biology because they create a stable system. Compared to a
system built on random Boolean functions, systems built with
nested canalizing functions have fewer attractors and are more
robust to perturbations, placing them in the so-called critical
regime thought to be a key property of biological systems
[28,37–39]. Thus, nested canalizing functions provide a
smaller set of Boolean functions to choose from, which will
create a network that accurately represents the dynamics and
properties of published biological networks. We selected the
Boolean rules for our model randomly from the set of nested
canalizing functions that were consistent with the edge signs.
For the nine generated topologies, the minimum number of
possible nested canalizing rule sets was of the order of 1011,
which gives a large set of possible rule sets to analyze.

When generating our Boolean models, we only kept mod-
els that yielded more than one attractor because multistability
is needed to test our ability to drive a model towards or away
from its original attractors. We also exclude rule sets that have
an attractor wherein more than 50% of the network oscillates
because it is not possible to precisely quantify the distance
from such an attractor. Figure 2 indicates a histogram of the
number of attractors in each topology for all 100 generated
Boolean models (rule sets). For eight out of the nine network
topologies, we see a spread in the number of attractors across
the 100 rule sets, which is consistent with the ensembles hav-
ing a diverse dynamic landscape. For one network (network
No. 4), all rule sets had two attractors, which we attribute to
the large number of negative cycles in the network [40,41],
but this network still has a diverse set of attractors over its
100 models. The observed diversity in the dynamics of the
ensembles allows us to investigate whether the structure-based
drivers we identify can control each distinct rule set. Such
finding would indicate a topological underpinning of the bi-
ological driver sets, independent of the specific dynamical
model.
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FIG. 2. Histogram plots of the number of attractors of each of the
100 rule sets for the nine networks. There are at least two attractors
for all the rule sets, so it is possible to calculate attractor control
values on every rule set.

B. Topological propagation metrics and control

Our previous study on Boolean models of real biological
networks indicated that propagation metrics are a good pre-
dictor of a FVS subset’s ability to drive a dynamical model
[27]. In particular, the intersection of PRINCE propagation
[42,43], modified PRINCE propagation [27], and CheiRank
[44], referred to as the propagation intersection metric (see
Appendix A), accurately predicted control of real biological
networks. Because we have ensembles of dynamical mod-
els for each topology, we can probe if these topologically
important driver sets are successful at controlling the net-
work regardless of the network’s dynamical model. To do
this, for each of the nine network topologies, we investigate
the relationship between a FVS subset’s propagation metrics
(topology based) and three different control metrics (dynam-
ics based): To control, away control, and the logical domain
of influence (LDOI). To control measures the increase in the
basins of target attractors by a driver set, away control mea-
sures the decrease in the basins of nontarget attractors by a
driver set, and the LDOI measures the nodes that are logically
fixed by a driver set (for a detailed explanation of these control
metrics, see Appendix A).

The PRINCE propagation and modified PRINCE propaga-
tion function by introducing a constant perturbation Pni onto a
node ni and letting this perturbation flow through the network.
The flow is normalized based on the in and/or out degrees
of the nodes and a decay variable that causes degradation at
each step. The two variants differ in their normalization [27].

The normalization and degradation guarantee convergence to
a steady state X Pni (t ) = �(t ). For each perturbation Pni , we
assign the value of each node nj at the steady state as its prop-
agation score � j (t ) in response to the perturbed node. The
(modified) PRINCE metric value of a node is defined by tak-
ing the average of the magnitudes of the (modified) PRINCE
scores |�(t )|, which summarizes each perturbation’s effect
on the network as a single value. The (modified) PRINCE
metric value is large when the perturbed node is central to
the network and can easily reach every other node. The metric
values also increase when the perturbed node participates in
short cycles because the values of the nodes in these cycles
quickly feed back onto the perturbed node, increasing its score
and thus increasing the scores propagated to the rest of the
nodes in the network. Because these two properties are also
signifiers of dynamically influential nodes in a network, the
PRINCE and modified PRINCE are expected to identify key
node sets.

The CheiRank represents the chance that a random walk
originated at a specific node. The algorithm for the CheiRank
is a variation on the algorithm for calculating the PageRank of
a network [44]. The PageRank predicts the probability that
a random walk will end at each node. It is calculated by
finding the steady state of a Markov process with an added
possibility of jumping to a random node at each step. For
the CheiRank calculation, the edges are traversed in reverse
during the Markov process. The resulting CheiRank value of
each node is thus a representation of how sourcelike each
node in the network is, which helps determine which nodes
are more influential on the network.

For the propagation metrics to predict the dynamics of the
Boolean model, they must accurately reflect how the inputs
of a target node interact to determine the node’s future state.
The propagation metrics cannot differentiate between the ON
and OFF states of a node; instead, they focus on the amount
of influence one node has over another. Taking a two-input
function as an example, the propagation metrics cannot dif-
ferentiate if the function is an AND or OR function, and
they cannot determine whether the next state of the target
node will be ON or OFF. However, the propagation metrics
do recapitulate a shared property of both functions, namely,
that each input is equally likely to determine the state of
the target node. The propagation metrics are less adept at
reflecting the combinatorial nature of Boolean functions with
more than two inputs. For example, in the function A *= B
and (C or D), the three inputs do not equally influence the
state of A. In our networks, more than 65% of the nodes
have less than three inputs, so these nodes follow the simpler
Boolean rules that can be well-estimated by the propagation
metrics. Furthermore, a nested canalizing function is better
predicted by these propagation metrics than a random Boolean
function because of the existence of canalizing layers within
the function. Every node within a canalizing layer will have
equal influence on the target node, so there are still some
equivalences that the propagation metrics can reflect, despite
every input not being equivalent. For example, nodes C and
D in the function A *= B and (C or D) are in the same
canalizing layer and have the same influence on the state of
node A. In summary, because the majority of the nodes in our
networks have few inputs, and all the functions are nested
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FIG. 3. The to control successfulness (a)–(c) and away control successfulness (d)–(f) values of the top-five FVS subsets of size one (a),
(d); two (b), (e); and three (c), (f) according to the propagation intersection metric. The successfulness of a FVS subset is the percentage of rule
sets (out of 100) in which the to (away) control has a value greater than 0.9. When finding the top-five FVS subsets all subsets are included in
a tie. For each network, the results are ordered by their successfulness to aid in the comparison of the results between networks.

canalizing, we expect the propagation metrics to accurately
predict influences in the Boolean dynamics.

1. The propagation intersection metric can distinguish FVS
subsets based on their to (away) controls

For each topology, we use the propagation intersection
metric to rank FVS subsets and pick the top-five FVS subsets
per network. In the case of ties, we keep all tied subsets. A
FVS subset is considered successful in a singular rule set if
it achieves a to control or away control value greater than 0.9
(see Appendix A). For each FVS subset, we determine the
percentage of rule sets (out of 100) in which it is successful;
we will refer to this percentage as the successfulness of the
FVS subset. Figure 3 indicates the successfulness of the top-
five single-node [Figs. 3(a) and 3(d)], two-node [Figs. 3(b)
and 3(e)] and three-node [Figs. 3(c) and 3(f)] FVS subsets
for to control [Figs. 3(a)–3(c)] and away control [Figs. 3(d)–
3(f)]. The results are ordered by decreasing successfulness to
aid in comparisons. In the one-node subset case, for every
network topology, at least one of the top-five subsets has a
successfulness �90%, and a majority of the identified subsets
have a successfulness �75%. In the two-node case, more
than 75% of the identified FVS subsets have a successfulness
�90%, and in the three-node case more than 85% of the
identified FVS subsets have a successfulness �90%. These re-
sults recapitulate the propagation intersection metric’s strong
predictive power of to control and away control [27] and
demonstrate that the FVS subsets ranked in the top according
to the propagation metrics are very likely to achieve high
control over the diverse set of network dynamics. We extend
the analysis from the top-five FVS subsets (up to size 3) to
the entirety of the FVS subsets by employing the area un-
der the receiver operating characteristic curve (AUROC). The

AUROC is a normalized score between 0 and 1 that measures
how well a predictor metric (in this case, the propagation
intersection metric) can sort a binarized metric (successful
to (away) control) (see Appendix A). A value of 0 repre-
sents sorting completely incorrectly, a value of 1 represents
sorting completely correctly, and a value of 0.5 represents
sorting equivalent to random choice. Figure 4 summarizes the
AUROC values of each network for all 100 rule sets. The
AUROC is greater than 0.5 (denoted by the dashed line) for
the majority of the rule sets, with �89.5% of rule sets having
an AUROC greater than 0.5 in both the one-node and two-
node FVS subset cases for both to control and away control.
This indicates that the propagation intersection metric is able
to discern FVS subsets with good control for each rule set.
Even though the AUROC values are below 0.5 for some rule
sets, this is not unexpected; we have previously shown that
the topological metrics do not fully determine the possible dy-
namical behaviors of a model. That is, in some cases, the top
identified FVS subsets achieve high precision (i.e., the FVS
subsets with high propagation intersection metric values also
have high control values) but do not achieve a high sensitivity
(i.e., there are FVS subsets that have a low propagation in-
tersection metric value that can control the network). Despite
these cases with low sensitivity, we previously showed that
the top-ranking FVS subsets have a much-better-than-random
predictive power [27], so AUROC values below 0.5 do not
necessarily indicate that the top-ranking FVS subsets cannot
control the network.

2. Propagation metrics accurately predict the logical
domain of influence of a node

The LDOI of a given node state consists of all the nodes
whose value becomes fixed as the node state is percolated
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FIG. 4. Distributions of individual rule set AUROC values
demonstrating the predictive ability of the propagation intersection
metric. Distributions for each of the nine networks for one-node FVS
subsets (a), (c) and two-node FVS subsets (b), (d). For each rule
set, the AUROC represents how well the propagation intersection
metric classifies the binarized version of the to control (a), (b) and
away control (c), (d) (whose value is 1 if the to (away) control is
greater than 0.9 and 0 otherwise). An AUROC value greater than
0.5 indicates that the propagation intersection metric performs better
than randomly sorting the FVS subsets. This cutoff is indicated by
the dotted lines in each plot.

through the Boolean functions (see Appendix A). While it
does not directly measure a node’s effect on the attractor
repertoire, the LDOI presents a detailed, dynamics-based un-
derstanding of how driving a node into a sustained state affects
the network, so it provides an excellent way to probe how
a node’s impact differs for each different rule set. Here we
determine the consistency between the structural PRINCE and
modified PRINCE metrics and the dynamics-based LDOIs.

We assess the consistency between the propagation scores
� j (t ) and the LDOI by finding how often a perturbed node
contains each other node in its LDOI. For each rule set, we
find the LDOI of fixing the perturbed node ni into a specific
state si. This LDOI consists of a set of node-state pairs indi-
cating which nodes are fixed and what state they are fixed into
LDOI(ni, si ) = {(n j, s j )}. For each rule set r, we give every
node in the network one of three values based on its consis-
tency with the perturbed node’s fixed state: L(ni,si )

r (n j ) = 1 if
the node is driven to the same state as the perturbed node,
i.e., if s j = si, L(ni,si )

r (n j ) = −1, if the node is driven to the
opposite state of the perturbed node, i.e., if s j = 1 − si, and
L(ni,si )

r (n j ) = 0 if the node is not driven by the perturbed node,

FIG. 5. Comparison between a node’s propagation score and its
LDOI score. The propagation scores versus the LDOI scores for
si = 1 (ON) and si = 0 (OFF) for PRINCE propagation (a), (b) and
modified PRINCE propagation (c), (d) are shown. (a), (c) are sample
plots of the propagation scores and LDOI score, using network 1 and
node 9 as the perturbed node. (c), (d) generalize these results using
ridgeline plots of the PCC values for PRINCE propagation (b) and
for modified PRINCE propagation (d) for every single-node FVS
subset, including the PCCs with the LDOI scores for both ON and
OFF perturbations.

i.e., n j /∈ LDOI(ni, si ). We add each node’s values over all
100 rule sets to get a number of rule sets in which a node
is driven in a consistent manner in response to the perturbed
node, which we refer to as the LDOI score L(ni,si )(n j ) =∑100

r=1 L(ni,si )
r (n j ). We differentiate between driving into the

same state or the opposite state to discern nodes that drive
consistently in the same direction over multiple rule sets. For
example, a case in which fixing a node ON drives another
node ON in every rule set will have a higher value than a
case in which fixing a node ON drives another node ON in
some rule sets and OFF in other rule sets. This process is done
separately for fixing the perturbed node OFF, si = 0 and ON,
si = 1. Thus, for each perturbed node ni, every node in the
network has two different LDOI scores.

Figure 5 shows the LDOI scores L(ni,si )(n j ) versus the
PRINCE scores �PRINCE

j (t ) [Fig. 5(a)] and modified PRINCE
scores �MPRINCE

j (t ) [Fig. 5(c)] for each node n j in network
1 when using node 9 as the perturbed node ni. These plots
reveal a strong correlation between both propagation metric
scores and the LDOI scores: The Pearson correlation coeffi-
cients (PCCs) of the PRINCE score and LDOI score is 0.9
and 0.89 for fixing the perturbed node ON (si = 1) and OFF
(si = 0), respectively, with p values of the order 10−17; the
PCCs of the modified PRINCE score and LDOI score are
0.97 and 0.98 for ON and OFF, respectively, with p values
of the order 10−28. These results indicate that the propaga-
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FIG. 6. Scatter plot of each one-node FVS subset’s propagation intersection metric value versus the rank of the FVS subset’s LDOI size
for the first rule set generated on network 1 along with the associated linear regression (a). The PCC for this data is printed in the bottom
left corner. The linear regressions of all 100 of network 1’s rule sets (b). Scatter plot of the propagation intersection metric versus average
LDOI rank (c). The PCC for this data is printed in the bottom right corner. Distributions of the 100 rule set’s PCCs between the propagation
intersection metric and LDOI rank of the one-node FVS subsets (d), two-node FVS subsets (e), and three-node FVS subsets (f).

tion scores capture the ability of node 9 to drive the other
nodes across the ensemble of models. To verify the generality
of this conclusion, we determine the distribution of PCCs
for both the ON state and OFF state of each FVS node in
each network; see Figs. 5(b) (PRINCE) and 5(d) (modified
PRINCE). The distribution of correlation coefficients shows
that the strong relationship between propagation score and
the LDOI score holds for all FVS nodes in every network
topology.

For each topology, we also found the propagation inter-
section metric value of every FVS node and compared these
values to the size of the FVS node’s LDOI in each individual
rule set. Specifically, for each FVS node, we calculate the
size of the LDOI when fixing the nodes OFF and ON and
take the maximum of these two values to give one LDOI
value per node max (|LDOI(ni, 0)|, |LDOI(ni, 1)|). We then
compare the ranks of the LDOI values with the propagation
intersection metric values. When ranking the subsets by LDOI
size, the subset with the largest LDOI value gets the highest
rank and the subset with the smallest LDOI value gets a rank
of 1. Figure 6(a) shows the propagation intersection metric
values versus the LDOI ranks for each FVS subset of one rule
set of network 1. The two values are correlated, which can be
summarized with a linear regression. Figure 6(b) shows the
linear regressions of all 100 rule sets of network 1. All linear
regressions except one have a positive slope, indicating that
for 99% of network 1’s rule sets, there is a positive correlation

between the propagation intersection metric and the size of
the LDOI for FVS subsets.

To test whether the observed correlation between prop-
agation intersection metric values and LDOI ranks extends
to all network topologies, we calculated the PCC of these
metrics for each rule set and each network topology. (Note the
LDOI is generalizable to FVS subsets larger than size 1; for
a detailed description of this generalization see Appendix A).
Figures 6(d) and 6(e) show the distributions of PCCs over all
100 rule sets for all nine network topologies. Similar to what
we found for network 1, the correlation coefficient is greater
than zero for almost all rule sets in each network topology; in
the one-, two-, and three-node cases, 98%, 97%, and/93% of
rule sets have positive correlations. These positive correlations
support the generality of the positive relationship between the
LDOI and the propagation intersection metric.

To further quantify the relationship between these metrics
for each network topology, we found the average rank of each
FVS subset’s LDOI size among the 100 rule sets and calcu-
lated the PCC between the propagation intersection metric and
the average LDOI rank. This average LDOI rank provides a
single value to determine how much of the network is fixed
by a FVS subset by averaging the LDOI rank over all 100
rule sets, where a higher average LDOI rank indicates that the
FVS subset on average fixes more of the network compared
to the other FVS subsets. Figure 6(c) shows the results for
one-node FVS subsets in network 1, and Table I shows the
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TABLE I. Pearson correlation coefficients (PCCs) of the average
LDOI rank and the propagation intersection metric values. These are
the correlations between each FVS subset’s average LDOI rank over
all 100 rule sets and the propagation intersection metric value. We
present the results for all nine networks for FVS subsets of sizes 1–3.

Network 1 2 3 4 5 6 7 8 9

1 Node 0.79 0.97 0.89 0.86 0.96 0.74 0.71 0.96 0.91
2 Node 0.76 0.95 0.86 0.66 0.95 0.65 0.60 0.94 0.91
3 Node 0.80 0.90 0.88 0.53 0.93 0.93 0.59 0.88 0.87

correlation coefficient for FVS subsets sizes 1 to 3 for all
nine network topologies. Of the nine network topologies, the
smallest correlation coefficient was 0.53 and the largest was
0.97.

Overall, the results of our analysis of the successfulness,
AUROCs, and correlation coefficients all indicate that there
is a strong relationship between the structural propagation
metrics and the controllability of the system reflected by the
control metrics of to control, away Ccontrol, and LDOI. These
results are consistent for both the averages of all 100 rule
sets and on an individual rule-set level, showcasing that the
FVS subsets found using the propagation intersection metric
can typically control a system without consideration for the
specifics of the dynamical model.

C. Propagation metrics on the effective graph

Despite the generally good accuracy of the structure-based
propagation metrics in predicting controllability through the
to control, away control, and the LDOI, they do not fully
capture the dynamical behaviors of the system. A likely reason
for this shortcoming is that propagation metrics solely take
into account structure and are not dynamic model specific.
A way to improve the predictive power of the propagation
metrics would be to incorporate information of the dynamical
model into the network topology. One way to do this is the
effective graph [45]. The effective graph assigns each edge
in the network a weight based on that edge’s effectiveness,
which measures how important that edge is in determining the
output of the associated Boolean function (see Appendix A).
Thus, the resulting network encodes features of the regulatory
functions into its structure.

Given that the effective graph of a Boolean model is a
weighted network, we can calculate the propagation metrics
on the effective graph. The value of the propagation metrics
in the effective graph captures how information propagates
through the network, biasing information transfer through
the edges based on their associated Boolean functions. This
means that the nodes with the highest metric values are more
likely to fix the outcome of the Boolean functions in addition
to being structurally important. We compare the propagation
metrics calculated on each Boolean rule set’s associated ef-
fective graph to the original network’s propagation metrics.
Using this comparison, we assess the impact of including
functional information within the network’s structure to gauge
how much the propagation metrics are gated by being only
topological.

FIG. 7. Comparisons between the propagation intersection met-
rics calculated on the original network and effective graphs. Each of
network 1’s one-node FVS subset’s propagation intersection metric
calculated on the original network (blue) and averaged over all the ef-
fective graphs (orange) plotted against each FVS subset’s LDOI rank
(a). The arrow indicates the largest change of a node’s propagation
intersection metric value between the original and effective graphs.
For all nine networks, ridgeline plots of the 100 PCCs from each
rule set show the improvements from using the effective graph (b).
The original network’s propagation intersection metric is compared
to the effective graph’s average propagation intersection metric by
plotting network 1’s one-node FVS subset’s values (c), network 1’s
Jaccard similarities for various set sizes of one-node FVS subsets
(d), and, for all nine networks, the Jaccard similarities of the top-five
one-node FVS subsets (e). Histograms for each of the nine networks
showing the 100 Jaccard similarities calculated by comparing the top
five one-node FVS subsets according to the original network with the
top-five one-node FVS subsets of each of the 100 effective graphs (f).

1. The effective graph’s propagation metrics are consistent
with those of the original graph

We determine the potential of the effective graph to identify
drivers of the network by comparing the effective graph prop-
agation intersection metric values with the original network
propagation intersection metric values. Figure 7(a) showcases
an example of the improvements that can be gained by using
the effective network to calculate the propagation metrics.
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Here, we plot the propagation intersection metric of the orig-
inal network (blue) and the average propagation intersection
metric of the 100 effective graphs (orange) versus the LDOI
rank of each one-node FVS subset for network 1. For the orig-
inal network, we get an adequate PCC of 0.79, but when using
the averaged effective graphs, this correlation is improved
to 0.92.

The main reason for this improvement is the increase of
node 48’s propagation intersection metric. In the original net-
work, node 48 is an outlier with a low propagation intersection
metric value and a high LDOI rank. The reason for the orig-
inally low propagation metric is a negative self-loop on the
node. Yet, node 48 has four other inputs, so, in a majority of
rule sets, node 48’s self-loop does not cause oscillations. The
relative unimportance of the negative self-loop is captured by
the effective graphs, allowing node 48’s propagation intersec-
tion metric value to be larger in the effective graphs [indicated
by the arrow in Fig. 7(a)]. These types of changes improve the
accuracy of the propagation intersection metric in the effective
graphs because less impactful edges impact the propagation
intersection metric less.

We also investigated how much the correlation between the
propagation intersection metric and the LDOI improved for
individual rule sets [Fig. 7(b)]. Here, we calculated each FVS
subset’s propagation intersection metric on the original net-
work and, for each rule set, we calculated each FVS subset’s
effective graph propagation intersection metric. We found the
correlation of these values with the LDOI ranks of every
one-node FVS subset. For each network, we calculated the
100 PCCs of the propagation intersection metric or effective
graph propagation intersection metric versus the LDOI ranks
and plotted these correlations. The effective graph provides
an improvement to correlation coefficients across all rule sets,
but the improvement is typically not drastic. We conclude that,
while incorporating the Boolean functions into the effective
graph brings a tangible improvement, the structure alone still
leads to reasonably successful results when lacking functional
information.

We next directly compare the FVS subsets’s propagation
intersection metric in the original network and in the effective
graph. We find the propagation intersection metric values of
every FVS subset in both cases and explore the relationship
between the values. We first compared the values of the FVS
subset’s propagation intersection metrics calculated on the
100 weighted effective networks and found that they are very
similar to those calculated on the original, unweighted net-
work. Figure 7(c) shows the propagation intersection metric
and the average propagation intersection metric of the ef-
fective graphs for network 1. The values of the propagation
intersection metrics between the original and effective graph
are highly concordant and well correlated (PCC = 0.94).
Looking at each network, we also find the intersection metrics
to be highly concordant (PCC range of 0.91–1.0, see Table II).

To focus on the possible control subsets identified by our
approach, we compare the sets of top-ranking FVS subsets.
We quantify the similarity between these sets in the original
network and the effective graph using the Jaccard similar-
ity. The Jaccard similarity is defined as (S1 ∩ S2)/(S1 ∪ S2),
where S1 is the group of top FVS subsets according to the
original propagation intersection metric and S2 is the group of

TABLE II. Pearson correlation coefficients of the propagation
intersection metric calculated on the original network versus the av-
erage propagation intersection metric calculated on the 100 effective
graphs for each of the nine networks.

Network 1 2 3 4 5 6 7 8 9

PCC 0.94 1.0 0.97 0.99 0.99 0.91 0.99 0.99 0.99

the top FVS subsets according to the average effective graph
propagation intersection metric. Figure 7(d) shows the Jaccard
similarities for the one-node FVS subset case of network 1.
The top-five FVS nodes are the same in both the original
and effective graphs, showing that the most dynamically rel-
evant nodes in the effective graph are also identified in the
unweighted, original case.

Looking at each of the nine network topologies, we found
that there are high Jaccard similarities between the propaga-
tion intersection metric of the original network and average
propagation intersection metric of the effective graphs.
Figure 7(e) shows the Jaccard similarities of the top-five one-
node FVS subsets for all nine networks. For the top-five FVS
subsets, the lowest similarity was that of network 6, and has
a value of 0.67 (i.e., the top-five FVS subsets of both sets
share four subsets). For network 2 and network 7, the Jaccard
similarity is 0.83 (i.e., the two sets share five subsets, but one
of the sets is of size 6 because of a tie). Figure 7(f) shows
histograms of the 100 Jaccard similarities calculated when
comparing the top-five FVS subsets of the original network
and each rule set’s effective graph. A vast majority of the rule
sets achieve a similarity above 0.5, indicating that more than
three out of five of the identified subsets were in both sets.
These high similarity values indicate that the FVS subsets
identified using the effective graph are typically the same
FVS subsets that are identified using the original network, so
while the original network performs worse than the effective
network overall, the control sets are not adversely affected by
using the original network instead.

In summary, we find that the propagation metrics when cal-
culated on a weighted version of the network where weights
approximate functional value do more accurately capture the
dynamics than the propagation metrics calculated on the
original network. Therefore, the accuracy of the propagation
metrics is limited by only having knowledge of the system’s
structure. We further show that while the effective graph
provides an improvement to the propagation metrics’ ability
to capture the Boolean model, the propagation metrics only
perform marginally worse on the original network. Many of
the FVS subsets whose rankings are improved by utilizing the
effective graph are not the top-ranking FVS subsets. The top
performing FVS subsets calculated on the original network
and on the weighted effective graphs are highly concordant as
shown by the Jaccard similarities of the two sets, so the FVS
subsets that are most likely to drive the network according to
the propagation intersection metric are the same between the
effective graph and the original network. These results show
that while the effective graph provides an improvement to the
results on the original networks, the original networks’ results
are similar and the top-ranking FVS subsets are not typically
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affected by using the original network instead of the effec-
tive graph. We conclude that the top performing FVS nodes
according to the propagation intersection metric applied to
the original network are also good at controlling the network
and are mostly robust to the details of the dynamical model
even if the results can be improved by utilizing dynamical
information in effective graphs.

III. DISCUSSION

Ensembles of random Boolean networks have a long track
record of being used to reveal the emergent properties of bi-
ological systems. As our understanding of biological systems
improves, the randomly generated networks that we develop
to reflect these systems improve too. The network ensembles
used here reflect both the structure and function of biological
systems by using power-law out-degree, Poisson in-degree
distributions and nested canalizing functions. Using this in-
formation, we generate ten networks and an ensemble of 100
Boolean rule sets for each network. This provides us with
a large test bed of networks to thoroughly probe how well
structurally significant node sets can control a network. On
these ensembles of Boolean models, we investigated whether
structural propagation metrics can identify attractor control
sets that are robust to the specifics of the Boolean model.

In attractor control theory, the FVS guarantees a system
will be driven to a target attractor, so the subsets of the FVS
are prime candidates for driving the network to or away from
attractors. The FVS provides information about the system’s
cycle structure and, thus, its attractor repertoire. As a result,
FVS subsets are predisposed to having some control over a
system’s attractors [27]. The propagation metrics—PRINCE
propagation, modified PRINCE propagation, and CheiRank—
are able to utilize both cycle and path structures in the network
to rank FVS subsets by their likelihood of controlling the
network’s trajectory. Here, we have shown through to control,
away control, LDOI, and effective graphs that FVS subsets
identified using the propagation metrics can successfully drive
networks towards or away from its attractors.

When looking at the top-ranking FVS subsets according
to the propagation intersection metric, we find that, on av-
erage, 39%, 75%, and 88% of the identified one-, two-, and
three-node FVS subsets control more than 90% of rule sets
according to both to control and away control. Furthermore,
when analyzing individual rule sets, the AUROCs of most rule
sets are greater than 0.5. These results indicate that the top-
ranking FVS subsets identified using the propagation metrics
are able to drive a system to or away from one of its attractors
when starting from more than 90% of the initial conditions
for a majority of the biologically inspired rule sets. While
to control and away control are better at measuring attractor
controllability, the LDOI provides a more detailed view of
each node’s influence on the network. The LDOI score is
highly consistent with the PRINCE and modified PRINCE
scores, signaling that these two propagation metrics reflect
the average reach of an FVS node. Furthermore, the propa-
gation intersection metric accurately predicts a FVS subset’s
LDOI rank, as shown by the PCCs between these measures.
This indicates that the propagation metrics are able to ap-
proximate the Boolean dynamics of the network because the

propagation metrics are able to predict the simpler Boolean
functions, which make up a majority of the network’s interac-
tions. The propagation metrics do not perfectly reproduce the
dynamics because they cannot capture the more complicated
combinatorial nature of Boolean functions. The ability for the
propagation metrics to capture biological functions may be
related to the recent result that biological functions tend to
be less nonlinear than expected, which is better reflected in
nested canalizing functions than random Boolean functions
[46]. Thus, while the propagation metrics make simplifying
assumptions about the combinatorial nature of Boolean func-
tions, because a majority of the functions are simple, they do
well approximate the dynamics of the system.

When comparing the distributions of correlation coeffi-
cients in Figs. 5(b) and 5(d), it is clear that the LDOI is
more strongly correlated to the modified PRINCE propagation
than the PRINCE propagation. This is unsurprising because
the modified version of PRINCE propagation was originally
developed to reflect the propagation of information, which
does not obey conservation rules akin to mass conservation
[27]. Information propagation and regulation unrestricted by
mass conservation is more common in the biological networks
modeled by Boolean models. We investigated if there would
be a considerable benefit to only using the modified PRINCE
propagation and CheiRank instead of all three propagation
metrics, but found that there were no ubiquitous improve-
ments in our analyses (Fig. 8). While using only the modified
PRINCE and CheiRank intersection metric does boost the
PCC between intersection metric value and LDOI in some
cases and never decreases the PCCs [Fig. 8(a)], to control
and away control AUROCs are little affected by the change
of metrics [Figs. 8(b) and 8(c)]. Because we are focused on
attractor control and the predictive power with respect to to
control and away control shows little difference, using all
three propagation metrics for our analysis is a reasonable
choice.

The effective graph, which incorporates functional infor-
mation into the network structure, can be used to explore the
structural limitations of the propagation metrics. The propaga-
tion metrics when calculated on the effective graphs showcase
an improvement of the correlation with the LDOI rank. How-
ever, when focusing on the top-performing FVS subsets, there
is high similarity between the original network and each ef-
fective graph, so the top performing FVS subsets are the top
performing subsets in every rule set. Employing the effective
graph provides a way to improve the overall correlation be-
tween propagation intersection metric and LDOI, but it does
not improve the identification of the top attractor control sets.
Instead, the effective graph helps to better classify structural
outliers [see node 48 in Fig. 7(a)]. Thus, if dynamical infor-
mation about the system is available, then the propagation
intersection metric on the effective graph is a more accurate
representation, but if only structural information is available,
the propagation intersection metric on the original network is
suitable for identifying driver sets.

We have shown that the propagation intersection metric
can be used to rank FVS subsets on both biological networks
[27] and on biologically inspired networks. In these types
of networks, the structure of the network indicates nodes
that are predisposed to driving the network to its attractors.
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FIG. 8. Comparisons between two intersection metrics of the propagation metrics: The intersection of all three propagation metrics (blue)
and the intersection of just the modified PRINCE and CheiRank metrics (orange). The distributions of the Pearson correlation coefficients
between intersection values and LDOI rank (a) and the AUROCs of to control (b) and away control (c) for all nine networks.

While it is not clear if this approach generalizes to arbi-
trary network structures, it works accurately for networks that
have a structure and function similar to typical of Boolean
biological networks (i.e., it has a power-law out-degree dis-
tribution, a Poisson in-degree distribution, and is defined by
nested canalizing functions). This approach does have two
limitations. First, the propagation metrics only capture the
network’s structure, but we have shown through the effective
graphs that the improvements gained from incorporating fea-
tures of the regulatory functions into the propagation metrics
does not largely affect the top identified drivers. The sec-
ond issue is that while the PRINCE and modified PRINCE
propagations do incorporate negative edges into their values,
none of the propagation metrics can accurately describe the
effects that negative feedback loops have on the network’s
dynamics. These limitations can be seen in Fig. 9, where on a
modified version of the networks with only positive edges ev-
ery network achieves higher correlation coefficients. Further
modifying the networks using the effective graphs to incor-
porate functional information further improves the correlation
coefficients. More work is needed to accurately capture the
impact of negative feedback loops on the dynamics using only
the structure, so we expect that the propagation intersection
metric will be less accurate for biological networks consisting
of many complex attractors. Despite these limitations, on a
typical biological network we expect the propagation metrics
to accurately identify attractor controlling FVS subsets.

Because the FVS and propagation metrics are structural
measures, knowledge of a biological network’s dynamical
model is not necessary to extract control information. When
constructing biological networks, the specifics of the update
functions are typically formulated based on incomplete infor-
mation, so in some cases only the existence of a connection

between nodes is known and in other cases the update function
is only the best available approximation of the biological
system’s behavior. Since our approach does not utilize any
dynamical information, it can be used both as a prediction tool
(i.e., What are the top driver nodes?) and a validation tool (i.e.,
Are the top driver nodes consistent with current knowledge?)
on less well-defined models. In networks without a dynam-
ical model, this approach can be used to identify key nodes
to further investigate instead of needing detailed knowledge
about every interaction to build the dynamical model first
before finding key nodes. As previously mentioned, this will
not find every possible key node, which cannot be done with-
out the full dynamical model. Furthermore, as the FVS was
originally defined for networks with ODE update functions,
this approach should be applicable as a prediction tool in
other dynamical models than Boolean models. In its original
formulation, the FVS was defined for dissipative systems (i.e.,
a system where variables cannot increase infinitely), which
biological systems typically are. The propagation metrics’
ability to capture a system’s dynamical evolution has not
been exhaustively proven for ODE systems, but it has been
demonstrated on continuous systems [43]. Because both the
FVS and propagation metrics are likely extendable to both
non-Boolean discrete systems and continuous systems, this
approach should be viable for making control predictions on
these systems as well. As a validation tool, in networks with a
dynamical model, the node subsets identified by this approach
can be compared to dynamically identified node subsets.
If these dynamically important nodes are also structurally
important, then the dynamical model is consistent with an av-
erage biological network’s model. If these sets are not similar,
caution must be taken to verify that this is not due to overfit-
ting or low-confidence parameters in the dynamical model.
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FIG. 9. Comparison of propagation intersection metric calculated on modified versions of the nine networks. The propagation intersection
metric calculated on the unweighted original network (blue) is compared to the propagation intersection metric calculated on a modified
network with only positive edges (orange) and on the weighted effective graphs of the networks with only positive edges (green). Distributions
of the nine network’s Pearson correlation coefficients between the propagation values and LDOI ranks for one- (a), two- (b), and three-node
(c) FVS subsets for each of the different network variations.

While this approach is applicable to our randomly gen-
erated biologically inspired networks, there are still many
questions about how multistability and control manifest in a
network as a result of both its topology and its dynamical
model. For example, we know that it is possible to design
networks that minimize the FVS, which will limit the size
of the attractor control sets, but this will also limit the di-
versity of the attractor repertoire. Thus, there is a trade-off
between ease of attractor control and degree of multistability,
and it is unclear where the ideal balance is between these
two properties. Furthermore, the relationship of this optimally
designed network to real biological networks is also unclear.
How well do biological models balance controllability and
multistability? Are they near an ideal balance? While we have
proposed one approach to drive networks with a biologically
inspired topology, there are still many questions about at-
tractor controllability in more general networks that require
further investigation.

In summary, using the propagation metrics we consistently
identify subsets of the FVS that are highly likely to control a
biological network regardless of the specifics of the Boolean
model. Here, using biologically inspired network structures
with ensembles of Boolean models composed of nested canal-
izing functions, we have extensively shown the ability of
propagation metrics to predict key attractor driving sets. These
sets are, by construction, subsets of the network’s FVS, which
is composed of the nodes with the largest influence over
the network’s multistability. Propagation metrics are able to
rank FVS subsets by approximating the Boolean dynamics
of the simpler Boolean functions that make up a majority of
interactions in a biological network model. Thus, utilizing

the top-ranking FVS subsets according to the propagation
intersection metric, we are able to drive a typical biological
network towards or away from a target attractor without need-
ing detailed knowledge of the network’s dynamical model.

The data that support the findings of this paper are available
from the corresponding author (eyn5@psu.edu) upon reason-
able request.
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APPENDIX A: METHODS

1. Propagation intersection metric

The propagation intersection metric [27] is calculated
by combining the three propagation metrics: PRINCE
propagation [43], modified PRINCE propagation [27], and
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CheiRank [44]. These three metrics calculate how information
is propagated through the network. The two PRINCE propa-
gation metrics calculate an information score for every node
based on starting a constant perturbation at an initial subset of
nodes and measuring how that information diffuses through-
out the system. Both metrics will reach a steady state showing
the perturbed subset’s effect on the rest of the network. We
average the resulting information scores of each node to deter-
mine the metric value for the perturbed subset. The CheiRank
is an extension of the PageRank that is calculated in the same
manner as the PageRank but by traversing the edges in reverse.
It is a calculation of the sourceness of a node. That is, it is
a calculation of the probability that a random walker began
walking at any given node, which indicates that it is more
likely to be integral in driving the network.

After calculating the values of every FVS subset, we cal-
culate each FVS subset’s percentile rank for all three metrics.
For each metric, we find the set of FVS subsets with percentile
rank higher than a given percentile value. We find the highest
percentile value that includes a FVS subset in all three sets,
which combines the three percentile ranks into a single value.
This highest percentile value is the propagation intersection
metric value for each FVS subset. This is equivalent to finding
the minimum percentile rank for each FVS subset among the
three propagation metrics.

2. To control and away control

When simulating a network under an intervention, we mea-
sure the intervention’s success through to control and away
control [27]. These two metrics measure how the intervention
has affected the system’s basins of attraction. To control mea-
sures how much the target attractors’ basins increases, and
away control measures how much the nontarget attractors’
basins decreases. To calculate these values, we first simulate
the unperturbed network 100 times to approximate the size
of the wild-type basins of attraction. Next, for each FVS
subset of size L, we intervene by fixing all 2L possible input
combinations of the set {0, 1}L. For each input combination,
we determine if the intervention is not informative, partially
informative, or fully informative. The first two cases are due
to the nodes in the FVS subset having the same state in all
the wild-type attractors. A not informative intervention targets
every wild-type attractor; the intervention cannot increase the
basins of the targets and there are no nontargets. A partially
informative intervention targets none of the wild-type attrac-
tors; the intervention can decrease the basis of nontargets, but
there are no targets, so we can measure away control but we
cannot measure to control. A fully informative intervention
targets some of the wild-type attractors, so both to control and
away control can be calculated. In the relevant cases, to control
is calculated by the percent change in the sum of the target
attractors’ basins when the intervention is applied compared
to the wild-type basins. Similarly, away control is calculated
by the percent change in the sum of the nontarget attractor’s
basins.

3. AUROC

A receiver operating characteristic (ROC) curve plots the
tradeoff between the false positive rate (FPR) and true positive
rate (TPR) when looking at various sorting thresholds of a

binary classifier on a data set. In our case, the propagation
intersection metric sorts the binarized successful to control or
successful away control. TheFPR is the ratio of the number of
false positives to the total number of negative cases. The TPR
is the ratio of the number of true positives to the total number
of positive cases. To plot the ROC, the binary classifier is
scanned over all values, and the FPR and TPR are calculated
at each value. The FPR and TPR are then plotted against
each other resulting in a curve that demonstrates how well the
binary classifier classifies the data over all threshold values.

The AUROC quantifies the classification strength of the
binary classifier. Because the FPR and TPR are both ratios,
the AUROC is normalized between 0 and 1. A value of 1
indicates that the binary classifier perfectly sorts the data (i.e.,
the high propagation intersection metric FVS subsets have
high to (away) control). A value of 0 indicates that the binary
classifier sorts completely incorrectly (i.e., high propagation
interaction metric FVS subsets have low to (away) control val-
ues). An AUROC of 0.5 indicates that the classifier functions
equivalently to randomly choosing if the data point has high
or low to (away) control.

4. LDOI

The LDOI identifies the nodes that directly or indirectly
become fixed in a node state when a node is fixed to a specific
state [47]. Each node has two LDOI values, one for each of
its possible states. For each state, the LDOI is calculated by
a percolation process, i.e., by identifying the nodes whose
Boolean function stabilizes to a single state when the initial
node state is fixed, and iteratively repeating this procedure for
each node whose Boolean function is stabilized. If this proce-
dure reaches a contradiction (e.g., a node state opposing the
original node state that would be stabilized), the percolation
is stopped because it is assumed that the original node state
will be sustained. When consolidating the LDOI to a single
value per node, we take the maximum between the LDOIs of
the ON and OFF states.

The LDOI generalizes to larger subsets by identifying all
nodes whose state becomes fixed as a result of fixing the set of
node states for every node in the subset. The percolation pro-
cess happens in the same manner and only stops on a branch
if a contradiction is reached with any of the initially fixed
nodes. This contradiction stopping condition guarantees that
there are not any contradictions further down the percolation
process. For example, if we are searching for the LDOI of the
set {(n0, 1), (n1, 1)}, it is not possible for a contradiction to
happen between the influence of n0 and n1 on another node
without first causing a contradiction at n0 or n1 [47]. Here, to
calculate a single value for the size of the LDOI for a set of
nodes, we take the maximum of all 2|subset| possible node state
combinations for the subset.

5. Effective graph

The effective graph is a directed weighted network wherein
the edge weights represent the effectiveness of that edge in fix-
ing the output of the Boolean function of the target node [45].
To quantify the effectiveness of each variable in a Boolean
function, we first calculate their redundancy. The redundancy
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of an input variable is the fraction of input combinations
where the variable does not influence the output (i.e., the
output is the same for both values of the input variable).
The effectiveness is the complement to the redundancy (i.e.,
effectiveness is 1 − redundancy). Once the effectiveness is
calculated for every input variable for every function, we can
use it as a weight of the edge from the input variable to the
target node and generate the effective graph.

The effective graph provides a way to append dynami-
cal information to the topological structure of the network
through edge weights. We then evaluate the propagation met-
rics using the weighted adjacency matrix associated with the
effective graph. This gives a more accurate representation of
how information is propagated through the network because
the propagation is weighted by the dynamical model. We com-
pare these propagation metrics from each individual rule set to
the metrics calculated on the original topology to determine
how dependent the control of the system is on the dynamical
rules.

6. Computational implementation

These methods were implemented in Python using various
libraries and modules. The code for identifying, ranking, and
calculating to control and away control of FVS subsets is
available at Ref. [48] . We include a Jupyter notebook example
that shows the output of this code on a T-LGL network model.
To identify near-minimal FVSs and their subsets, a Python
code developed by Gang Yang was used [21], which utilizes
the simulated annealing algorithm presented by Galinier et al.
[31] This code is available at Ref. [49]. The simulations used
to calculate to (away) control values were implemented using
the bioLQM toolkit developed by the CoLoMoTo Consortium
[50]. Using bioLQM, we implement our Boolean models of
the networks, find their attractors, and simulate the system’s
trajectories using the random asynchronous update mode. To
calculate the LDOIs of each Boolean rule set, we use the
Python library pyStableMotifs developed by Rozum [51]. To
generate each rule set’s effective graph, we use the Python
library CANA developed by Correia et al. [52].

APPENDIX B: FORMALIZATION OF FEEDBACK
VERTEX SET CONTROL

The concept of FVS control, proposed by Mochizuki and
coworkers [20,22], applies to systems governed by a general
class of nonlinear dynamics, for any network structures, and
for any value of the parameters describing the dynamics. This
theory shows that even in the absence of detailed knowledge
of the network’s dynamics, it is possible to drive the network
into one of its natural attractors. A FVS is a set of nodes that
when removed from a network leaves an acyclic network. The
essence of this theory is as follows: Because the cycles of a
network determine its attractor repertoire, a FVS has control
over the attractor repertoire of the system. In the following,
we give the key details of the theory.

FVS control considers networks where the system’s nodes
states xi(t ) are described by differential equations of the form

dxi/dt = fi(xIi ) − di(xi ), i = 1, 2, . . . , N, (B1)

where Ii is the set of regulators of node ni. These equa-
tions include a decay term di(xi ) that depends only on the
current state of the node. The parametrization of the decay
term ensures that the system is dissipative, which guarantees
that the values of the variables do not infinitely increase and
allows for the convergence of the system to attractors. When a
node i is self-regulated in such as way that ∂ fi/∂xi > ∂di/∂xi,
node i is interpreted as i ⊂ Ii and a positive self-loop is added
to i, making it part of the FVS.

Consider a system that satisfies the differential Eqs. (B1),
a given FVS denoted V , and two trajectories, X (t ) and X̃ (t ).
If the two subtrajectories, XV (t ) and X̃V (t ), are related such
that XV (t ) − X̃V (t ) → 0 in the limit t → ∞, i.e., if the values
of every FVS node in each trajectory’s attractor are equal,
then X (t ) − X̃(t ) → 0 in the limit t → ∞, i.e., both trajec-
tories lead to the same attractor. In other words, an FVS is a
set of determining nodes; fixing every node of a FVS to its
respective state in a target attractor will fix the trajectories of
every other node in the network and force the system into the
target attractor. This conclusion applies for any value of the
parameters involved in the functions in Eqs. (B1).

FVSs control functions by reducing the state space into
a single dynamical attractor. Thomas and coworkers demon-
strated that multistability of a network is a consequence of its
positive feedback loops [40,53,54], so an acyclic network will
only have a single attractor. Thus, because removing a FVS
removes every cycle from the system, it will also result in a
system with only a single dynamical attractor. Likewise, driv-
ing the regulatory functions fV = (XV , XIV , t ) of every FVS
node into its state in a desired attractor X D [i.e., fV = fV (X D)]
will reduce the multistability of the network and will result
in the state space only containing one attractor, namely, the
desired attractor X D.

The originally defined framework Eqs. (B1) did not include
the possibility of source nodes. These nodes are independent
of the internal state of the system and can represent external
inputs to the system. The framework was extended in Ref. [21]
to include Ns source nodes with variables si(t ):

dsi/dt = gi(t ), i = 1, 2, . . . , Ns, (B2)

dx j/dt = f j (xIj ) − d j (x j ), j = Ns + 1, . . . , N. (B3)

In these systems, for FVS control to drive the system into a
desired attractor, the source nodes must be driven too. That
is, if sXD

i (t ) are the states of the source nodes in the desired
dynamical attractor X D, then driving every source node such
that si(t ) − sXD

i (t ) → 0 as t → ∞ will reduce the system so it
can be defined by Eqs. (B1). This reduced system can then be
driven into the desired attractor following the same procedure
as before of driving the nodes in a FVS to their given states in
the desired attractor.

Boolean systems are not directly described by the frame-
work of Eqs. (B1) because Boolean update functions show
the state at the next time step [ f (t + dt )] and not how the
function changes in time (df /dt). Yet, Boolean systems align
with the general concept: They are nonlinear systems that
are dissipative. Indeed, if at time-step t − 1, node i is ac-
tivated and its regulators Ii are in a state for which the
node’s Boolean function evaluates to 0, then the node will
decrease to an inactive state at time t . In addition, a Boolean
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system’s state space is restricted to an N-dimensional Eu-
clidean hypercube, so every trajectory will always converge

to an attractor. In summary, FVS control is also applicable to
Boolean dynamical models.
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