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Quantum coherent states of interacting Bose-Fermi mixtures in one dimension
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We study two-component atomic gas mixtures in one dimension involving both bosons and fermions. When
the interspecies interaction is attractive, we report a rich variety of coherent ground-state phases that vary with
the intrinsic and relative strength of the interactions. We avoid any artifacts of lattice discretization by developing
an implementation of a continuous matrix-product-state Ansatz for mixtures and priorly demonstrate the validity
of our approach on the integrable point that exists for mixtures with equal masses and interactions (Lai-Yang
model), where we find that the Ansatz correctly and systematically converges towards the exact results.
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Since the experimental achievement of quantum degener-
acy in weakly interacting atomic gases, first for bosons [1]
and soon after for fermions and boson-fermion mixtures [2,3],
there has been a tremendous interest in the study of such
systems. They provide an ideally clean and controllable exper-
imental platform for fundamental studies of unitary quantum
gases and for their use in applications ranging from quantum
simulation to metrology. For the case of mixtures, the new
experimental platform reignited a long-standing theoretical
interest connecting back to 4He-3He solutions [4] and related
to superfluidity and phase separation, but now combined with
new practical considerations, since mixtures turned out to be
also a useful stepping stone for the evaporative cooling of
fermions with otherwise vanishing s-wave cross sections (a
method known as sympathetic cooling [3,4]).

While the initial theoretical studies of gas mixtures
(with mixed statistics) considered three-dimensional (3D)
gas clouds [5], soon the interest expanded to include one-
dimensional confinement (via elongated traps or optical
lattices) [6–8]. Those early studies unveiled a rich Luttinger-
liquid phenomenology with instabilities towards collapse,
demixing, and pairing depending on the sign and strength of
the interactions [8]. Subsequent studies paralleled the even
greater theoretical activity attracted by two-component Fermi
mixtures [9] that accompanied the experiments as they also
evolved from 3D-trapped clouds [10] to the realm of 1D con-
finement [11]. A similar evolution in the experimental study
of Bose-Fermi mixtures has the potential to be equally rich
and interesting.

The physical modeling of (one-dimensional) Bose-Fermi
mixtures of atomic gases with short-range (contact) inter-
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actions is well approximated by the generalized Lai-Yang
Hamiltonian [12],

HLY = HKIN + HINT, (1)

HKIN =
∫ L

0
dx

∑
α=b,f

h̄2

2mα

∂xψ̂
†
α (x)∂xψ̂α (x), (2)

HINT =
∫ L

0
dx

∑
α,β=b,f

gαβ

2
ψ̂†

α (x)ψ̂†
β (x)ψ̂β (x)ψ̂α (x), (3)

where the fields ψ̂†
α (x) create bosons or fermions with

mass mα (for the fermionicity α ∈ {b = 0, f = 1}, respec-
tively) and obey the appropriate (anti)commutation relations,
[ψ̂α (x), ψ̂†

β (y)](αβ ) = δα,β δ(x − y), where [A, B]α = AB −
(−1)αBA. They interact with a contact-potential strength
gαβ = 2h̄ω⊥aαβ , where aαβ is the corresponding scattering
length between the two species and ω⊥ is the common trans-
verse trapping frequency [13]. Since fermions avoid each
other, for contact interactions (with a range smaller than the
exchange-correlation hole) the strength becomes arbitrary,
and we can set gff = 0.

This model has been studied (away from integrable points)
using mean-field and field-theoretical approaches (such as
bosonization in the hard-core-boson limit) [6,8,14]. However,
most of the further studies of one-dimensional Bose-Fermi
mixtures [7,15] relied on lattice discretizations and map-
pings to the Bose-Fermi Hubbard model, plus the use of
wave-function approximations such as the BCS mean-field,
Gutzwiller and Jastrow Ansätze [16] or numerical methods
such as the matrix-product-based density matrix renormaliza-
tion group (DMRG) [17].

During the last decade, a generalized coherent-state ver-
sion of the matrix-product variational Ansatz for quantum
fields in a one-dimensional continuum was successfully put
forward [18–37]. This collective work explored the physics of
a large number of systems of single or multicomponent gases
with a given type of statistics. We present here an extension of
those developments that demonstrates an efficient implemen-
tation of the continuum matrix-product-state (cMPS) Ansatz
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for a two-component gas with mixed statistics. We apply it to
the study of the Lai-Yang model, first validating the method
against the Bethe Ansatz at the (nontrivial) integrable point
and then studying the nature of pairing tendencies in certain
regions of the nonintegrable regime.

A cMPS for a binary (or multicomponent) gas mixture, for
a system of length L and periodic boundary conditions, has
the general form [21,38]

|χ〉 = Traux
[
Pe

∫ L
0 dx[Q(x)⊗Î+∑

α Rα (x)⊗ψ̂†
α (x)]]|0〉, (4)

where the complex-valued local matrices Q(x) and Rα (x)
act on an auxiliary space of dimension D, called the bond
dimension. In addition, α is the index for the atom type (b or
f), Î is the identity operator on the Fock space, Traux is a trace
over the auxiliary space, Pe is a path-ordered exponential,
and |0〉 is the bare vacuum state annihilated by all the field
operators. Henceforth, we will consider flat-bottom trapping
potentials and adopt a phase-modulated uniform Ansatz [27]
given by Q(x) = Q and Rα (x) = eiqαxRα , where Q and Rα are
three position-independent matrices and qα are two additional
real-valued variational parameters (continuum in the large-L
limit).

For regularity, the Rα have to obey the same local algebra as
the matching field operators, [Rα, Rβ ](αβ ) = 0. In particular,
nilpotency in the fermion sector, R2

f = 0, has to be imple-
mented exactly for improved numerical stability [27]. Thus,
ignoring zero eigenvalues, Rf has to have an unrescaled Jordan
form [39] composed entirely of 2 × 2 blocks with zero Jordan
eigenvalue (i.e., proportional to the spin-rising Pauli matrix,
σ+); notice this restricts D to take only even values. The
inclusion of scaling parameters in the Jordan blocks provides
better convergence for mixtures with (very) different densities
of each species. Explicitly, one can write Rf = σ+ ⊗ 
 and
enforce commutation with its boson counterpart by taking
Rb = σ ↑ ⊗ Ab + σ+ ⊗ Bb + σ ↓ ⊗ Db, where Ab, Bb, Db, 
 ∈
CD/2×D/2 and σσ = |σ 〉〈σ | are Pauli projectors. The enforce-
ment requires 
Db = Ab
, which we do by solving for Db and
keeping the other matrices arbitrary for variational optimiza-
tion [40,41].

The cMPS norm is given by 〈χ |χ〉 = Tr[eT L], where T =
T+ and T± = Q̄ ⊗ I + I ⊗ Q + R̄b ⊗ Rb ± R̄f ⊗ Rf (the bars
denote complex conjugation of matrix entries). Noticing that
the states are invariant under arbitrary similarity transfor-
mations of the matrices (that leave the trace invariant), one
identifies the possibility of making the gauge-fixing choice
Q† + Q + R†

bRb + R†
f Rf = 0. That guarantees that a cMPS has

unit norm in the thermodynamic limit [18,22]. We can then
have a right identity normalization of T by taking Q = A −
1
2 R†

bRb − 1
2 R†

f Rf, where A is an arbitrary anti-Hermitian ma-
trix [42]. We find that a numerically accurate normalization of
T is important for the convergence properties of the algorithm.

The α-atom number density can be readily com-
puted as nα = 〈ψ̂†

α (x)ψ̂α (x)〉 = Tr[eT L(R̄α ⊗ Rα )] and sim-
ilarly for the corresponding kinetic-energy density by us-
ing 〈∂xψ̂

†
α (x)∂xψ̂α (x)〉 = Tr[eT L{c.c. ⊗ (iqαRα + [Q, Rα])}].

Interaction terms and correlators admit similar (longer)
expressions in which the Rα matrices replace the field
operators [18,22,27].

FIG. 1. Variational cMPS ground-state energy, e(γ ) =
2mE/(n3 h̄2L), for the Lai-Yang model with different bond
dimensions as a function of the fermion-density fraction and
compared with the Bethe Ansatz result. Inset: cMPS convergence
with bond dimension of the relative energy error, �E = EcMPS − E ,
as a percentage of the Bethe Ansatz value, for nf/n = 0.5 and 0 (the
latter is the Lieb-Liniger limit that we computed with a bosons-only
cMPS that has more variational parameters for a given D and yields
lower energies).

In order to demonstrate the accuracy of the cMPS Ansatz,
we focus first on the Lai-Yang integrable point [12,43–45],
which corresponds to equal masses (mb = mf = m) and in-
teractions (gbb = gbf = gfb = g > 0 [46]) between bosons and
fermions. In experiments, the first condition can be approxi-
mately fulfilled by considering different isotopes of the same
atom, and the second one by tuning the interactions via shape
and Feshbach resonances (deviations break integrability but
can still be modeled within cMPS [32]). There have been
several studies of this special case using the Bethe Ansatz and
framed in the modern context of cold-atom gases [47–50].
They found that, despite earlier suggestions, the demixing
tendency is absent for the homogeneous system (but one can
still have trap-induced Bose-Fermi separation; cf. Ref. [51]).
We will not explore those questions here; rather, we will focus
on comparing variational ground-state energies with the exact
results and assessing the convergence properties of cMPS; see
Fig. 1. We will work with units in which h̄ = 1 and m =
1 [52], will take n = nb + nf = 1/4 per unit length (in some
arbitrary units), and the interaction strength will be given by
setting the dimensionless parameter γ = g/n = 8 [53].

We observed good systematic convergence of the cMPS
energies as a function of bond dimension—as expected, since
the Ansatz captures progressively more and more multiparti-
cle entanglement. For two-component Bose-Fermi mixtures,
convergence in D is slower than in the Lieb-Liniger case,
but faster than for the Gaudin-Yang model (the two-fermion
Ansatz can be constructed as an outer nesting layer on the one
given here and is further restricted to D being a multiple of 4;
cf. Ref. [27]).

We minimized the energy of the system directly in the
L → ∞ limit and tested several standard local-optimization
algorithms. We found that a principal-axis minimization was
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usually the best strategy [54], although other ones, such as
the Nelder-Mead simplex method, also converged well. The
global optimization can be done using simulated annealing,
but we found that repeated random starts and parametric
variations provided a simpler strategy and gave comparable
results for not-too-large bond dimensions. We targeted fixed
particle densities using (augmented) Lagrange multipliers and
penalties. The single-optimization running times on regular
hardware ranged from a few seconds for D = 2 to several
hours for D = 8.

Having established the viability of the cMPS Ansatz for
the study of mixtures, we next move on to address the case
of regimes with attractive interactions between bosons and
fermions, gbf = gfb = −g < 0. All the while, the interactions
between bosons shall remain repulsive, gbb/g = G > 0, in
order to guarantee the thermodynamic stability of the system
by preventing bosonic collapse. The large-G limit corresponds
to the Tonks-Girardeau regime [55] in which the effective
exclusion statistics of the bosons gradually approximates that
of fermions and the low-energy spectrum of the model con-
verges to that of a Gaudin-Yang gas. One would thus expect a
tendency to (algebraic) superconducting order as in the two-
fermion case; however, while some of this intuition is correct,
the exchange statistics of the bosons remains bosonic (they
tend to hard-core bosons), and the emerging physical picture
is considerably more subtle, as shall be established below.

Our implementation of the cMPS Ansatz constitutes a sui
generis matrix representation of generalized coherent states,
and as such it is particularly well suited to capture the
emergence of ground states with spontaneously broken U(1)
symmetries and off-diagonal (quasi-)long-range order. For in-
stance, bosonic field operators can acquire a nonzero vacuum
expectation value (vev), 〈ψ̂b(x)〉, that signals the occurrence
of (quasi-)Bose-Einstein condensation (BEC), a state with
macroscopic quantum phase coherence [56]. We shall refer
to the absolute values of such appropriately normalized vevs
as coherence order parameters (cf. Ref. [57]). They take
values in the unit interval, and a comprehensive set of them
is displayed in Fig. 2 for a wide range of values of γ = g/n
and G.

Due to their statistics, fermions cannot condense as single
atoms, but they can pair up and condense as a molecular
BEC (localized pairs), or a more BCS-like state (extended
pairs), or any intermediate scenario (BEC-BCS crossover).
Such pair-coherent states (also possible for bosons) are sig-
naled by the vevs 〈ψ̂α (x)ψ̂α (x + δx)〉, where x is arbitrary
due to translation invariance and δx is chosen to maxi-
mize the amplitude (and corresponds to the most likely
atom-atom distance in the pair, which has to be nonzero
for spinless fermions due to exclusion but turns out to be
zero for bosons). Naïvely, one would want to consider also
mixed-species pairs, but their combined Fermi-Dirac statis-
tics precludes condensation (even in the Tonks-Girardeau
regime). Rather, Bose-Fermi coherence manifests in com-
posite order parameters (cf. Refs. [15,58]). After exploring
different correlators, we are led to define the local bf-molecule
field ψ̂bf(x) ≡ ψ̂b(x)ψ̂f(x) and consider its pair-of-pairs (PoP)
vev defined as above but with α → bf.

The combined consideration of all the order parameters
defined above yields a comprehensive picture of a ground-

FIG. 2. Normalized coherence order parameters for a Lai-Yang
gas with repulsive interboson and attractive boson-fermion interac-
tions. The calculations were done using D = 4 cMPS states, and
the typical error is expected to be in the 5–10% range. Contrasting
behaviors are clearly seen between the strongly (γ � 1) and weakly
(γ � 1) interacting regimes.

state phase diagram with four starkly different sectors and
interpolating crossover regions between them. This infor-
mation is schematically summarized in Fig. 3 to guide the
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FIG. 3. Schematic representation of the different quasi-long-
range-order ground-state phases present when the interactions among
bosons are repulsive while bosons and fermions attract each other, as
a function of interaction strengths. The dominant orders are indicated
in each case.

discussion. Rather than comparing algebraic exponents as in
bosonization-based studies, cMPS forces the breaking of U(1)
symmetries and allows the direct comparison of coexisting
coherence-order-parameter amplitudes (normalized so that the
dominant phases can be identified by their larger relative mag-
nitudes in Fig. 2). The simplest case is the weakly interacting
limit deep into the third quadrant of Fig. 3, in which 〈ψ̂b〉
is the dominant order (approximately saturating the bound)
signaling boson condensation. Notice in the top panel of Fig. 2
that 〈ψ̂bψ̂b〉 is also comparably large, as expected for true
higher-order coherence [57], while the other order parameters
involving fermions are highly suppressed in comparison. In-
creasing G and moving into the fourth quadrant, the amplitude
of the 〈ψ̂b〉 order parameter is partially suppressed, and the
coherence reduces to first-order only. On the other hand, the
〈ψ̂fψ̂f〉 order is enhanced in the process, with extended BCS-
like pairing, and we find a scenario of combined coherence
(compatible with the polaronic picture of earlier studies [58]).

If, instead, we keep G small and increase γ , going into
the second quadrant, the single-boson coherence is suppressed
to very low values while the two-boson one remains close
to maximal, and in addition the two-fermion coherence is
greatly enhanced and more BEC-like than in the fourth quad-
rant (see the middle panel of Fig. 2). This is interpreted as
Bose-Fermi mutualism, with the bosons providing the glue for
the fermionic pairing while, simultaneously, the fermions do
the same for the bosonic pairing. The two order parameters
are not mixed (they involve different degrees of freedom), but

neither condensate would be able to exist without the other.
Finally, when G and γ are both large, we go into the first
quadrant of Fig. 3. We find that all of the purely bosonic or
purely fermionic orders are suppressed to zero (see the top
and middle panels of Fig. 2), while only the mixed 〈ψ̂bfψ̂bf〉
four-particle coherence remains present in the system (bot-
tom panel of the same figure). The latter corresponds to
tightly bound Bose-Fermi molecules that condense in loosely
bound pairs. Moreover, this PoP order is also enhanced in
the intermediate-coupling region at the center of the phase
diagram, where it coexists with a strength similar to that
of the dominant orders from the other quadrants in a large
mixed-coherence crossover region.

We have focused on the case of balanced populations of
equal-mass Bose and Fermi atoms, but those conditions might
well not be the most easily achievable in experiments. We
also considered the case of a 20% density imbalance (both
ways) and found that the phase diagram remains the same
asymptotically while the location of the crossover boundaries
shifts with the density ratio. One would expect similar results
as a function of mass imbalance, and cMPS would be an
ideal tool for that study (based on our past experience with
Gaudin-Yang systems [32]); however, since the space of pa-
rameters is large, we leave a focused study for the future, to
be guided by the parametric choices dictated by experimental
considerations. Similarly to the case for two-fermion gases, a
convenient setup might be a quasi-one-dimensional array of
tubes created by a transverse optical lattice. This would turn
the ordering tendencies of the system into true long-range or-
der by exploiting the 1D-3D crossover and can have a number
of additional experimental benefits [11,15,59]. On the other
hand, the inclusion of a (weak) longitudinal optical lattice
would break translation invariance and open up the possibility
of density-wave orders that do not exist in the continuum (as
found in studies based on the Bose-Fermi Hubbard model).
The cMPS Ansatz implementation can be extended to that case
as well, as has been done already for Lieb-Liniger gases [33].
This carries the advantage of treating translation invariance,
or lack thereof, without the additional umklapp scattering
introduced by the lattice discretization needed for the use of
standard MPS methods (which, moreover, require the trun-
cation of the local bosonic Hilbert spaces at each lattice site
and introduce biases in the capture of BEC order). Finally,
our implementation of the particle statistics turns out to be
quite elegant and simpler than in the MPS/DMRG setting (cf.
Ref. [17] and the large body of subsequent work).

This work was funded by the NSF (Grant No. PHY-
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