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Gradients of O-information: Low-order descriptors of high-order dependencies
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O-information is an information-theoretic metric that captures the overall balance between redundant and
synergistic information shared by groups of three or more variables. To complement the global assessment
provided by this metric, here we propose the gradients of the O-information as low-order descriptors that can
characterize how high-order effects are localized across a system of interest. We illustrate the capabilities of the
proposed framework by revealing the role of specific spins in Ising models with frustration, in Ising models with
three-spin interactions, and in a linear vectorial autoregressive process. We also provide an example of practical
data analysis on U.S. macroeconomic data. Our theoretical and empirical analyses demonstrate the potential of
these gradients to highlight the contribution of variables in forming high-order informational circuits.
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I. INTRODUCTION

Network science [1], a field encompassing approaches
where complex systems are represented by graphs, has grown
tremendously in the last 20 years thanks to the development of
powerful computational techniques to tease interdependencies
out of data [2,3]. However, despite the great success of this
endeavor, some important questions about complex systems
cannot be properly addressed by dyadic representations, but
require us to take into account higher-order interactions in-
volving more than two elements. Such approaches typically
represent systems as hypergraphs that can be studied via topo-
logical data analysis [4] to reveal the structure of complex
systems of interest.

A complementary line of research focuses on emergent
properties related to what the system does and characterizes
its high-order behavior from observed data identifying an
equivalent to hyperedges from the dynamics of the data [5].
A prominent role in this literature is played by the framework
of partial information decomposition (PID) [6] and its subse-
quent developments [7], which exploit information-theoretic
tools to evidence high-order dependencies in groups of three
or more variables—and the description of their synergistic
or redundant nature. In this context, redundancy corresponds
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to information which can be retrieved from more than one
source, while synergy corresponds to statistical relationships
that exist in the whole but cannot be seen in the parts [8]:
see, e.g., Ref. [9] for an application of these principles in
neuroscience, a field where multivariate information theory is
seen as a promising tool to advance our understanding of brain
and cognition [10]. Another popular computational tool is
the O-information � [11], which captures the overall balance
between redundant and synergistic high-order dependencies
in complex systems [12,13], whereas a positive (negative) �

means that the multiplet of variables at hand is dominated
by redundant (synergistic) dependencies. The computational
complexity of � calculation scales more gracefully with the
number of variables than that of PID, making it particularly
well suited for practical data analysis.

Crucially, the quest for high-order descriptions of complex
systems comes with important computational and conceptual
costs, as these representations often grow superexponen-
tially with the system size. Moreover, while coarse-grained
measures such as � exist, their global nature fails short,
not being able to provide a local description of how high-
order phenomena are distributed across systems of interest.
Hence, there is a urgent need for intermediate approaches
that can enable a compact yet meaningful representation
of informational multiplets. Indeed, the success of network
science rests partially on the availability of metrics (e.g.,
centrality measures, see Ref. [14]) that quantify the role of
specific nodes or links in the system—metrics which are
not as immediate to develop and grasp for high-order anal-
yses, in particular, when the high-order links are statistical
dependencies.
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Here we address this problem by introducing an approach
that provides low-order (i.e., univariate and pairwise) de-
scriptors of high-order dependencies in the analyzed system.
The proposed approach is based on the gradients of the
O-information: Instead of focusing on the O-information of
groups of variables, we focus on the variation of the O-
information when variables are added to the rest of the
system to form these groups. This provides a more nuanced
description of synergistic or redundant informational circuits,
in which the role of each variable can be disambiguated. This
framework is operationalized by means of the definitions and
derivations presented below.

II. GRADIENTS OF O-INFORMATION

The O-information � is a signed metric that quantifies the
balance between redundant and synergistic interactions within
a multivariate system. Specifically, the O-information of a
system described by n stochastic variables X n = (X1, . . . , Xn)
can be calculated as [11]

�(X n) = (n − 2)H (X n) +
n∑

i=1

[
H (Xi ) − H

(
X n

−i

)]
, (1)

where X n
−i denotes the set of all the variables in X n but Xi,

and H is the Shannon entropy. It has been shown that if � >

0 then the statistical dependencies among variables are well
explained by collective constraints, which in turn implies that
the system is redundancy dominated. In contrast, when � <

0 then the dependencies are better explained as patterns that
can be observed in the joint state of multiple variables but
not in subsets of these; in other words, the system is synergy
dominated.

To assess the contribution of a given variable Xi to the
informational circuit contained in X n, we propose to calculate
its gradient of O-information given by

∂i�(X n) = �(X n) − �
(
X n

−i

)

= (2 − n)I
(
Xi; X n

−i

) +
n∑

k=1,k �=i

I
(
Xk; X n

−ik

)
, (2)

where I is the mutual information [15]. The quantity ∂i�(X n)
captures how much the O-information changes because of
adding Xi, hence giving an account of how this variable
contributes to the high-order properties of the system. Cor-
respondingly, ∂i�(X n) > 0 means that Xi introduces mainly
redundant information, while ∂i�(X n) < 0 indicates that it
fosters synergistic interdependencies.

A direct calculation shows that the following bounds hold
and are tight:

−(n − 2)ln|X | � ∂i�(X n) � ln|X |, (3)

where |X | is the cardinality of the largest alphabet in X n (a
proof of this can be found in Appendix A). The asymmetry
between the two bounds has an important consequence: while
redundancy can be only built step by step, synergy can be
established more rapidly. Indeed, adding a variable to a system
of size n − 1 might provide a maximal redundant contribution
of ln|X |, while the maximal synergy that it might lend is
(n − 2)ln|X | — which can be substantial if n is large.

Following a similar rationale to the one that leads to
Eq. (2), one can further introduce a second-order descriptor
of high-order interdependencies by considering gradients of
gradients. In particular, the second-order gradient of a pair of
variables Xi and Xj can be defined as

∂ j∂i�(X n) = ∂i�(X n) − ∂i�
(
X n

− j

)
. (4)

This second-order gradient captures how much the presence
of the variable Xj alters the variation of O-information of
the system due to the inclusion of Xi. It is direct to verify
the symmetry ∂i∂ j�(X n) = ∂ j∂i�(X n); therefore, we simply
denote this quantity as ∂2

i j�(X n).
An interesting property of ∂2

i j�(X n) is that it can be rewrit-
ten as a whole-minus-sum property:

∂2
i j�(X n) = [

�(X n) − �
(
X n

−i j

)]

−[
�

(
X n

−i

) − �
(
X n

−i j

)]−[
�

(
X n

− j

) − �
(
X n

−i j

)]
.

(5)

In other words, ∂2
i j�(X n) measures to what degree the varia-

tion to the O-information due to the inclusions of both Xi and
Xj is more than the sum of the variations one obtains when
including them separately. Consequently, ∂2

i j�(X n) vanishes
if the variables Xi and Xj are part of independent informational
circuits.

The second-order gradient ∂2
i j�(X n) can be compared with

the local O-information between the variables Xi and Xj (in-
troduced in Ref. [11]) I (Xi; Xj ; X n

−i j ), which corresponds to
the interaction information [16] between Xi, Xj and the vari-
ables in X n

−i j . Interestingly, for n = 3 the local O-information
and ∂2

i j�(X n) coincide, while for n � 4 they generally differ.
A key difference between these quantities is that the local
O-information treats the rest of the system (i.e., X n

−i j) as a
whole, while in the value of the former is actually dependent
on the specific partition that divides X n

−i j into parts, which
gives it more sensitivity to evaluate informational circuits.

Successive gradients follow automatically, resulting in a
simple chain rule. If γ is a subset of {1, . . . , n} of cardinality
|γ |, then

∂ |γ |
γ �(X n) =

∑

α⊆γ

(−1)|α|�
(
X n

−α

)
, (6)

the sum being over all the subsets α of γ . For example, for
triplets of variables, the gradient of the O-information reads

∂3
i jk�(X n) = �(X n) − �

(
X n

−i

) − �
(
X n

− j

) − �
(
X n

−k

)

+ �
(
X n

−i j

)+ �
(
X n

−ik

) + �
(
X n

− jk

) − �
(
X n

−i jk

)
,

(7)

and measures the irreducible contribution to the O-
information by the triplet {i, j, k}, which cannot be ascribed
to the inclusion of pairs nor single variables of the triplet.
The potential of interpreting these quantities in a topological
manner, as has been done with the entropy [17], is an inter-
esting avenue for future research. Here we are addressing the
problem of a low-order representation of complex systems and
consequently we limit to consider just the first terms of the
expansion above.
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FIG. 1. Top left: The hexagonal geometry of the Ising model,
where continuous and dashed lines indicate ferromagnetic and an-
tiferromagnetic interactions, respectively. Top right: The gradients
with respect to single spins ∂i�(s7) are plotted versus the inverse
temperature β. Due to symmetry, the curves of peripheral spins
2–7 are equal. Bottom left: The second-order gradients ∂2

i j�(s7) are
plotted versus β. Due to symmetry, only four nonequivalent curves
are plotted. Bottom right: The local O-information I (si; s j ; s7

−i j ) is
plotted for the same pairs of spins.

III. PROOF OF CONCEPT

A. Frustrated Ising model

To illustrate the power of the proposed tools, let’s start
considering an Ising model with Hamiltonian given by

H(sn) = −
∑

i �= j

Ji jsis j . (8)

Our analysis considers a case where n = 7, with couplings
Ji j = ±1 as depicted in Fig. 1 (top-left panel). Informational
measures can be computed directly from the probability of a
spin configuration s7 = (s1, s2, . . . , s7), which is given by

p(s7) = e−βH(s7 )

Z
, (9)

where Z is the partition function,

Z =
∑

s1,··· ,s7

e−βH(s7 ), (10)

and β is the inverse temperature. An evaluation of ∂i�(s7)
shows that the contribution of peripheral spins is dominated
by redundancy, while the central spin (the one that, when
added to the rest of the system, introduces frustration) in-
troduces synergistic dependencies—with the synergy peaking
at a specific temperature. These findings confirm the rela-
tionship between synergy and frustration in spin systems
already noticed in Ref. [18] while explaining which elements

FIG. 2. The triangular geometry of the Ising model with
three-spin interactions with periodic conditions in one dimension
(indicated with dashed lines).

are most responsible for it. Additionally, an analysis using
second-order gradients shows that all the pairwise descriptors
are associated with redundancy when the temperature is low,
while for high temperatures they are synergistic for pairs con-
sisting of the central spin and a peripheral spin, as well as for
the pairs consisting of two neighboring spins on the periphery.
Overall, these findings add an important spatial description
to the previously reported relationship between synergy and
higher temperature systems [19]. We note that these findings
cannot be retrieved by applications of the local O-information
on the same system (Fig. 1, bottom-right panel).

B. Ising model with three-spin interactions

Here we study a ferromagnetic Ising model of eight spins
with the triangular geometry shown in Fig. 2 and three spin
interactions, with Hamiltonian

H3(s8) = −
∑

�i jk

sis jsk, (11)

where the sum runs over all the equilateral triangles. In the
thermodynamic limit, this model undergoes a phase transition
and it is exactly solvable [20]. In the finite-size system at hand,
we may associate a critical state to the peak of the magnetic
susceptibility, at a finite temperature, see Fig. 3 (bottom right).
Considering the gradient with respect to single spins (top left),
it shows synergy in anticipation of the critical state, becoming
redundant at criticality: similar behavior has been observed
for the ferromagnetic pairwise Ising on the square lattice [19].
A similar trend is observed for the links connecting neighbor-
ing spins on the lattice (top right), as well as for the triplets
of spins belonging to a triangle of the lattice (bottom left): it
seems that this peculiar pattern, consisting of synergy antici-
pating redundancy as the temperature is lowered, is observed
if the involved spins form an interaction term of the model’s
Hamiltonian. For other pairs of spins, and triplets of spins, the
pattern of gradients versus temperature is different.

C. Multivariate linear system

As a further simulated system, we consider ten Gaussian
processes whose dynamics and interactions are defined by the
ten-variate VAR model:

Y1,n = 2ρ1 cos(2π f1)Y1,n−1 − ρ2
1Y1,n−2 + ε1,n,

Y2,n = 0.5Y1,n−1 + ε2,n,

Y3,n = 0.5Y2,n−1 + ε3,n,

Y4,n = −0.5Y1,n−2 + 0.2Y3,n−1 + 0.5Y10,n−1 + ε4,n,
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FIG. 3. Top row: The triangular geometry of the Ising model
with three-spin interactions with periodic conditions (left) and the
magnetic susceptibility of the system (right) as a function of β.
Middle row: The gradients with respect to single spins ∂i�(s8) (left)
and second-order gradients ∂2

i j�(s8) are plotted versus β (right).
Bottom row: The third-order gradients ∂3

i j�(s8) are plotted versus
β (left) and the local O-information I (si; s j ; s8

−i j ) is plotted for the
same pairs of spins (right). Due to symmetry, only the nonequivalent
curves are shown.

Y5,n = 2ρ1 cos(2π f1)Y5,n−1 − ρ2
1Y5,n−2 + ε5,n,

Y6,n = 0.3Y7,n−2 + ε6,n,

Y7,n = 2ρ1 cos(2π f1)Y7,n−1 − ρ2
1Y7,n−2,

+ 0.3Y6,n−1 + ε7,n,

Y8,n = 2ρ2 cos(2π f2)Y8,n−1 − ρ2
2Y8,n−2 + 0.4Y2,n−2

+ 0.3Y3,n−1 − 0.4Y5,n−1 + 0.3Y7,n−1 + ε8,n,

Y9,n = 0.7Y8,n−1 − 0.2Y10,n−2 + ε9,n,

Y10,n = 0.4Y9,n−1 + ε10,n, (12)

where {ε} are independent and identically distributed (i.i.d.)
Gaussian noise terms with unit variances ρ1 = 0.9, ρ2 = 0.8,
f1 = 0.1, and f2 = 0.25. The network of interactions in this
system is depicted in Fig. 4, top; note that variables Y1, Y5, and
Y7 represent oscillators with a period equal to f −1

1 = 10 time
steps, while Y8 is a faster oscillator with period f −1

2 = 4. This
model has been proposed in Ref. [21] to mimic neurophysi-
ological signals, and the high order dependencies of circuits
of three and more variables have been analyzed in terms of
the O-information rate. However, the role played by single
variables or pairs of variables in informational circuits could
not be assessed in Ref. [21]—and this is exactly what we do
here using gradients of the O-information.

Since we wish to compare the outcomes from our analysis
with the known structure of the system, it is worth recalling
the notions of mediators, counfounders, and colliders, which
arise in the framework of third variable effects [22]. The case

FIG. 4. Top: Visual schematic of the VAR model described by
Eqs. (12). Bottom left: First-order gradients ∂i�(s10) of the ten
variables. Bottom right: Second-order gradients ∂2

i j�(s10) for each
pair of variables. The positive and negative networks are normalized
separately.

where a third variable acts as a mediator (X → mediator ←
Y), as well as when the third variable acts as a confounder (X
← confounder → Y), can be associated with redundancy. The
case of a collider (X → collider ← Y) is, instead, associated
with synergistic effects. In Fig. 4, bottom left, the first-order
gradients show that variables Y1, Y2, Y3, and Y4 are the most
redundant with the rest of the system: this is a consequence of
the loop of length four which passes through these variables
in the graph of interactions, which amounts to mediations
among variables. On the other hand, the variables Y5 and Y10

are synergistic: both variables belong to collider subgraphs of
interactions, and colliders are known to lead to synergy. Con-
cerning 2-gradients, we find both redundant and synergistic
pairs of variables. Comparing with the graph representing the
interactions of the system, all the synergistic gradients can be
related to colliders of the graph, while redundant gradients can
be related to mediators or confounders. What is remarkable is
that there are nodes (or links) which are related to colliders
and do not show an intense synergy, conversely there are
nodes (or links) which belong to chains (or counfounders
cliques) which are only slightly redundant. In other words, it
is very difficult to foresee which are the synergistic variables
of the system just by inspection of the graph of interactions;
indeed, the presence of loops implies a cooperative behavior
that renders some nodes (or some links) more important for
the dynamics of information during the evolution of the sys-
tem. It is worth mentioning that the frequencies of oscillators
also play a role in shaping the information flow pattern in this
system.
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TABLE I. Gradients of O-information for U.S. macroeconomic
indicators (only statistically significant values).

U.S. macroeconomics indicators ∂i�

COE 0.59
HOANBS 0.47
GDPDEF 0.33
UNRATE 0.27
FEDFUNDS 0.15
TB3MS 0.11
M2SL 0.09
GPDI −0.26

IV. APPLICATION TO U.S. ECONOMY

As an econometric application, let’s consider 14 U.S.
macroeconomic time series taken from the Federal Reserve
Economic Dataset (FRED) [23]. We consider quarterly indi-
cators over a period of 61 years (April 1959–January 2020)
for a total of 244 observations: paid compensation of em-
ployees (COE), consumer price index (CPIAUCSL), effective
federal funds rate (FEDFUNDS), government consumption
expenditures and investment (GCE), gross domestic product
(GDP), gross domestic product price deflator (GDPDEF),
gross private domestic investment (GPDI), ten-year trea-
sury bond yield (GS10), nonfarm business sector index of
hours worked (HOANBS), M1 money supply (narrow money
M1SL), M2 money supply (broad money M2SL), personal
consumption expenditures (PCEC), three-month treasury bill
yield (TB3MS), and unemployment rate (UNRATE). A wide
literature (see, e.g., Refs. [24,25]) has tried leveraging similar
data to address the fundamental question regarding the source
of economic fluctuations. Here we are neither interested in the
role played by shocks and frictions nor in predicting business
cycles; rather, our goal is to evidence high-order dependen-
cies in macroindicators of the U.S. economy. To deal with
stationary time series, the proposed approach has been applied
to the logarithmic returns of the series, over which the gradi-
ents of the O-information were calculated using the Gaussian
Copula approach described in Ref. [26]. For each gradient,
significance testing is performed via bootstrap sampling with
replacement: If the 95% confidence interval of that gradient
(here computed on 1000 realizations) does not contain zero,
the gradient is declared significant. Our results show that
seven indicators are redundant with the rest of the system (see
Table I—which is consistent with the prevalence of redun-
dancy in real-world multivariate systems, as reflected by latent
factors being typically associated to positive O-information
(see also Ref. [27]). In contrast, GPDI was found to play a
major synergistic role with respect to the rest of the system,
which may be associated with the fact that GPDI is considered
a good predictor of the productive capacity of the economy.

These first-order analysis can be enriched by the second-
order gradient. Results show that several pairs of variables
are involved in informational circuits, as shown in Fig. 5:
While first-order analysis shows a prevalence of redundancy,
second-order gradients show a prevalence of synergy. The
most connected node for synergy is GDP, displaying signif-
icantly negative ∂2

i j� with four other nodes. When compared
with the local O-information (Fig. 5, right), the proposed

FIG. 5. Left: Second-order gradients for pairs of economic indi-
cators. Right: local O-information of pairs of economic indicators.
Edge values are encoded by color (sign) and width (absolute
value). Only statistically significant edges—calculated via bootstrap
resampling—are included.

pairwise descriptors lead to a more sparse and parsimonious
pattern.

V. CONCLUSIONS

In this paper, we have introduced the gradients of O-
information as measures of how much, in a network of
interacting variables, a variable—or a pair of variables—are
functionally connected with the rest of a network through
redundant and synergistic informational circuits. The use of
this metric, together with measures of pairwise dependencies
and global measures of higher-order information like regu-
lar O-information, provides a more complete description of
the informational character of dynamics in complex systems.
To illustrate these ideas, we analyzed two small-size Ising
systems which allow exact calculation of the informational
quantities, thanks to their small state spaces. The first model
refers to pairwise interactions and shows that gradients pro-
vide a spatial description of high-order dependencies, while
confirming the relation between synergy and frustration in
spin systems. The second model displays three spins interac-
tions without frustration, and shows that the gradient of single
spins shows synergy anticipating the transition of the system
toward the ordered state.

Furthermore, we also analyzed a linear multivariate pro-
cess with assigned directed interactions. Our results show
that it is nontrivial to foresee the high-order dependencies
from the graph of (pairwise) interactions. In particular, while
a posteriori—limiting to third variable effects—one may
ascribe the informational character of nodes and links to
the presence of colliders, confounders, and mediators in the
network; in practice, the resulting flow of information is a
collective phenomenon which happens to be influenced by the
whole network of interactions.

By analyzing the dynamical interactions between U.S.
macroeconomics indicators, we have shown how these tools
are capable of revealing high-order informational circuits,
which evidenced the synergistic role of GPDI—it is a matter
for further research to verify if existing econometric models
are able to reproduce this high-order behavior exhibited by
data.
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It is worth stressing that it is not possible to compare
the strength of high-order terms (at the same order or across
orders); in other words, it is not possible, in general, to state
that a given contribution is more important than another: All
the terms, with their magnitude, contribute to characterize
the observed state of the system and gradient terms could be
seen as a fingerprint of the observed dynamics of the system.
Analogously, in principle, there is not a hierarchy between
gradients: each order of gradient measures irreducible effects
(i.e., not arising from lowest orders) therefore a priori we
cannot expect, e.g., that pairwise contributions are more in-
tense than three-variable ones. Depending on the application,
synergistic effects may show up at the level of first-order gra-
dients or second-order gradients, and so on. The extension of
these measures of high-order behavior to dynamical systems
scenarios is also in order, as that would open avenues for
investigating the function of complex networked systems on
a wide range of applications.
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APPENDIX A: BOUNDS FOR FIRST ORDER GRADIENTS
OF THE O-INFORMATION

Here we present the proof of the bounds in Eq. (3) in
the main text. Let us consider n random variables X n =
(X1, X2, . . . , Xn). Two popular extensions of the mutual in-
formation are the total correlation T (X n) and the dual total
correlation D(X n),

T (X n) =
n∑

i=1

H (Xi ) − H (X n), (A1)

D(X n) = H (X n) −
n∑

i=1

H
(
Xi

∣∣X n
−i

)
, (A2)

where H (·) is the Shannon entropy. The O-information � of
the system is given by the difference:

�(X n) ≡ T (X n) − D(X n) (A3)

= (n − 2)H (X n) +
n∑

k=1

[
H (Xj ) − H

(
X n

− j

)]
. (A4)

The gradient of the O-information (see the main text) is given
by

∂i�(X n) = �(X n) − �
(
X n

−i

)
(A5)

= (2 − n)I
(
Xi; X n

−i

) +
n−1∑

k=1

I
(
Xk; X n

−ik

)
. (A6)

Analogously, we can consider the gradient of the total corre-
lation

∂iT = T (X n) − T
(
X n

−i

) = I
(
Xi; X n

−i

)
� 0, (A7)

which, being equivalent to a mutual information, satisfies
0 � ∂iT � ln|X |, where |X | is the cardinality of the largest
alphabet in X n. On the other hand, the gradient of the dual

total correlation can be written as a sum of conditional mutual
information terms:

∂iD(X n) = D(X n) − D
(
X n

−i

)

=
n−1∑

k=1

[
H

(
X n

−i

) − H
(
X n

−ki

) − H (X n) + H
(
X n

−k

)]

=
n−1∑

k=1

[
I
(
Xi; X n

−i

) − I
(
Xi; X n

−ki

)]

=
n−1∑

k=1

[
H

(
Xk

∣∣X n
− jk

) − H
(
Xk

∣∣X n
−k

)]
(A8)

=
n−1∑

k=1

I
(
Xk ; Xj

∣∣X n
− jk

)
� 0, (A9)

thus implying that 0 � ∂iD(X n) � (n − 1)ln|X |.
Putting these results together, one can find that

−(n − 2)ln|X | � ∂i�(X n) � ln|X |. (A10)

The reminding of the proof demonstrates these bounds and
their tightness.

The upper bound is trivial; indeed, we have already shown
that ∂iD(X n) � 0, hence

∂i�(X n) = ∂iT (X n) − ∂iD(X n) � ∂iT (X ) � ln|X |. (A11)

The tightness of the upper bound can be proven by showing
that is achieved by the n-COPY gate, specifically by taking X1

as a Bernoulli variable with p = 1/2 and X1 = X2 = · · · = Xn.
Since we have that I (Xi; X n

−i ) = 1 and I (Xi; X n
−ik ) = 1 for i =

1, 2, . . . , n, using Eq. (A5) it follows that

∂i�(X ) = (2 − n) + (n − 1) = 1, i = 1, 2, . . . , n. (A12)

This covers the case of binary random variables, but the result
can be readily generalized to |X | > 2.

To prove the lower bound is a little more tricky: We start
noting that ∂i�(X n) can be written as a sum of conditional
interaction information terms. Indeed it has been shown in
Ref. [11] that O-information can be decomposed as a sum of
interaction information terms

�(X n) =
n−1∑

k=2

I
(
Xk ;Y k−1

1 ;Y n
k+1

)
, (A13)

where we used the notation Y q
k = (Xk, . . . , Xq ). For definite-

ness, we fix i = 1, obtaining

∂1�(X n) = �(X n) − �
(
X n

−1

)

=
n−1∑

k=2

I
(
Xk ;Y k−1

1 ;Y n
k+1

) −
n−1∑

k=3

I
(
Xk;Y k−1

2 ;Y n
k+1

)

= I
(
X2; X1;Y n

3

) +
n−1∑

k=3

[
I
(
Xk;Y k−1

1 ;Y n
k+1

)

− I
(
Xk ;Y k−1

2 ;Y n
k+1

)]

=
n−1∑

k=2

I
(
Xk ; X1;Y n

k+1

∣∣Y k−1
2

)
. (A14)
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Now we notice that each term in the sum can be written
as a difference of two conditional mutual information terms
(bounded between 0 and ln|X |), hence each term has the
following bounds:

−ln|X | � I
(
Xk ; X1;Y n

k+1

∣∣Y k−1
2

)
� ln|X |. (A15)

This implies that

−(n − 2)ln2|X | � ∂1�(X n), (A16)

thus proving the lower bound. Finally, to prove that the
lower bound is tight, we consider the n-XOR gate, that is,
X1 . . . Xn−1 as Bernoulli random variables with p = 1/2 and
Xn = (

∑n−1
j=1 Xj ) mod 2. Using Eq. (A5), we have I (Xi; X n

−i ) =
1 and I (Xk; X n

−ik ) = 0; then

∂i� = (2 − n), i = 1, 2, . . . , n. (A17)

Then, the lower bound is tight, since is achieved by the vari-
ables composing a n-XOR gate.

APPENDIX B: O-INFORMATION OF U.S.
MACROECONOMIC INDICATORS:

TRIPLETS AND QUADRUPLETS

Concerning the U.S. economic data set, we report here
the conventional O-information analysis, taking into account
triplets and quadruplets of variables. We first obtain all the
triplets which are significantly synergistic and those which
are significantly redundant. Then, for each variable, we sum
� over all the redundant and significant triplets which contain
that variable, obtaining R� which is an index of redundancy
of that variable. The same is done summing over synergistic
triplets, thus leading to an index of synergy of that variable
R�: The results are shown in Fig. 6, top left, where these
indexes are compared with the first-order gradient as found
by the proposed approach. Analogously, for each pair of
variables we sum over the triplets containing that pair and
obtain a synergy index and a redundancy index for all pairs of
variables, depicted in Fig. 6, top middle, and compared with
second-order gradients. In Fig. 6, top right, the distribution of
� for all the significant triplets.

In the second row of Fig. 6, the same quantities are
calculated using quadruplets: We stress that no synergistic
quadruplet is found to be statistically significant.

These results show that, as far as the redundancy is con-
cerned, the proposed approach leads to a pruning of redundant

FIG. 6. The first row depicts the redundancy index R� and the
synergy index S� in the univariate (left) and pairwise (right) case,
see the text, plotted as a function the first order gradients and second
order gradients, respectively, of the corresponding variable or pair of
variables; in the second row the same analysis has been shown for the
significant O-information quadruplets. Red and blue dots indicates
R� and S�, respectively. In the third row we depict the distribution of
the O-information values of all the significant triplets.

pairs of variables with respect to the index R�, as shown by
the vertical cloud of red points around ∂2

i j� = 0. Moreover,
the redundant pattern of R� is quite stable going from triplets
to quadruplets. On the other hand, as far as the synergy is
concerned, ∂i� seems unrelated to S� calculated on triplets.
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