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Resetting in stochastic optimal control
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“When in a difficult situation, it is sometimes better to give up and start all over again.” While this empirical
truth has been regularly observed in a wide range of circumstances, quantifying the effectiveness of such a
heuristic strategy remains an open challenge. In this paper, we combine the notions of optimal control and
stochastic resetting to address this problem. The emerging analytical framework allows one not only to measure
the performance of a given restarting policy, but also to obtain the optimal strategy for a wide class of dynamical
systems. We apply our technique to a system with a final reward and show that the reward value must be larger
than a critical threshold for resetting to be effective. Our approach, analogous to the celebrated Hamilton-Jacobi-
Bellman paradigm, provides the basis for the investigation of realistic restarting strategies across disciplines. As
an application, we show that the framework can be applied to an epidemic model to predict the optimal lockdown
policy.
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Finding the optimal strategy to operate a complex system
is a longstanding problem and has attracted a lot of attention
in recent decades. Since the seminal works of Pontryagin [1]
and Bellman [2], optimal control theory has received renewed
interest due to its applications in a wide range of contexts,
such as artificial intelligence [3] and finance [4]. In a typical
setting, optimal control considers a system whose state at
time t can be represented by a d-dimensional vector x(t ).
For instance, the state x(t ) could correspond to the degrees
of freedom of an autonomous robot or the asset values in
a financial portfolio. The system typically evolves in time
following a deterministic law, e.g., the laws of motion for
mechanical systems or the law of supply and demand for
financial markets. Oftentimes, the mathematical modeling of
these laws is prohibitively expensive and one introduces a
stochastic contribution to account for the missing information
on the environment. Given the laws of motion, optimal control
aims to operate the system in the best possible way by using
an external control, e.g., actuators for robots or market orders
in finance.

One of the simplest ways to describe analytically the evo-
lution in time of the system x(t ) is a first-order differential
equation of the form ẋ(t ) = f (x, t ). This law is often a sim-
plified description of the system and a source of Gaussian
white noise η(t ) is introduced to capture the fluctuations
around the deterministic model. In addition, the external
control on the system is usually modeled as a drift u(x, t ).
Summing up these contributions, the full mathematical de-
scription of the system is given by

ẋ(t ) = f (x, t ) +
√

2D η(t ) + u(x, t ), (1)
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where
√

2D is the strength of the noise. The external control
u(x, t ) can be tuned to achieve a given goal, e.g., performing
a task for a robot or generating profits in finance. Of course,
controlling the system will generate operating costs, such as
electrical consumption or transaction fees. Optimally control-
ling the system requires balancing a trade-off between high
rewards, measured over time by a function R(x, t ), and low
operating costs, often taken to be proportional to u2(x, t ). To
be precise, for a system located at position x at time t , the
reward in a small time interval dt is R(x, t )dt and the cost is
u2(x, t )dt/2.

In principle, solving this optimization problem is intrin-
sically difficult due to the high dimensionality of the space
of solutions. Remarkably, Bellman introduced a general way
to solve this problem, known as dynamical programming,
which consists in breaking down the optimization into simpler
subproblems in a recursive manner such that the present action
is taken to maximize the future outcome. In doing so, the key
quantity to keep track of is the optimal payoff J (x, t ), defined
as the expected payoff for an optimally controlled system
located at x at time t . Using this framework, one can show that
the optimal control is simply given by u∗(x, t ) = ∇xJ (x, t ),
driving the system towards the direction in which the payoff
increases the most. The optimal payoff J (x, t ) satisfies the
celebrated Hamilton-Jacobi-Bellman (HJB) equation [5],

−∂t J = D�xJ + f · ∇xJ + 1
2 (∇xJ )2 + R, (2)

where �x and ∇x are, respectively, the Laplacian and the
gradient operators. Here, for convenience, we dropped the x
and t dependence in the functions in Eq. (2). The quadratic
term (∇xJ )2 renders this equation nonlinear and difficult to
solve for arbitrary reward functions. Nevertheless, there ex-
ist few analytically solvable cases. For instance, in the case
of d = 1, where f (x, t ) = 0 and R(x, t ) = −α(x − x f )2δ(t −
t f )/2, the optimal control has the simple form u∗(x, t ) =
−α(x − x f )/[1 + α(t f − t )], which, in the limit α → ∞,
is reminiscent of the effective force to generate bridge
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Brownian motion [6]. This optimal control continuously
drives the system to maximize the final reward by arriving
close to the target x f at time t f . In more realistic systems, one
has to rely on numerical methods to solve Eq. (2) [7].

Ideas from optimal control have also been proven success-
ful in different areas of physics [8–10]. Moreover, stochastic
optimal control has been applied to a variety of systems,
such as supply-chain planning [11], swarms of drones [12],
and fluctuating interfaces [13]. These systems all have in
common that the optimal control can be orchestrated as a
coordinated sequence of infinitesimal local changes. How-
ever, numerous systems do not fall in this class and require
global changes to be optimally managed. A timely example
of such circumstances is the Covid-19 crisis, during which
the main control policies have been global measures such as
regional and national lockdowns. Other instances arise in the
context of search processes, both in the cases of computer
algorithms [14] and time-sensitive rescue missions [15]. In
the latter situations, a common and widely observed strat-
egy is to stop and resume the operations from a predefined
location. Such situations particularly arise in the context of
search processes [16,17], chemical reactions [18], and catas-
trophes in population dynamics [19,20]. Unfortunately, the
HJB framework is not well suited to study such resetting
protocols. Indeed, resetting is known to be quite different
from a local force and exhibits interesting features, including
out-of-equilibrium dynamics [21–23], dynamical phase tran-
sitions [24–26], and nontrivial first-passage properties [16,17]
(for a recent review, see [27]). This observation naturally
called into question the existence of an analytical framework
to devise the optimal resetting control policy.

In this paper, we combine the notions of stochastic reset-
ting and optimal control into resetting optimal control, which
provides a natural framework to operate systems through
stochastic restarts. Our goal is not to provide an accurate
description of a specific system, but rather to consider a min-
imal model to explore resetting in optimal control. To model
resetting policies, we exchange the control force u(x, t ) for a
resetting rate r(x, t ). In a small time interval dt , the state of
the system is reset to a predefined location xres with proba-
bility p = r(x, t )dt and evolves freely otherwise. In sum, the
dynamical system evolves according to

x(t + dt ) =
{

xres, prob. = p
x(t ) + f (x, t )dt + √

2Dηdt, prob. = 1 − p,

(3)

where the subscript “res” in xres stands for “resetting location.”
Similarly to the HJB framework, we aim to find the optimal
resetting rate r, as a function of x and t , that balances the
trade-off between high rewards, measured over time by the
function R(x, t ), and low operating costs, which depend on
r(x, t ). To mathematically pose the optimization problem, we
naturally extend the HJB paradigm and define the following
payoff functional:

Fx0,t [r] =
〈∫ t f

t
dτ [R(x(τ ), τ ) − c(x(τ ), τ )r(x(τ ), τ )]

〉
x0

,

(4)
where c(x, τ ) is the cost associated to resetting, t f is the
time horizon up to which the system is controlled, and the

symbol 〈·〉x0 indicates the average over all stochastic trajec-
tories starting from x0 at time t and evolving according to
Eq. (3). Note that the payoff F is a functional and depends
on the full function r.

Remarkably, we find that the optimal resetting policy r∗
that maximizes F is bang-bang, resulting in an impulsive
control strategy [5]: the system is reset with probability one
if its state is outside of a time-dependent domain �(t ) and
evolves freely otherwise:

r∗(x, t )dt =
{

0 if x ∈ �(t ),
1 if x /∈ �(t ). (5)

The domain �(t ) evolves according to

�(t ) = {x : J (x, t ) � J (xres, t ) − c(x, t )}, (6)

where the optimal payoff function J (x, t ) = maxr Fx,t [r] is
the solution of the differential equation

−∂t J = D�xJ + f · ∇xJ + R, x ∈ �(t ). (7)

Equation (7) must be solved jointly with Eq. (6) starting from
the final condition J (x, t f ) = 0 and evolving backward in time
with the Neumann boundary condition ∇xJ (x, t ) · n(x) = 0,
where n(x) is the normal unit vector to the boundary. Out-
side of the domain �(t ), the solution is given by J (x, t ) =
J (xres, t ) − c(x, t ). The definition of the domain �(t ) in
Eq. (6) has a clear interpretation: at any given time, the opti-
mal policy is to restart the system if its expected payoff is less
than the one at the resetting location minus the cost incurred
for a restart. The emerging framework outlined in Eqs. (5)–(7)
is the main result of this paper and provides a general method
to optimally control stochastic systems through restarts. The
derivation of this result is presented in Appendix A.

Going from Eq. (4) to Eq. (7), we have reduced a functional
optimization problem to a partial differential equation, which
is often easier to solve. Note, however, that the mathematical
problem in Eqs. (6) and (7) is of a special kind as the evolution
of the domain of definition �(t ) is coupled to the solution
J (x, t ) of the differential equation. This kind of equations be-
longs to a class known as Stefan problems [28], which often
arise in the field of heat transfer, where one studies the evo-
lution of an interface between two phases, e.g., ice and water
on a freezing lake. In this context, one must solve the heat
equation for the temperature profile with an interface between
the water and ice phases, which moves according to the tem-
perature gradient. The interface is therefore to be considered
as an additional unknown function, which must be jointly
solved with the differential equation. To draw an analogy
with our case, the optimal payoff function J (x, t ) plays the
role of the temperature and the boundary of the domain �(t )
corresponds to the water-ice interface. Note, however, that the
two Stefan problems have different boundary conditions. The
domain �(t ) can be obtained by solving the Stefan problem
in Eqs. (6) and (7) numerically. This can be achieved, for
instance, by using an Euler explicit scheme with a space-time
discretization and updating the domain �(t ) at each time step
according to Eq. (6). The domain �(t ) is illustrated in Fig. 1
for the case of a one-dimensional random walk with a final
reward. Such a situation corresponds to rewarding the system
by a finite amount for arriving at some target location at
the final time, while penalizing it with a unit cost for each
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FIG. 1. Space-time illustration of the optimal resetting policy
for a one-dimensional random walk (green line) to reach the target
location x f = 1 (filled circle) exactly at time t f = 1. A reward α

is received upon reaching the location x f at the final time, while a
unit cost is incurred upon resetting (red dashed arrows) to the origin
xres = 0 (gray dashed line). The optimal strategy that maximizes the
expected payoff is to reset upon touching the blue region and to
evolve freely in the white region, which we denote as �(t ) in the
text. The domain �(t ) is obtained by numerical integration of the
Stefan problem in Eqs. (6) and (7), with R(x, t ) = αδ(t − 1)δ(x − 1),
f (x, t ) = 0, α = 10, and D = 1. The boundary of the domain �(t )
guides the particle to the location x f at time t f , while avoiding
resetting as much as possible. The shape of �(t ) depends nontrivially
on the reward value α. Further explanations for this shape are given
in the text.

resetting event. This setting is further discussed in the next
paragraph, where we illustrate our framework with various
examples.

The Stefan problem in Eq. (7) is the analog of the
HJB equation (2) for a resetting control. Despite the mov-
ing boundary, Eqs. (6) and (7) have a linear dependence
in J . One might, therefore, wonder if exactly solvable
models exist within this framework. Interestingly, we have
found a time-independent formulation in the infinite time
horizon limit t f → ∞ which allows for exact analytical
solutions to be found. This is achieved by considering dis-
counted rewards and costs of the form R(x, t ) = e−βtR(x) and
c(x, t ) = e−βtC(x), where β > 0 is the discount rate. Ac-
cordingly, we also consider the drift to be time independent,
f (x, t ) = f (x). Discounted payoffs are common in the control
theory literature [29] and capture situations in which the effect
of the payoff decays over a typical timescale 1/β. Such effect
is, for instance, observed in financial contexts, where β is
related to interest rates and is used to compare future and
present benefits. Using the ansatz J (x, t ) = e−βtJ (x), we find
that Eq. (7) becomes a time-independent ordinary differential
equation of the form

βJ = D�xJ + f · ∇xJ + R, x ∈ �, (8)

where the domain � = {x : J (x) � J (xres) − C(x)} is also
independent of time. This equation can be explicitly solved
in the absence of external forces by choosing a quadratic
reward R(x) = −αx2 and a constant resetting cost C(x) = c
to the origin xres = 0. Note that R(x) � 0 and is maximized at
x = 0, rewarding the system for being close to the origin.

FIG. 2. The optimal expected payoff J (x) for a one-dimensional
random walk starting at x for the discounted reward R(x) = −αx2

and cost C(x) = c and for different values of the cost-reward ra-
tio v = c/α. The continuous lines correspond to the exact result
in Eq. (9), while the symbols correspond to numerical simulations
performed with β = D = 1. The optimal strategy is to reset for
|x| > u(v), where u(v) is defined in the text. For |x| < u(v), the
system is let free to evolve and its payoff depends continuously on x.

Solving Eq. (8), we obtain, for β = D = 1, the exact expres-
sion for the optimal payoff,

J (x) = α[−2 − x2 + 2u(v) cosh(x)/ sinh(u(v))], x ∈ �,

(9)
where u(v) is the boundary of the symmetric domain �, i.e.,

� = {x : |x| < u(v)}. (10)

The boundary u(v) is the unique positive solution of the
transcendental equation v − u2(v) + 2u(v) tanh[u(v)/2] = 0,
where v = c/α is the cost-reward ratio. The optimal strat-
egy thus corresponds to resetting the system if |x| > u(v).
When v 
 1, the cost of resetting is much smaller than the
reward, therefore the boundary is close to the origin u(v) ∼√

2 (3v)1/4, allowing the state of the system to remain close
to the optimal location x = 0. On the other hand, when v � 1,
the cost of resetting is much larger than the running cost and
the boundary is set far away from the origin, u(v) ∼ √

v + 1.
Beyond the optimal resetting policy, our approach predicts the
function J (x), measuring the expected payoff upon starting
from x and following the optimal strategy. In Fig. 2, J (x) is
shown for |x| < u(v) and for various values of the cost-reward
ratio v. As a function of x, J (x) has a symmetric bell shape
centered around the origin, where the reward is maximal.
As |x| increases, J (x) decreases since the reward decreases
and the resetting boundary comes closer. Note that in this
special case, the optimal policy can also be recovered within
the framework of first-passage resetting [30,31], as shown in
Appendix B. This is only true for this particular example,
where the control variable is a scalar.

Our previous example focused on the case of an infinite
time horizon, corresponding to t f → ∞. We now investi-
gate the effect of a finite time horizon. One of the simplest
settings where such effect can be studied is the case of a
one-dimensional random walk with a Dirac delta final reward
R(x, t ) = α δ(x − x f )δ(t − t f ), with α > 0, and a constant
resetting cost c(x, t ) = c. Such parameters correspond to re-
warding the system by a finite amount α for arriving at the
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target position x f at time t f , while penalizing it with a constant
cost c for each resetting event. Note that the system needs to
arrive at the location x f exactly at time t f to get the reward,
while earlier visits do not provide any additional benefits (as
for a rendezvous, where one needs to be at the right place at
the right time). The δ reward function has to be understood
as the continuum limit of a Gaussian function whose width
tends to zero [32]. Before presenting the optimal policy for
this problem, it is instructive to consider two limiting cases.
For α → 0, one should never reset as the reward is not worth
the resetting cost. On the other hand, for α → ∞, the cost
of resetting becomes negligible and the optimal strategy is to
reset if restarting would bring the system closer to x f , inde-
pendently of time. Interestingly, we observe that the crossover
between these two regimes occurs as a sharp transition at the
critical value α = αc, where αc = x f c

√
2πe ≈ 4.13273 x f c,

which we predict analytically (see Appendix C). For α <

αc, the optimal policy is to never reset, corresponding to
�(t ) = R for all 0 � t � t f . The situation is more subtle for
α > αc, where resetting is only favorable in a specific time
window before t f . To describe this window, it is convenient
to introduce the backward time τ = t f − t . We find that no
boundary is present for τ < τ ∗, where τ ∗ is the smallest
positive solution of the transcendental equation αe−x2

f /(4Dτ ∗ ) =
c
√

4πDτ ∗. At τ = τ ∗, a boundary appears and one must re-
sort to numerical integration techniques to find the solution for
τ > τ ∗ (see Fig. 1). We observe numerically that the boundary
evolves with τ , i.e., backward in time, in a nonmonotonic
way and eventually disappears. This optimal policy can be
understood as follows. Close to t f , where τ < τ ∗, it is unlikely
for the system to reach the target location x f from the origin
in the remaining time. Thus, it is not convenient to reset. On
the other hand, for very early times, it is not yet necessary to
reset since, after resetting, the system would typically evolve
away from the target.

Our framework can be easily generalized to other resetting
dynamics. For instance, in light of the recent experiments of
stochastic resetting on colloidal particles [33–35], it is rele-
vant to consider the case where the new state of the system x′
after a resetting event is drawn at random from some probabil-
ity distribution PR(x′|x), which can eventually depend on the
current x of the system. In practice, it is physically impossible
to reset the particles to a fixed location since resetting is
performed by using an optic trap. In this case, our main results
in Eqs. (5) and (7) remain valid, while the definition of the
domain �(t ) is modified as

�(t ) =
{

x : J (x, t ) �
∫

dx′ [J (x′, t )PR(x′|x)] − c(x, t )

}
.

(11)
Note that the case of a fixed resetting location xres corre-
sponds to PR(x′|x) = δ(x′ − xres). Similarly, one can extend
the framework to describe situations in which a finite amount
of time is required for each resetting event.

Finally, we illustrate the generality of our framework by
applying it to the problem of finding the optimal lockdown
policy to navigate a pandemic. We do not aim to provide
an accurate description of a specific pandemic, but rather
to illustrate the generality of our framework and to gain
interesting insights. We consider a population of N individ-

uals and we model the evolution of the epidemic with the
susceptible-infectious-recovered (SIR) model, which is one
of the simplest compartmental models in epidemiology [36].
Previous works have approached this problem by continu-
ously controlling the infection rate [37]. However, in real
situations, one cannot adapt the restrictions in a continuous
way and our framework is well suited to describe discontinu-
ous policies, such as lockdowns. In Appendix D, we show that
our technique can be directly applied to this problem to find
the optimal time to impose a lockdown.

In sum, we combined optimal control and stochastic re-
setting to address the effectiveness of restarting policies. The
emerging framework, contained in Eqs. (6) and (7), provides
a unifying paradigm to obtain the optimal resetting strategy
for a wide class of dynamical systems. Our method can be
generalized to discrete-time systems and quadratic costs as-
sociated with resetting (see Appendix E). Furthermore, it is
a simple exercise to include a continuous control policy in
addition to resetting to account for realistic systems. In ad-
dition, one would need to explore ways to solve the moving
boundary problem in high dimensions, which might require
approximation schemes. It would be interesting to investigate
extensions to optimal stopping problems and to study cost
functions that are first-passage functionals [38], for instance
where the time horizon is a first-passage time. This would be
particularly relevant in the context of search processes.

We warmly thank F. Aguirre-Lopez, S. N. Majumdar,
S. Redner, A. Rosso, G. Schehr, E. Trizac, and L. Zadnik
for fruitful comments and feedback. This work was partially
supported by the Luxembourg National Research Fund (FNR)
(App. No. 14548297).

APPENDIX A: DERIVATION OF EQS. (6) AND (7)

In this Appendix, we derive our main result given in
Eqs. (6) and (7) of the main text. This derivation is based on a
dynamical programming argument (also known as a backward
approach). We consider evolving the system from time t to
t + dt . According to the equations of motion in Eq. (3) of the
main text, the state of the system either (i) evolves from x to
x + f (x, t )dt + √

2D η(t )dt with probability 1 − r(x, t )dt or
(ii) is reset to position xres with probability r(x, t )dt . In the
time interval dt , the payoff in Eq. (4) of the main text changes
by the amount R(x, t )dt − c(x, t )r(x, t )dt . For the subsequent
evolution of the process from t + dt to t f , the new initial value
is either x + f (x, t )dt + √

2D η(t )dt in the former case or
xres in the latter case. Following this argument and using the
notation F[r | x, t] ≡ Fx,t [r], we obtain

F[r | x, t] = R(x, t )dt − c(x, t )r(x, t )dt

+〈F[r | x + f (x, t )dt +
√

2D η(t )dt, t + dt]〉
× [1 − r(x, t )dt]

+F[r | xres, t + dt]r(x, t )dt, (A1)

where 〈·〉 is an average over the noise realizations η(t ). The
goal is now to maximize both sides over the full function r.
Note that the functional F on the right-hand side of Eq. (A1)
does not depend on the value of the function r(x, t ) at time
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t , given that its initial time is t + dt . We can therefore first
maximize over the function r(x, τ ) for τ ∈ [t + dt, t f ] and
then over the value r(x, t ) at time t , which gives

−∂t J (x, t ) = R(x, t ) + D�xJ (x, t ) + f (x, t ) · ∇xJ (x, t )

+ max
r(x,t )

{r(x, t )[J (xres, t ) − c(x, t ) − J (x, t )]},
(A2)

where we used the definition of J (x, t ), expanded to first
order in dt , and averaged over η(t ). We are left with maxi-
mizing a linear function of the scalar variable r(x, t ). Given
that r(x, t ) is a Poissonian resetting rate, it must be posi-
tive and less than 1/dt since r(x, t )dt is a probability. This
immediately gives the expression for the bang-bang optimal
control policy r∗(x, t ) given in Eq. (5) in the main text along
with the domain �(t ). Plugging this back into Eq. (A2), we
obtain the moving boundary problem introduced in the main
text.

The Neumann boundary condition ∇xJ (x, t ) · n(x) = 0
can be obtained upon a careful analysis of Eq. (A1) close to
the boundary. We start from Eq. (A1) and write

F[r | x, t] = R(x, t )dt − c(x, t )r(x, t )dt

+〈F[r | x + f (x, t )dt +
√

2D η(t )dt, t + dt]〉
× [1 − r(x, t )dt]

+F[r | xres, t + dt]r(x, t )dt . (A3)

We set x ∈ ∂�(t ) and we expand Eq. (A3) to the first nontriv-
ial order in dt . The main difference with the case x ∈ �(t ),
discussed above, is that the linear term in η(t ) does not vanish
as the gradient of the payoff functional with respect to x
vanishes outside of the domain �(t ). We obtain

0 =
√

2D∇xF[r | x, t] · 〈η(t )dt 1[x +
√

2D η(t )dt ∈ �(t )]〉,
(A4)

where 1 is the indicator function and the average over η(t ) is
of the order of O(

√
dt ). By decomposing η(t ) over the parallel

and perpendicular components of the normal direction n(x) to
the boundary at x, Eq. (A4) immediately gives the boundary
condition ∇xF[r|x, t] · n(x) = 0, which is, by definition, also
valid for J .

APPENDIX B: FIRST-PASSAGE RESETTING
IN A FINITE INTERVAL

In this Appendix, we show that the optimal policy in the
special case of discounted payoffs can be obtained within
the framework of first-passage resetting. We consider a one-
dimensional diffusive particle with diffusion coefficient D
whose position x belongs to the finite interval [−L, L] with
L > 0. We assume that when the particle reaches any of the
interval boundaries, it is instantaneously reset to the origin
xres = 0. We assume that at the initial time, the particle is
at position x0, with −L < x0 < L. In analogy with the dis-
counted payoff in the main text, we associate a discounted
reward R(x, t ) = e−βtR(x) and discounted cost of resetting,
c(x, t ) = e−βtC(x), to the trajectory of the particle. Consider-
ing an infinite time horizon, the average payoff is therefore

FIG. 3. The rescaled optimal expected payoff J (x) for a one-
dimensional random walk starting at x = 0 for the discounted reward
R(x) = −αx2 and cost C(x) = c as a function of the cost-reward
ratio v = c/α.

given by

J (x|L) =
〈∫ ∞

0
dτ e−βτR(x) −

∞∑
i=1

e−βtiC(x)

〉
x0

, (B1)

where ti is the time of the ith resetting event and the average
is computed over all trajectories {x(τ )} with x(0) = x0. In
particular, for R(x) = −αx2 and C(x) = c, we obtain

J (x|L) = −α

∫ ∞

0
dτ e−βτ 〈x(τ )2〉x0 − c

∞∑
i=1

〈
e−βti

〉
x0
. (B2)

The two average quantities can be computed by standard
renewal techniques and one obtains

J (x|L) = −α

[
2D

β2
+ x2

0

β
− L2

β

cosh(x0
√

β/D)

cosh(L
√

β/D) − 1

]

− c

[
cosh(x0

√
β/D)

cosh(L
√

β/D) − 1

]
. (B3)

Upon minimizing over L and setting β = D = 1, we recover
the expression in Eqs. (9) and (10) in the main text. The
optimal payoff in Eq. (9) in the main text is shown as a
function of the cost-reward ratio in Fig. 3. The optimal payoff
decreases monotonically as the cost-reward ratio is increased.

APPENDIX C: DIRAC δ FINAL REWARD

In this Appendix, we consider the case of a Dirac δ final
reward in d = 1, corresponding to R(x, t ) = αδ(x − x f )δ(t −
t f ), where α > 0 is the magnitude of the reward and x f is
the target location. We also assume that f (x, t ) = 0, c(x, t ) =
c > 0 and we consider the optimal payoff in the time-reversed
dynamics, defined as I (x, τ ) = J (x, t f − τ ). It is easy to show
that I (x, τ ) satisfies the diffusion equation,

∂τ I (x, τ ) = D∂xxI (x, τ ), (C1)

with initial condition I (x, τ = 0) = αδ(x − x f ). Assuming
that no boundary appears for small τ (to be verified a posteri-
ori), the optimal payoff function is the usual Gaussian profile,

I (x, τ ) = α
1√

4πDt
e−(x−x f )2/(4πDτ ). (C2)
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FIG. 4. Scaled time Dτ ∗/x2
0 at which the barrier first appears

as a function of α/(cx0 ). The continuous blue line corresponds to

the smallest positive solution of α = c
√

4πDτ ex2
f /(4Dτ ), while the

dashed red line corresponds to the critical value αc = √
2πecx0. For

α < αc, no barrier is present.

A boundary appears at time τ when the condition I (x, τ ) <

I (0, τ ) + c is verified for the first time for some value of x.
Using Eq. (C2), this condition can be rewritten, for |x − x f | >

x f , as

α >
c
√

4πDτ

e−x2
f /(4Dτ ) − e−(x−x f )2/(4Dτ )

. (C3)

Minimizing the right-hand side of Eq. (C3) over x and τ ,
we obtain α > cx f

√
2eπ . Thus, for α < αc = cx f

√
2eπ , no

boundary appears and the cost function is given by Eq. (C2)
for any τ . On the other hand, for α > αc, two boundaries
appear at time τ ∗, which is the smallest solution of α =
c
√

4πDτ ex2
f /(4Dτ ). Thus, for τ < τ ∗, the cost function is

given by Eq. (C2), while it is hard to determine analytically for
τ > τ ∗. We obtain numerically the boundary for τ > τ ∗ (see
Fig. 1 of the main text). Note that at τ = τ ∗, the condition in
Eq. (C3) is only verified for x → ±∞, meaning that the two
boundaries start from infinity at the critical time. The critical
time τ ∗ is shown in Fig. 4 as a function of α. The asymptotic
behaviors of τ ∗ as a function of α are given by

τ ∗ =
{

x2
f /(2D) for α → αc,[
x2

f

/
(4D)

]
/ ln(α) for α → ∞.

(C4)

FIG. 5. Reward function R((S, I ), t) in (D3) describing the
public-health cost in the context of the optimal lockdown policy
problem. The reward is a piecewise linear function whose slope
increases above the hospital alert level threshold Ic.

APPENDIX D: APPLICATION TO LOCKDOWN POLICIES

In this Appendix, we apply the framework developed in
the main text to a problem of finding the optimal lockdown
policy to navigate a pandemic. To describe the propagation of
an epidemic within a population, we employ the SIR model.
We consider a population of N individuals, divided into three
groups (S, I, R), where S, I , and R are, respectively, the num-
ber of susceptible, infected, or recovered individuals. Note
that by definition, S + I + R = N and therefore a given state
of the system is completely specified by the vector x = (S, I ).
We assume that new infections occur at a rate βSI , while
infected individuals recover at a rate γ I . In other words, the
system evolves as a Markov jump process with rates

w[(S, I ) → (S − 1, I + 1)] = βSI (D1)

and

w[(S, I ) → (S, I − 1)] = γ I, (D2)

where w[x → x′] indicates the rate of the transition from x
to x′.

During a real pandemic, national governments are usually
presented with conflicting objectives. Indeed, the rapid spread
of the disease carries heavy public-health costs, in particular
when the number of infected individuals that require treatment
exceeds the hospital alert level of a country. This spread can

FIG. 6. Phase-space illustration of the optimal lockdown policy
for a SIR epidemic model with infection rate β and recovery rate γ .
Since the total number N of individuals is fixed, only configurations
below the black dashed line, where S + I � N , are allowed. We con-
sider a (negative) reward R((S, I ), t) = −aI − [b(I − Ia)] θ (I − Ia ),
where Ia is the hospital alert level (horizontal dashed line) and θ (x) is
the Heaviside step function. A fixed cost c is incurred upon resetting
from the state (S, I ) to the state (S, �αI�), which describes the effects
of a lockdown. The optimal strategy that maximizes the expected
payoff is to reset upon touching the blue region and to evolve freely
in the white region, which we denote as �(t ) in the text. The domain
�(t ) is obtained by numerical integration of the Stefan problem
presented in (D4). The boundary of the domain �(t ) guides the
epidemic below the hospital alert level, while avoiding lockdowns
as much as possible. The figure corresponds to the choice of parame-
ters t = 0, a = 2, b = 10, α = 0.5, N = 200, Ia = 0.3 N , β = 5/N ,
t f = 1, and γ = 1. An optimally controlled epidemic trajectory is
shown in Fig. 7.
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be countered by imposing lockdowns, which, however, have
an impact on the economy of a country.

To describe the public-health cost, we introduce the (nega-
tive) reward function (see Fig. 5),

R((S, I ), t) = −aI − [b(I − Ic)] θ (I − Ic), (D3)

where Ic represents the hospital alert level, a > 0 is the cost
per infected person when the hospitals are not saturated, and
b > 0 is the excess cost when the hospitals are saturated. Here,
θ (z) is the Heaviside theta function. We describe lockdowns
by allowing the possibility for governments to decrease the
number of infected people by a constant fraction, without
changing the number of susceptible people. In other words,
the effect of a lockdown is to reset the system from state
x = (S, I ) to state x′ = (S, �αI�), where 0 < α < 1. We as-
sume that each lockdown comes with a fixed cost c > 0, due
to the negative socioeconomic impact. The goal in then to
find the optimal resetting (or lockdown) policy r∗(x, t ) which
minimizes the payoff function defined in Eq. (4) of the main
text, in order to control the system up to a given time horizon
t f .

It is easy to employ our framework in this case and to show
that the optimal payoff function J((S, I ), t) evolves according
to

−∂t J((S, I ), t) = R((S, I ), t) + βSI[J((S − 1, I + 1), t)

− J((S, I ), t)] − γ I[J((I − 1, S), t)

− J((S, I ), t)], (D4)

for (S, I ) ∈ �(t ), and

J((S, I ), t) = J((S, �αI�), t) − c, (D5)

for (S, I ) /∈ �(t ). Here the domain �(t ) is defined as

�(t ) = {x : J((S, I ), t) � J((S, �αI�), t) − c}. (D6)

FIG. 7. Epidemic evolution in the SIR model controlled by an
optimal lockdown policy according to the reward function given
in (D3) and a fixed cost c for resetting. The red dashed line
corresponds to the lockdown event. Since the total number N of
individuals is fixed, only configurations below the black dashed line,
where S + I � N , are allowed. The horizontal dashed line describes
hospital alert level Ic. The figure corresponds to the choice of parame-
ters a = 2, b = 10, α = 0.5, N = 200, Ic = 0.3 N , β = 5/N , γ = 1,
and t f = 1, which are the same as those used in Fig. 6.

We employ our framework numerically and obtain the op-
timal policy in the (S − I ) plane, as shown in Fig. 6. As can be
seen in this figure, the policy is to never reset if the number of
susceptible individuals is larger than a critical value. Then, as
the number of susceptible individuals is lowered, the optimal
policy is to reset if the number of infected individuals is larger
than a threshold which increases as the number of susceptible
individuals is lowered. The optimal domain �(t ) guides the
epidemic below the hospital alert level, while avoiding lock-
downs as much as possible. An optimally managed epidemic
trajectory is shown in Fig. 7.

APPENDIX E: GENERALIZATION TO A QUADRATIC RESETTING COST

In this Appendix, we generalize our framework to the case in which a quadratic cost is associated to resetting with the
following payoff functional:

F[r|x0, t] =
〈∫ t f

t
dτ

[
R(x(τ ), τ ) − 1

2
c(x(τ ), τ )r(x(τ ), τ )2

]〉
x0

, (E1)

with c(x, τ ) � 0. Following the procedure outlined in the main text, we obtain the moving boundary problem,

−∂t J (x, t ) = D�xJ (x, t ) + f (x, t ) · ∇xJ (x, t ) + R(x, t ), x ∈ �(t )

−∂t J (x, t ) = D�xJ (x, t ) + f (x, t ) · ∇xJ (x, t ) + R(x, t ) + 1

2 c[x(τ ), τ ]
[J (x, t ) − J (0, t )]2, x /∈ �(t ), (E2)

where

�(t ) = {x : J (x, t ) � J (xres, t )}. (E3)

The differential equation (E2) must by solved by imposing the continuity of the solution and its derivative at the boundary of
�(t ). The optimal resetting rate r∗(x, t ) is no longer bang-bang and is given by

r∗(x, t ) =
{

0, x ∈ �(t )
[J (xres, t ) − J (x, t )]/c[x(τ ), τ ], x /∈ �(t ). (E4)
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APPENDIX F: GENERALIZATION TO DISCRETE-TIME SYSTEMS

In this Appendix, we generalize our framework to the case of discrete-time systems whose state xn evolves according to the
Markov rule,

xn =
{

xres with probability pn(x)
xn−1 + fn(xn−1) + ηn with probability 1 − pn(x), (F1)

where ηn are independently and identically distributed random variables drawn from a probability distribution q(η) and fn(x)
is an external force. The distribution q(η) is arbitrary and includes, for instance, the case of fat-tailed distributions. The payoff
functional in Eq. (4) of the main text straightforwardly generalizes to

F ({pm, . . . , pn}|xm, m) =
〈

n∑
l=m

R(xl , l ) − c(xl , l )pl (xl )

〉
xm

, (F2)

where the control is the sequence of resetting probabilities, {pm, . . . , pn}, and the average on the right-hand side is taken over
all system trajectories starting from xm at step m. Following a similar approach as in the previous sections, we obtain that the
optimal policy is given by

pm(x) =
{

0 if x ∈ �m,

1 if x /∈ �m,
(F3)

where �m ⊆ Rd is a time-dependent domain. The corresponding discrete moving boundary problem for the optimal payoff
function, J (x, m) = max{pm,...,pn} F[{pm, . . . , pn} | x, m], is given by

J (x, m) = R(x, m) + max

{
J (xres, m + 1) + c(x, m),

∫ ∞

−∞
dη q(η) J[x + fm(x) + η, m + 1]

}
, (F4)

with

�m =
{

x :
∫ ∞

−∞
dη p(η) J[x + fm(x) + η, m + 1] � J (xres, m + 1) + c(x, m)

}
. (F5)
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