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Pump-cavity synchronization mismatch in modulation instability induced optical frequency combs
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We report the observation of the frequency shift of modulation instability sidelobes due to the synchronization
mismatch between the pulsed pump period and the resonator’s round-trip time. We show that a very small
synchronization mismatch leads to a significant frequency shift of the modulation instability sidelobes. We
develop a theory originating from absolute and convective instabilities to confirm experimental observations
and numerical simulations. The temporal drifts of the Turing patterns induced by the synchronization mismatch
are measured in real time using a time-lens system and confirm theoretical predictions.
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I. INTRODUCTION

Optical frequency combs have attracted a lot of atten-
tion these last years because they revolutionized ultraprecise
frequency measurements in many applications such as spec-
troscopy, wavelength division multiplexing, lidar, or optical
clocks to name a few [1,2]. The development of high-quality
factor microresonators made from highly nonlinear materials
enables a huge enhancement of nonlinear effects within these
small chips. They made possible the continuous-wave (cw)
pumping of a few mW only to generate wideband optical
frequency combs (OFCs) with potentially on-chip integrated
lasers, which makes them very appealing for many applica-
tions [2]. Thus, most works have been achieved using cw
pumps. However, while more cumbersome and requiring a
fine synchronization with the cavity, pulsed pump configura-
tions enable a much higher conversion efficiency of the pump
into the OFC [3–5]. The drawback is that an almost perfect
synchronization must be implemented, otherwise the OFC
coherence and stability may be degraded [6–9]. Synchroniza-
tion mismatch can also induce unexpected bifurcations and/or
asymmetry in OFCs [10–12]. Practically, the free spectral
range of the cavity must be equal to the pump repetition
rate (an exact integer [13]) in order to coherently drive the
cavity. This requires pump laser sources with high stability
and a fine tuning of the repetition rate of the order of tens
of Hz. Thus, it is of great interest to study the impact of
synchronization mismatch of the primary stage of cavity op-
tical frequency combs which is governed by the modulation
instability (MI) process dynamics [1]. We remind MI refers
to the destabilization of two symmetric sidebands around
the pump resulting from an interplay between nonlinearity,
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dispersion, and periodic boundary conditions of the cavity
[14]. In the simplest configuration, i.e., cw pumping, for large
group velocity dispersion, pump power just above the cavity
threshold, the position of these bands is ruled by a phase-
matching relation, including the Kerr effect, cavity detuning,
and second-order dispersion term [14,15]. In weak dispersion
regimes, the spectra are broader and higher-order dispersion
terms must be accounted for accurately to describe the dy-
namics of the process. Even orders only explicitly appear
in the phase-matching relation and contribute to a modifi-
cation of the position and/or the destabilization of a new
set of sidebands [16–18]. The contribution of higher-order
odd-dispersion terms can become significant by inducing a
symmetry breaking in the system, leading to drift instabilities
in the time domain. Thus, a competition between amplifi-
cation and drift processes occurs, which is referred to as
convective instabilities, a widespread phenomenon investi-
gated in numerous nonlinear physical systems [19–23]. In
optical fiber resonators, the third-order dispersion contribution
leads to a symmetry breaking of the MI process [23,24],
as well as a modification of the bifurcation dynamics [25].
Regarding the contribution of the lower odd-order dispersion
term which corresponds to the synchronization mismatch be-
tween the pump and the resonator, it has been reported to alter
the dynamics [26]. However, no significant modification of
the sideband position, which is a fundamental signature of
the MI process, had been reported so far. In this paper, we
show that in the pulsed pump-driven passive resonators the
synchronization mismatch between the pump and the cavity
leads to a significant modification of the MI sideband position.
In other words, we show that the first-order dispersion term
modifies the position of the MI sidelobes, whereas it should
play no role based on the standard linear stability analysis,
where only even-numbered terms should be considered in the
phase-matching relation [14,15].

II. THEORY

We based our theoretical investigations on the Lugiato-
Lefever equation (LLE) including a gradient term �β1∂E/∂τ
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[27] to account for the synchronization mismatch,
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where z is the propagation distance [mL < z < (m + 1)L cor-
responds to the round trip m], τ is the time in the laboratory
reference frame, and E (z, τ ) is the intracavity electric field.
The parameters L, γ , and β2 correspond to the cavity length,
the nonlinear coefficient, and the group velocity dispersion of
the fiber, respectively. The quantity �β1 = tR−tR,0

L , with tR the
period of the input pulse train and tR,0 = nL/c the round-trip
time of the cavity, refers to the synchronization mismatch. The
parameters θ and ρ define the transmission and reflection co-
efficients of the coupler such that θ2 + ρ2 = 1. The constant α

accounts for the overall losses (splices, coupling, linear losses,
and excess loss of the coupler) over a cavity round trip, and
δ0 is the cavity detuning [14]. We checked numerically that
the contribution of higher-order linear and nonlinear terms
is negligible in the experimental system under consideration.
The LLE has a homogeneous steady solution (HSS) given by
Es = √

Iseiφs such that S2 − Is[α2 + (δ − Is)2] = 0 and φs =
− arctan δ−Is

α
. The linear stability analysis of this solution

with respect to a perturbation of the form ei(ωτ−λz) yields the
following dispersion relation,

D(λ, ω) ≡ (λ − �β1ω + iα)2 + [
I2
s − (ω2 + δ − 2Is)2

]2
.

(2)
The HSS is stable if the imaginary part of the following λ

solution is negative,

λ(ω) = �β1ω + i
[ − α +

√
I2
s − (ω2 + δ − 2Is)2]

. (3)

The frequency shift of the MI ωMI = √
2Is − δ is then

obtained by solving the equation Im(∂ωλ) = 0. The cor-
responding phase velocity vϕ = Re(λ)/ω = �β1. It is also
known [28,29] that for a localized perturbation, the linear sta-
bility analysis must be considered through the determination
of the linear response. More precisely, it is the asymptotic
properties of this solution in a reference frame moving with
the pseudovelocity b1 with respect to the absolute frame, that
is, τ = τ0 + b1z, where τ0 is fixed. In practice, setting S(λ, ω),
the function representing the initial perturbation, the linear
solution reads

Elin(τ0 + b1z, z) =
∫ ∞

−∞
dω

∫ iσ+∞

iσ−∞

S(λ + �β1ω,ω)

D(λ + �β1ω,ω)

× ei(ωτ0 − λz)dλ. (4)

For large enough evolution, the integrals of Eq. (4) are dom-
inated by the saddle point ω = ωs and λs = λ(ωs) satisfying
[30]

D(λ + �β1ω,ω)|ωs
= 0,

∂D(λ + �β1ω,ω)

∂ω
= 0

∣∣∣∣
ωs

= 0.

(5)

Figure 1(a) represents the evolution of the output cavity spec-
tra for a cavity mismatch ranging from −40 to +40 fs/m by

FIG. 1. (a) Evolution of the output spectrum as a function of
the group velocity mismatch (�β1) from numerics [LLE integration,
Eq. (1)]. (b) Evolution of the output power as a function of the
group velocity mismatch. (c) Zoom on a MI sidelobe. The black
dashed lines represent theoretical predictions from Eq. (3). (d) Zoom
in on the MI sidelobe for different mismatch values (0, 2, 12 fs/m
respectively from numerics). (e) and (f) Evolutions of the sidelobe
positions and of the absolute regime zone as a function of the cavity
detuning and the pump power, respectively, from theory [Eq. (3)].
With α = 0.2327, θ = 0.05, and |Ein|2 = 2.3 W, extracted from ex-
perimental parameters which are all listed in Fig. 2’s caption.

integrating the LLE (1) with the parameters corresponding to
the experimental setup (see the list in Fig. 2’s caption). For
large cavity mismatch values (>5 fs/m), MI sidebands appear
symmetrically on both sides of the pump. They are located
at ±270 GHz from the pump, in fairly good agreement with
the standard (without �β1) steady state analysis predicting
±274 GHz. At small cavity mismatch values [±4 fs/m, see
Fig. 1(c)], their positions vary as a function of �β1. The
central frequency follows a parabola moving from 270 to
260 GHz for the minimum with a hole in the center (no
mismatch) where the position comes back again at 270 GHz.
This shows, against all odds, the MI sidelobe position depends
on the first-order dispersion term that is not predicted from the
standard linear stability analysis. It is also important to note
their spectral widths are much narrower for weak mismatch
values than for large ones [typically five times by consid-
ering the full width at half maximum (FWHM) values, see
Fig. 1(d)]. This dynamics modification is due to the transition
from an absolute regime to a convective one, as can be seen
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FIG. 2. (a) Experimental setup. EOM, electro-optical modulator;
PC, polarization controller; PD, photodetector; OSA, optical spec-
trum analyzer; EDFA, erbium-doped fiber amplifier; BPF, bandpass
filter; EBPF: electronic bandpass filter; STR: fiber stretcher; Laser
fs: femtosecond laser; Oscillo., oscilloscope; PID, proportional-
integrate-derivate controller; FBG, fiber Bragg grating; PW M, power
meter; AWG, arbitrary wave generator. Parameters: pulse width =
560 ps, L = 27.44 m, γ = 2.5 /W/km, β2 = −4.5 ps2/km, finesse
of 15.6, PP = 2.3 W, � = 1, and the zero mismatch repetition rate
7.431 555 16 MHz. (b) Cartoon illustrating the synchronization
mismatch. The delay accumulated after one round trip when the
pump pulse train has a synchronization mismatch with the cavity of
�T = 1/FPump − 1/F ′

Pump. (c) Typical pump pulse from experimental
recordings.

in Fig. 1(b), which showcases the output cavity temporal trace
evolution. We recall that in the convective regime, localized
perturbations grow but are shifted outside the system, whereas
in the absolute regime, these drifting perturbations grow at
any position on the top of the pump pulse and thus invade the
entire pump pulse. When the perturbation invades the whole
domain, for −4 fs/m < �β1 < 4 fs/m, the system evolves in
an absolute regime. The position of the MI sidebands then
depends on the cavity mismatch. On the contrary, in the con-
vective regime, for |�β1| > 4 fs/m, instabilities drift toward
the leading or trailing edges of the pump pulse depending
on the mismatch sign, and eventually disappear (not shown
here for the sake of clarity). Thus, the MI sideband position
does not vary in that regime [Fig. 1(a)]. The variation of the
sideband position in the absolute regime is calculated from
Eq. (3). It is superimposed in Fig. 1(a) as black dotted lines.
The agreement is fairly good, and the parabolalike evolution
is well predicted by the theory. The absolute regime area is
not predicted with a perfect quantitative agreement compared
to numerical simulations (±6 fs/m in theory against ±4 fs/m
in numerics). This may be due to the fact that nonlinear effects
are not included in the linear space-time analysis. Indeed, the
convective analysis assumes the power of the perturbation
is weak compared to the pump power. Advanced analytical
methods based on a multiscale analysis [24] could give a more

accurate quantitative description of the process, but this is
beyond the scope of this paper. Indeed, we show on Fig. 1(c) a
zoom on MI sidelobes where one may observe a halo around
�β1 = 0. This halo is not reproduced by our theoretical anal-
ysis. Although this theory is a powerful mathematical tool for
predicting spatiotemporal dynamics, it remains a linear ap-
proach. To account for the halo dynamics, a nonlinear theory
is needed, which is out of the scoop of this work. Furthermore,
this phenomenon is less significant in comparison to the MI
lobe modification we are interested in this paper. To get a
deeper insight into the dynamics of the process, Figs. 1(e)
and 1(f) represent the evolution of the sidelobe position and
the absolute regime zone as a function of the cavity detuning
and the pump power, respectively. In Fig. 1(e), we see the
curvature of the parabola decreases with the cavity detuning
together with an increase of the absolute regime zone. Con-
sidering an arbitrary observer moving with the velocity v in
the laboratory frame, the global gain curve is obtained from
g(v) = Im[λ(ωs) − vωs]. The absolute zone corresponds to
g(v) > 0, decreasing with the detuning. The impact of the
pump power on the process reveals that for high peak power
values [Fig. 1(f)], the absolute region size increases, as it is
well known in convective systems. Furthermore, the size of
the convective region [Fig. 1(b)] mostly depends on the noise
characteristics of the system and can exist for larger mismatch
values. This regime is not of interest in this study since we
focus on changing the position of the MI sidelobes, which
remains unchanged in this regime.

III. EXPERIMENTS

A. Experimental setup

The experimental setup is presented in Fig. 2. It is similar
to the one described in Ref. [31]. It consists of a passive
fiber ring cavity built with a specially designed dispersion-
shifted fiber (βDSF = −4.5 ps2/km at 1545 nm and γDSF =
2.5 W−1 km−1) closed by a 90/10 coupler made of the same
fiber to get a perfectly uniform cavity of 27.44 m length
with a finesse of 15.6. We drive the cavity with a train of
square-shaped pulses of 560 ps duration [Fig. 2(c)]. This short
pump duration prevents the buildup of stimulated Brillouin
scattering by increasing the power threshold at which it ap-
pears [32,33]. Furthermore, it allows the generation of high
peak power pulses to easily trigger nonlinear processes. These
pulses are generated from a cw laser at 1545 nm (with a
linewidth < 100 Hz) intensity modulated by an electro-optic
modulator (EOM). The repetition rate of these pulses can be
tuned owing to the arbitrary wave generator (AWG) driving
the EOM. Pulses are then amplified by an erbium-doped fiber
amplifier and filtered out by a narrow bandwidth filter (BPF,
100 GHz) to remove amplified spontaneous emission in ex-
cess. Finally, pump pulses are launched into the cavity through
the right port of the cavity propagating in the anticlockwise
direction (blue arrows). We launched one pulse per round trip.
A fraction of the output power of the EOM is sent through
the left port of the cavity, propagating in the clockwise di-
rection (red arrows). This weak signal detected at the cavity
output by a photodetector (PD1) provides an error signal for
a feedback loop system (proportional-integrate-derivative) to
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make the laser drift with the cavity. As in Ref. [15], a com-
bination of three polarization controllers (PC1, 2, and 3) is
used to control the cavity detuning (normalized detuning set
to � = 1, corresponding to a monostable regime [15]). The
output cavity field is split into two arms at the output of a
coupler, and the spectrum is analyzed with an optical spec-
trum analyzer (10% port), while successive ultrafast temporal
traces are recorded in real time via a commercial time-lens
system (Picoluz, Thorlabs). A fiber Bragg grating centered at
the pump wavelength is used to attenuate the central spectral
components (pump) that would saturate the time lens other-
wise. The time stretching effect was obtained by pumping
the time lens with a femtosecond laser centered at 1570 nm
providing pulses with a fixed repetition rate of 99.88 MHz.
This laser was used as a reference clock for all electronic
devices of the setup. The magnified signal (magnified factor
of 57) was recorded by a fast photodiode and an oscilloscope
(70 GHz bandwidth each). With this time-lens system, we
were able to record the real-time evolution of the output cavity
field over a window of 40 ps with a resolution of about 300 fs.
Figure 2(b) illustrates schematically the pump signal in the
case of a perfectly synchronized cavity (red trace) and with
a synchronization mismatch (green trace). As an example, a
slight modification of the repetition rate of the pump of only
1 Hz leads to a synchronization delay of 19.8 fs (a synchro-
nization mismatch of 0.7 fs/m). Thus, we used a highly stable
frequency synthesizer to tune the repetition rate of several
Hz only around a reference zero mismatch rep rate that we
measured at 7.111 231 MHz (at 1545 nm).

B. Experimental results

The synchronization mismatch was tuned from −250 to
+250 fs/m, corresponding to a variation of the repetition
rate of 756 Hz. The cavity was pumped just above the cavity
threshold. Figure 3(a) represents the evolution of the output
cavity spectrum as a function of the synchronization mismatch
(�β1). Over this synchronization mismatch range, we ob-
serve the emergence of the MI sidebands at about +150 fs/m
and their disappearance at −150 fs/m. It means a mismatch
of only ±4.05 ps, about 0.7% of the pump duration, is enough
to annihilate the coherent buildup of the MI process. Note
that this behavior had also been observed in numerics, but
the synchronization mismatch value at which it disappears is
very hard to accurately predict. This is due to spurious inter-
actions between noise and convective instabilities which leads
to a modification of the instability threshold by sustaining
the appearance of perturbations [34]. For a perfect synchro-
nization mismatch (�β1 = 0), a set of two narrow symmetric
sidebands (10 GHz at FWHM) located at 280 GHz from the
pump are generated as well as two harmonics on each side
[see a zoom on one sideband in Fig. 3(b), on the harmonics
in Fig. 3(c), and the blue trace in Fig. 3(d)]. The MI spectra
are almost symmetric with respect to the zero mismatch value
[Fig. 3(a) is symmetric versus �β1 = 0]. The observed slight
asymmetry is due to a slow drift of experimental parameters
over the full acquisition time that exceeds 15 min. There-
fore, we will restrict the description to the upper part of the
figure (�β1 > 0) for simplicity. By slightly increasing the
synchronization mismatch from �β1 = 0 to about 2 fs/m, the
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FIG. 3. (a) Two-dimensional (2D) plot of the output spectra as a
function of the synchronization mismatch. (b) Zoom on the central
part of the first sidelobe. (c) Zoom on the harmonics. (d) Output
spectra for specific values of �β1 (0, 2, 50, and 100 fs/m). Inset:
Zoom on the first sidelobe.

sideband position is shifted downward from 284 to 250 GHz
[see also the blue and red curves in Fig. 3(d)] without no-
ticeable lobe spectral broadening. By further increasing the
synchronization mismatch, the center frequency increases to
280 GHz and the sidelobe width remains almost the same over
the entire absolute region (±5 fs/m). The theoretical predic-
tions in dashed black lines [from Eq. (3)] are superimposed in
Fig. 3(b). As can be seen, a fairly good agreement is obtained
with the experiments. This confirms that the experimental
observation of the modification of the MI sidelobe position
is indeed due to the synchronization mismatch of the cavity.
As explained in theory, the modification of the position of the
MI sidebands is due to the gain and drift experienced by the
perturbation in the absolute regime [see Fig. 1(b)]. In order to
demonstrate the modification of the MI sideband position is
indeed due to convective instabilities, we measured the drift
of the MI pattern as a function of the cavity synchronization
mismatch. The spatiotemporal evolution of the MI pattern had
been recorded by using a time-lens system (see Fig. 2). It en-
abled us to observe the real-time evolution round trip to round
trip of the output cavity pulse train of typically 4 ps period,
with a high temporal resolution (300 fs). Five typical record-
ings of the real-time evolution round trip to round trip of the
output cavity field are depicted in Figs. 4(a)–4(e). For a perfect
synchronization mismatch shown in Fig. 4(c), MI patterns
remain unchanged from round trip to round trip, leading to a
stable perfectly vertical pattern in this 2D representation. The
period is �3.2 ps, in fairly good agreement with the inverse
of the sideband frequency shift (1/272 GHz � 3.6 ps). For
negative synchronization mismatch values, the MI pattern is
left-tilted [Figs. 4(a) and 4(b)] while positive mismatch leads
to right-tilted patterns [Figs. 4(d) and 4(e)]. Figure 4(f) shows
the evolution of the drift velocity extracted from these mea-
surements (plus additional ones not shown here) as a function
of the synchronization mismatch, over a large synchronization
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FIG. 4. (a)–(e) Round-trip to round-trip temporal trace evolution
for three specific values of �β1 (−9, −1.8, 0, 0.6, and +6.7 fs/m).
(f) Temporal drift of the pattern vs �β1.

mismatch span (�β1 = ±20 fs/m). A striking effect is that
almost linear evolution from negative drifts to positive ones
is observed with a slope of 0.9, which is very close to theo-
retical predictions [Eq. (3)], giving a slope of 1. This clearly
highlights the crucial role of the propagation velocity induced
by the pump-cavity synchronization mismatch.

IV. CONCLUSION

We reported the observation of the frequency shift of the
modulation instability sidelobes due to the synchronization

mismatch between the pump and the resonator. We have
shown that very small synchronization mismatches of a few
Hz lead to a change in the position of the MI sidelobes when
the system is operating in the absolute regime. Beyond this
regime, the timing imbalance does not affect the shape or
position of the bands until they disappear for larger values.
These observations are in good agreement with numerical
simulations as well as with theoretical predictions based on
convection theory. The drift induced by the synchronization
mismatch on the MI pattern is also observed in real time
at the cavity exit using a temporal lens system. We have
recorded pulse trains whose drift is proportional to the syn-
chronization mismatch, in good agreement with theoretical
predictions. These works provide a deeper understanding of
the complex dynamics of the MI process in resonators. They
revealed the unexpected contribution of the first-order dis-
persion term on the MI side lobe position, their harmonics,
and thus Kerr combs in resonators. Further developments
should lead to a detailed description of the impact of the
synchronization mismatch on broader combs based on cav-
ity solitons, corresponding to a higher nonlinear regime of
MI [1].
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