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Topological squashed entanglement: Nonlocal order parameter for one-dimensional
topological superconductors
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Identifying entanglement-based order parameters characterizing topological systems, in particular topological
superconductors and topological insulators, has remained a major challenge for the physics of quantum matter in
the last two decades. Here we show that the end-to-end, long-distance, bipartite squashed entanglement between
the edges of a many-body system, defined in terms of the edge-to-edge quantum conditional mutual information,
is the natural nonlocal order parameter for topological superconductors in one dimension as well as in quasi-one-
dimensional geometries. For the Kitaev chain in the entire topological phase, the edge squashed entanglement
is quantized to ln(2)/2, half the maximal Bell-state entanglement, and vanishes in the trivial phase. Such a
topological squashed entanglement exhibits the correct scaling at the quantum phase transition, is stable in the
presence of interactions, and is robust against disorder and local perturbations. Edge quantum conditional mutual
information and edge squashed entanglement defined with respect to different multipartitions discriminate
topological superconductors from symmetry breaking magnets, as shown by comparing the fermionic Kitaev
chain and the spin-1/2 Ising model in transverse field. For systems featuring multiple topological phases with
different numbers of edge modes, like the quasi-1D Kitaev ladder, topological squashed entanglement counts
the number of Majorana excitations and distinguishes the different topological phases of the system. In fact,
we show that the edge quantum conditional mutual information and the edge squashed entanglement remain
valid detectors of topological superconductivity even for systems, like the Kitaev tie with long-range hopping,
featuring geometrical frustration and a suppressed bulk-edge correspondence.
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I. INTRODUCTION

Condensed matter physics is witnessing, among others,
two groundbreaking and concurring developments, respec-
tively the application of concepts and methods of quantum
information science and the investigation of topological
phases of quantum matter.

Via the identification of entanglement boundary laws and
their violations, bipartite block entanglement (as measured by
the reduced von Neumann entropy in a bipartite system) has
become a central tool for the characterization and the diag-
nostics of large classes of phenomena in quantum many-body
physics [1–5].

At the same time, by featuring perfectly conducting edge
modes, patterns of long-distance entanglement and robust
ground-state degeneracy without symmetry breaking, three
traits that generalize the concept of ordered phase and phase
transition beyond the Ginzburg-Landau paradigm, topological
states of matter have attracted increasing attention both for

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

their fundamental interest and their potentiality for applica-
tions [1–3,6–9].

In particular, topological superconductors hosting edge
Majorana zero energy modes (MZEMs) [10] have been pro-
posed as the working principle of various disruptive quantum
technologies, including fault-tolerant topological quantum
computation [11–13].

Topological order in two-dimensional systems is iden-
tified and detected by the sub-leading contribution to the
bipartite bulk-boundary von Neumann entanglement en-
tropy, the so-called topological entanglement entropy (TEE)
[14–16]. This is a great success of entanglement theory ap-
plied to the investigation of quantum matter.

Yet, the approach based on block entropies and simple
bipartitions of a system into two connected parts (also often
named “halves” or “blocks”) is limited and cannot be applied
to various important instances, thus showing the need for
more general and advanced methods of entanglement theory.
Indeed, in one dimension at zero temperature, no measure of
bipartite entanglement based on simple bipartitions, including
the entanglement spectrum, can discriminate topologically or-
dered phases from those corresponding to symmetry-breaking
order [17].

Moreover, irrespective of the spatial dimension, TEE can-
not be generalized to finite-temperature and nonequilibrium
processes since the von Neumann entropy, when defined on
mixed states, includes contributions both from quantum and
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classical correlations, thus ceasing to be a genuine, bona fide
measure of entanglement and nonclassicality.

A further limitation of the approach based on the ele-
mentary bipartition of the system in two connected parts (or
halves, or blocks) is that it is not suitable for the charac-
terization and quantification of the nonlocal correlations that
are in place between arbitrary subsystems, either connected
or disconnected; in particular, block entanglement entropy
provides no information on the physics of edge correlations
and cannot characterize and quantify the long-distance entan-
glement between edge modes. Therefore, going beyond the
approach based on simple bipartitions by introducing bipar-
tite entanglement measures defined on multipartitions would
allow to identify richer conceptual structures and investigate
broader classes of complex physical phenomena.

Thus motivated, in the present work, we discuss a
multipartition-based measure of bipartite entanglement, the
squashed entanglement (SE), previously introduced in the
general context of quantum information theory, and we apply
it to the study of one-dimensional and quasi-one-dimensional
topological superconductors with model Hamiltonians sup-
porting Majorana zero energy modes (MZEMs) at the system
edges. We show that the long-distance squashed entangle-
ment SE between the edges, that we name topological
squashed entanglement (TSE), is the nonvanishing, nonlo-
cal order parameter that (1) characterizes unambiguously the
topologically ordered phases of topological superconductors,
(2) discriminates topological order from Ginzburg-Landau
order associated to spontaneous symmetry breaking and
nonvanishing local order parameters, and (3) distinguishes
between different types of topologically ordered phases. In
order to avoid confusion with the standard nomenclature about
(local) order parameters, from now onward, we will denote by
topological order parameter or order parameter for topological
superconductivity a nonlocal quantity that fulfils all the above
criteria, being also very robust under even strong variations of
the sample conditions (disorder or any local perturbation) and
scaling exponentially with the system size to an asymptotic
topological invariant. The latter is a numerical constant mea-
surable with arbitrary precision and defined in terms of bulk
Hamiltonians. The nonlocal and quantized nature of such a
quantity is the main difference with order parameters classi-
fying other phases of matter and standard Ginzburg-Landau
order associated to spontaneous symmetry breaking.

As we will show, one can define two basic forms of upper
bounds on bipartite SE, respectively in terms of the tripar-
titions and quadripartitions that correspond to two different
forms of the bipartite quantum conditional mutual information
(QCMI). This general property of SE immediately allows to
introduce two forms of the corresponding TSE order param-
eter, the first one based on edge-bulk-edge tripartitions, the
second one based on edge-bulk-bulk-edge quadripartitions.
We will then show how the latter identifies unambiguously
the topological regime in the Kitaev fermionic chain, dis-
criminates it from standard Ginzburg-Landau order in the
spin-1/2 Ising chain, is stable in the presence of interac-
tions, and is robust against the effects of disorder. Further,
we will discuss how the TSE discriminates between different
topological phases in fermionic systems defined on quasi-one-
dimensional geometries of higher complexity such as two-leg

Kitaev ladders. Finally, we will consider models with long-
range hopping and consequently suppressed bulk-boundary
correspondence, such as the Kitaev tie, and we will show that
even in this case the TSE is a good identifier of topological
features.

In the present work, we focus on the thorough investigation
of edge QCMI and edge SE to three paradigmatic instances of
1D and quasi-1D topological systems. In the conclusions, con-
cerning future perspectives, we will discuss how to generalize
the present framework to the study of the edge entanglement
structure of many-body systems in higher dimensions.

The paper is organized as follows. In Sec. II, we introduce
the QCMI and the SE, review their main properties, and intro-
duce the two fundamental forms of upper bounds on the SE
based on the QCMI. In Sec. III, we review the basic models of
topological superconductivity in different lattice geometries
and define the different forms of the TSE order parameter
corresponding to tripartitions and quadripartitions. In Sec. IV,
we discuss in detail the TSE of the 1D Kitaev model for topo-
logical superconductivity, compare it to the end-to-end SE in
the Ising chain, and discuss the effects of interactions and
disorder. In Sec. V, we study the TSE of the two-leg Kitaev
ladder and show how it identifies and distinguishes between
the different topological phases of the model, while in Sec. VI,
we carry out the same investigation for the case of the Kitaev
tie with long-range hopping and suppressed bulk-boundary
correspondence. Finally, in Sec. VII, we review our results
and consider possible generalizations and further applications
of SE in the study of quantum matter.

II. SQUASHED ENTANGLEMENT

A. Definition and fundamental properties

We are looking for a measure of bipartite entanglement that
has the following properties. (1) It is defined in any spatial
dimension, at any temperature, and on all quantum states
(pure or mixed). (2) It is bipartite but generically defined in
terms of nonoverlapping, distinguishable multipartitions, so
that it can be defined on pairs of any two subsystems, either
connected or disconnected, and must reduce to the bipartite
von Neumann entanglement entropy on pure states of simple
bipartitions. (3) It is a true, bona fide measure of bipartite
entanglement, i.e., a convex entanglement monotone that in
addition is also asymptotically continuous, monogamous, and
additive on tensor products [18,19].

In fact, such a measure exists and is the so-called squashed
entanglement (SE) [20,21]. Given a quantum state ρAB of a
bipartite quantum system AB, the SE Esq(ρAB) between sub-
systems A and B in state ρAB is defined as

Esq(ρAB) = inf
ρABC

{I (A : B|C)}, (1)

where the infimum is taken over all the quantum-state ex-
tensions of arbitrary size ρABC such that ρAB = TrC (ρABC ),
and I (A : B|C) is the quantum conditional mutual information
(QCMI) between subsystems A and B conditioned by exten-
sion C:

I (A : B|C) = 1
2 [S(ρAC ) + S(ρBC ) − S(ρC ) − S(ρABC )], (2)
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where ρAC = TrB(ρABC ), ρBC = TrA(ρABC ), ρC = TrAB(ρABC ),
and S(ρ) denotes the von Neumann entropy of a given quan-
tum state ρ [19]. Notice that here and in the following, for
a matter of convenience, we adopt a definition of the QCMI
that differs slightly, by a prefactor 1/2, from the original
one [22,23]; consequently, the same factor is conveniently
absorbed in our definition of the SE.

SE owes its name by the construction Eqs. (1) and (2)
that “squashes” out the classical correlations to leave only the
quantum contributions to the mutual information between par-
ties A and B conditioned by party C (that in informatic terms
can be seen as the “conditioning environment”). SE is a lower
bound on the entanglement of formation and an upper bound
on the distillable secret key or distillable entanglement of a
quantum state or a quantum channel [21,24] and reduces to the
von Neumann entanglement entropy on pure states of a bipar-
tite system AB. Indeed, if ρAB is pure, then ρABC = ρAB ⊗ ρC ,
and thus Esq(ρAB) = [S(ρA) + S(ρB)]/2 = S(ρA) = S(ρB).

SE is unique in that it is the only known entanglement
quantifier that enjoys all the desirable axiomatic properties
required for a bona fide measure of entanglement [19].

Firstly, SE is a full entanglement monotone, i.e., nonin-
creasing under local operations and classical communication
(LOCC), and convex [21]: Esq(λρ + (1 − λ)σ ) � λEsq(ρ) +
(1 − λ)Esq(σ ), with λ ∈ [0, 1].

Moreover, SE enjoys important additional properties that
promote it to a full entanglement measure. To begin with, SE
is additive on tensor products [21]: Esq(ρ ⊗ σ ) = Esq(ρ) +
Esq(σ ). Additivity is a very important requirement: the total
entanglement of a global state that is the tensor product of
states of independent (uncorrelated) systems must be the sum
of each individual entanglement. This property must hold
for entanglement and entropy just like any other extensive
physical quantity. Entanglement monotones that fail to be
additive, like the entanglement negativity, can be at best only
approximate quantifiers of quantum entanglement.

SE is also continuous [25]: if two sequences of states
ρm and σm converge in trace norm: limm→∞ ‖ρm − σm‖1 =
0, then limm→∞ Esq(ρm) − Esq(σm) = 0. Continuity is also
a very important requirement: two states that are infinitely
close in Hilbert space according to a contractive norm must
differ infinitesimally in their physical properties, including
entanglement. Many entanglement quantifiers that are widely
popular and used because of their straightforward computabil-
ity, like the entanglement negativity, do not enjoy continuity.

Furthermore, SE is faithful, that is, Esq(ρAB) � 0, and
Esq(ρAB) = 0 if and only if ρAB is separable [26]. Again,
this is a very important property because it guarantees that
a vanishing SE implies with certainty that a quantum state is
separable. Unfaithful entanglement quantifiers can be zero on
entangled states, the paramount example being, once more,
the entanglement negativity.

Finally, SE satisfies entanglement monogamy [27]; given
three parties A, B, and C, the following monogamy inequality
holds [28]: Esq(ρABC ) � Esq(ρAB) + Esq(ρAC ), that is, bipar-
tite SE cannot be freely shared among multiple parties; in
particular, if A is maximally entangled with B, then it cannot
be entangled with C. This property assures that one can intro-
duce generalizations of SE in order to measure multipartite
entanglement beyond the bipartite one. Moreover, the fact

that SE is monogamous has important consequences on the
structure of the bipartite SE between bulk and edge modes
that we will study later on in this work (We note in passing
that the above monogamy inequality can be extended straight-
forwardly to an arbitrary number N of parties [29]).

SE is an entanglement measure with very important op-
erational meaning. In quantum communication theory it is
defined in terms of the communication cost in the distribution
of quantum states among multiple parties [30] and it is a tight
upper bound on the length of a secret key shared by two parties
holding many copies of a quantum state [24,31]. Moreover, it
allows for multipartite extensions with operational meaning
[32]. Finally, SE plays a fundamental role in channel theory,
as the SE of a quantum channel is the optimal upper bound on
the quantum communication capacity of any channel assisted
by unlimited classical communication [33]. In particular, SE
provides the tightest known bound for this type of capacity
(also called two-way assisted quantum capacity) for the case
of the amplitude damping channel [34].

Because of all the above properties, SE has been dubbed
the “perfect” measure of entanglement [19], the only serious
drawback concerning its computability. In fact, although com-
puting SE has been shown to be an NP-complete problem
[35], nevertheless it has been calculated analytically for some
nontrivial classes of states [36,37]. Moreover, and perhaps
more importantly, SE enjoys a set of very useful lower bounds
in terms of the reduced von Neumann entropies, the relative
entropy of entanglement and the relative 2-Rényi entropy
[31,38–40]. These lower bounds can be combined with the
natural upper bounds in terms of the tripartite and quadri-
partite quantum conditional mutual information (QCMI) that
we will introduce in the following, in order to provide a tight
quantitative characterization of SE.

B. From bipartitions and two blocks to multipartitions and any
pair of subsystems

Given a physical system G in a pure state ρG = |G〉〈G|,
for instance a ground state in condensed matter physics and
quantum statistical mechanics or a vacuum state in quantum
field theory, one typically focuses on simple bipartitions G =
AB of system G in two connected subsystems (blocks, parts,
or halves) A and B, and considers then the pure–state bipartite
entanglement between the two subsystems as quantified by the
so-called von Neumann block entanglement entropy S(ρA) =
S(ρB) of the reduced local states ρA = TrBρG or, equivalently,
ρB = TrAρG.

Squashed entanglement greatly extends this picture to in-
clude all possible different forms of bipartite entanglement,
including the case of mixed states and disconnected subsys-
tems. To set the stage, consider a quantum system G in an
arbitrary state, pure or mixed, ρG. Next, consider partitioning
the global system G in any two subsystems A and B plus
a reminder C: G = ABC. In turn, when suitable, one may
consider further partitioning the remainder C as well, as we
will see in the following. When C is the empty set and ρG is a
pure state, one recovers the standard two-block bipartition and
SE reduces to the von Neumann block entanglement entropy.

We now wish to determine the SE Esq(ρAB) existing be-
tween any pair of subsystems A and B, possibly disconnected,
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FIG. 1. [(a) and (b)] Construction pattern of the two upper bounds, the QCMIs I(3)(A : B|C) and I(4)(A : B|C1), on the true SE between
two arbitrary subsystems A and B of a given quantum system partitioned, respectively as ABC and as ABC1C2. In the given example, the
two subsystems A and B are disconnected, but the construction holds in general for any pair of nonoverlapping subsystems, either connected
or disconnected. (c) A system in a globally pure state is partitioned in two connected subsystems (blocks); after tracing over the degrees
of freedom of one of the blocks, the von Neumann entropy of the reduced state defines the block entanglement entropy quantifying the
bipartite entanglement across the blocks separation boundary. (d) From block entanglement to SE between subsystems. We illustrate the case
of the long-distance SE and QCMIs I(3)(A : B|C) and I(4)(A : B|C1) between two specific disconnected subsystems, the system edges A and
B separated by the bulk C = C1C2. This is the case of interest, e.g., in the study of topological superconductivity in quantum matter. The
double-headed arrows represent pictorially the spatial ranges of the different quantum correlation patterns.

in the reduced state ρAB = TrCρG. The first important obser-
vation here in order is that there are always two, and only
two, equivalent ways to obtain the same reduced state ρAB

from the global state ρG that however give rise to two dif-
ferent (nonequivalent) expressions for the QCMI I of Eq. (2)
prior to the extremization procedure in Eq. (1) that defines
the (unique) SE Esq(ρAB). These two different expressions of
the QCMI define two fundamental upper bounds on the true
SE that may in principle be different. The two expressions
obviously give rise to the same unique SE once extremization
is performed in Eq. (1).

Indeed, besides the immediate tripartite form ρG = ρABC

such that ρAB = TrC (ρABC ), one can consider a further bi-
partite splitting of the reminder: C = C1C2 and obtain the
corresponding quadripartite form ρG = ρABC = ρABC1C2 such
that ρAB = TrC1 (ρABC1 ) (or, equivalently, ρAB = TrC2 (ρABC2 )),
where in turn ρABC1 = TrC2 (ρABC1C2 ) [or, equivalently, ρABC2 =
TrC1 (ρABC1C2 )]. The two different procedures to derive the
reduced state ρAB give rise in Eq. (2) to two differ-
ent QCMIs I(3)(A : B|C) and I(4)(A : B|C1) [or, equivalently,
I(4)(A : B|C2)] defined with respect to the tripartition ABC and
to the quadripartition ABC1C2, respectively. In explicit form,
the two expressions read

I(3) = 1
2 [S(ρAC ) + S(ρBC ) − S(ρABC ) − S(ρC )], (3)

I(4) = 1
2 [S(ρAC1 ) + S(ρBC1 ) − S(ρABC1 ) − S(ρC1 )], (4)

where S(ρABC ) = 0 if ρABC = ρG is pure.
The two inequivalent QCMIs I(3) and I(4) define two differ-

ent upper bounds (corresponding, respectively, to a tripartite
and a quadripartite multipartition of the system) to the same
bipartite SE Esq(ρAB) between subsystems A and B in the
reduced state ρAB. It is immediate to verify that any further
splitting of the reminder C in multipartitions of higher order
C = C1C2C3 . . .Cn is redundant in the sense that it defines
a set of n QCMIs of the form I(4)(A : B|Ci ), (i = 1, . . . , n).
Taking into account the mathematical properties of the von
Neumann entropies, including subadditivity and the triangle
inequality, one has the chain of inequalities

I(3)(A : B|C) � I(4)(A : B|C1) � Esq(ρAB). (5)

The two fundamental constructions, respectively via the
tripartition ABC and the quadripartition ABC1C2, are summa-
rized in panels (a) and (b) in Fig. 1.

The exact A–B bipartite SE in state ρAB is obtained by
computing the infimum of the two expressions Eqs. (3) and
(4) over all extensions of unbounded dimension ρABC and
ρABC1 , respectively. This is in general an exceedingly hard
task; on the other hand, the true SE is readily obtained
whenever there are lower bounds available that coincide with
some upper bounds, for instance like the ones provided by
Eqs. (3) and (4).
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Summarizing what has been discussed so far, we
have shown how by resorting to the QCMI and the SE
one moves from the elementary paradigm of bipartite pure-
state block entanglement entropy defined over minimal,
irreducible connected bipartitions of the global system to a
general framework of bipartite entanglement between any two
subsystems, either connected or disconnected, defined over
arbitrary multipartitions of the global system. Moreover, we
have introduced two classes of upper bounds to the exact
bipartite SE that are defined, respectively, over tripartitions
and quadripartitions of the global system.

The transition from bipartitions to multipartitions and from
block entanglement to SE between generic subsystems is rep-
resented pictorially in panels (c) and (d) of Fig. 1, where we
illustrate schematically how such transition allows in principle
to discriminate systems with broken symmetries and short-
ranged entanglement from systems with a different type of
global order and long-distance entanglement between discon-
nected subsystems and thus also between boundaries (edges)
in the case of systems with open boundary conditions (open
chains, open ladders, etc). In the next sections, we investigate
in detail some significant consequences of this paradigm shift
in the study of topological quantum matter.

III. SQUASHED ENTANGLEMENT AND TOPOLOGICAL
SUPERCONDUCTORS

A. The quest for order parameters

The archetypal model of topological p-wave superconduc-
tivity supporting edge Majorana zero energy modes (MZEMs)
is the Kitaev Hamiltonian of spinless fermions on a 1D
lattice [41]. Proposals for realistic implementations of the
Kitaev chain consider heterostructures made of semiconduct-
ing nanowires coupled to s-wave superconducting substrates
[42–45].

Experimental evidence of MZEMs localized at the system
edges has been obtained in the study of the tunnel conductance
of an InAs nanowire proximized by an s-wave superconductor
[46] and in the scanning tunneling microscopy of iron-atom
chains deposited on lead substrates [47].

The one-dimensional Kitaev model can be generalized to
geometries of significantly increasing complexity, e.g., via
Kitaev ladders and ties, to describe coupled superconducting
nanowires with a phase diagram hosting a rich variety of
different topological phases [48–53].

In view of its conceptual significance and potential realiz-
ability in realistic systems of condensed matter physics, the
Kitaev model has become a central paradigm in the study of
topologically ordered phases of matter hosting MZEMs and,
more generically, edge modes and edge states.

The problem of identifying unambiguous signatures of
topologically ordered phases, such as topological invariants
and/or nonlocal order parameters, has turned out to be a
highly nontrivial task addressed in a number of different
approaches. One can look to momentum-space properties
[54], when, after imposing periodic boundary conditions, the
translational invariance is restored. This meaningful relation
between the edges and the bulk of a system is also known as
bulk-edge correspondence [54] and leads to the definitions of

geometric indices Q which signal the presence and the number
of topological zero-energy states of matter.

Unfortunately, for disordered systems or, in general, when
translational invariance cannot be restored, or also in the pres-
ence of interactions, the topological invariants Q are rarely
readily accessible and hence useful both analytically and ex-
perimentally [55–59].

In a more fundamental approach, one tries then to iden-
tify topological invariants based on the patterns of nonlocal
quantum correlations and the entanglement properties of
the system, such as the bipartite entanglement spectrum
[17,60,61].

Indeed, the entanglement spectrum becomes twofold de-
generate when a quantum system undergoes a topological
phase transition [62–64]; however, this is not a discriminating
signature of topological order: exactly the same degeneracy
is featured by any system with the same Hamiltonian sym-
metries that can support symmetry-breaking order [17,65].
As a consequence, block entanglement based on simple bi-
partitions of the system into two blocks does not provide the
information necessary to identify and discriminate unambigu-
ously topological order associated to edge modes and edge
states.

Suitable ad hoc combinations of Rényi entropies of dis-
connected and partially overlapping multipartitions actually
allow to define quantized topological invariants able to detect
topologically ordered phases in one-dimensional topologi-
cal superconductors [66]. Unfortunately, these invariants are
not entanglement monotones between distinguishable subsys-
tems, let alone entanglement measures, and thus are devoid
of any clear meaning in terms of nonlocal quantum correla-
tions. Because of their ad hoc nature and lack of conceptual
significance and physical motivation, one has no clue on how
to introduce such invariants systematically for the character-
ization of different types of topologically ordered phases or
to extend them to general situations such as finite temperature
and/or complex geometries and higher dimensions.

In the present work, we discuss SE in the context of
topological quantum matter featuring edge modes and edge
states. We show that the edge-to-edge, long-distance bipar-
tite SE between the (disconnected) edges of one-dimensional
topological systems is a (nonlocal) order parameter, prop-
erly quantized, featuring the correct scaling behavior at
the critical point, characterizing the ordered phases of
topological superconductors in various one-dimensional and
quasi-one-dimensional geometries, and discriminating them
unambiguously from other classes of ordered phases of matter.

Shifting focus from block entanglement entropy to SE
between disconnected subsystems separated by arbitrary dis-
tances finds a basic physical motivation in the observation
that systems with topological order display bulk band gaps
like those of ordinary insulators and conducting surface states
that are topologically protected by some symmetries. This
naturally prompts to look for nonlocal correlations between
subsystems (e.g., the system edges) rather than the block
entanglement between two halves of the total system. In turn,
this implies replacing bipartitions with multipartitions, and
resorting to SE as the prospective quantity able to (1) quantify
the prima facie bipartite, long-distance edge-edge entangle-
ment in the presence of edge modes; and (2) discriminate
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unambiguously topological order from symmetry-breaking
order and distinguish between different classes of topologi-
cally ordered phases.

In the following, we will consider one-dimensional sys-
tems hosting MZEMs and for such systems we will investigate
the two bipartite edge-to-edge QCMIs, I(3)(A : B|C) and
I(4)(A : B|C1) that realize two upper bounds on the true SE
Esq(ρAB) between edges A and B. In particular, we will
show that the QCMI I(4) discriminates the one-dimensional
Kitaev model featuring edge modes and long-distance en-
tanglement between the edges from the Ising chain, its
symmetry-breaking counterpart featuring no edge modes and
a short-distance entanglement structure.

For the Kitaev chain, we will show that I(3) and I(4) coincide
and satisfy all the requirements for a genuine topological or-
der parameter, including: quantization as topological invariant
at the exact topological ground-state degeneracy point and
throughout the topologically ordered phase; scaling with the
system size at the phase transition point; stability with respect
to interactions; and robustness against localized disorder and
imperfections.

Moreover, for the Kitaev chain, the topological invariant in
fact coincides with a lower bound to the SE, and therefore the
QCMIs I(3) and I(4) indeed coincide with the long-distance,
bipartite SE Esq between the chain edges at the exact topolog-
ical degeneracy point and throughout the entire topologically
ordered phase. The transition from simple bipartitions and
block entanglement entropy to multipartitions and edge to
edge long-distance entanglement is illustrated pictorially in
panels (c) and (d) of Fig. 1.

We will then generalize the method to consider models of
topological superconductors defined on geometries of higher
complexity, the quasi-one-dimensional Kitaev ladder [52] and
the Kitaev tie [53]. The Kitaev ladder model is obtained by
coupling two Kitaev chains by means of transverse hopping
and pairing terms. In fact, the Kitaev chain and the Kitaev
ladder belong to the two different topological classes D and
BDI which are characterized by two different topological
bulk invariants, respectively the Pfaffian invariant [67] and
the winding number [52]. In the case of the Kitaev tie, the
long-range hopping term added to the Hamiltonian of the
Kitaev chain define a knotted-ring geometry which can be
rearranged in the form of a tie. The model is then the sim-
plest realization of geometric frustration with no associated
bulk [68].

For all three models SE identifies and characterizes, the
different topological behaviors of the systems, well character-
ized by the band topology for the Kitaev chain and the Kitaev
ladder and by the Majorana polarization and topological trans-
fer matrix for the Kitaev tie [68]. We will show that the QCMI
I(4) identifies the topological phase transitions in the Kitaev
ladder and distinguishes between the different topologically
ordered phases of the model corresponding to different num-
bers of Majorana excitations.

Remarkably, in the case of the Kitaev tie, a system
which lacks a clearly identifiable bulk, the SE is still very
efficient in characterizing the topological phases of the
model even if, as expected, perfect quantization is partially
blurred due to the absence of a clear physical bulk-boundary
separation.

The theoretical framework based on multipartitions, bi-
partite QCMIs and bipartite SE between generic subsystems
(either connected or disconnected) can be generalized to
finite temperature and nonequilibrium, to multipartite en-
tanglement, and to many-body systems defined in higher-
dimensional geometries and with different classes of bound-
ary conditions. In the conclusions, we will discuss some basic
aspects of these future generalizations and how, for each case
study, they will depend crucially on the localization and con-
nection properties of edge modes and edge states.

B. Topological squashed entanglement

For the model systems defined in the following we consider
tripartitions and quadripartitions as sketched in Fig. 1 and we
proceed to compute the QCMI upper bounds I(3) and I(4) on
the SE Esq(ρAB) between the edges A and B given a bulk
C = C1C2.

In a condensed matter setting I(3) and I(4) are defined in
terms of the many body ground state, i.e., they are the QCMIs
of the edges A and B conditioned, respectively, on the ex-
istence of the total bulk C and the partial bulk C1. When
going to sufficiently large system sizes such that the edges are
sufficiently distant from each other and fully decoupled from
the bulk, a nonvanishing Esq(ρAB) establishes the existence of
a topological squashed entanglement (TSE), i.e., a nontrivial
long-distance quantum correlation between the edges.

Although the physical mechanisms are rather different,
the edge-edge fermionic TSE is reminiscent of other forms
of long-distance entanglement (LDE) that are established by
entanglement monogamy between the end points of dimerized
and quasidimerized spin-1/2 chains with diverse patterns of
nearest-neighbor couplings or patterns of competing finite-
range interactions [69–71]. Specifically, in these previous
works we have shown that systems defined on 1D chains
with open boundary conditions will exhibit a nonvanishing
end-to-end, long-distance entanglement (LDE) whenever: (I)
there is a weak coupling between the edge regions and the
bulk, or (II) there is a pattern of alternating weak and strong
nearest-neighbor couplings that leads to an effective dimeriza-
tion of the system. In turn, these two instances can be seen as
particular cases of more general patterns of modular entangle-
ment [72] and surface entanglement on networks [73].

Instance (I) yields an LDE between the chain ends that
tends to decay very slowly with the distance, while instance
(II) realizes a perfect LDE between the chain ends that does
not decay with and is independent of the size of the chain. The
further form of LDE that we have now discovered is (III) the
end-to-end TSE in the topological phase of one-dimensional
and quasi-one-dimensional fermionic systems. It is unclear
at the moment whether forms (I) and (II) of LDE and form
(III) are related and share some common feature/origin. We
plan to investigate the possible relations, also in connection
with the intriguing possibility that complex patterns of inter-
action strengths might induce a kind of topological order also
in some classes of spin-1/2 systems.

In panels (a)–(c) of Fig. 2, we provide a sketch of the three
model geometries considered (Kitaev chain, Kitaev ladder,
Kitaev tie), while in panels (d) and (e) we draw a synthetic
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FIG. 2. Schematic of a Kitaev chain (a), a two-leg Kitaev ladder
(b) and a Kitaev tie (c). The Kitaev ladder is obtained coupling two
Kitaev chains by superconducting and hopping terms. For a Kitaev
chain of length L, the Kitaev tie is obtained by adding a long–range
hopping term coupling a site at position d with the symmetric one
at the position L − d + 1. The basic tripartition and quadripartition
are reported, respectively, in (d) and (e). In both panels the edges
are denoted by A and B (red color); in (d), the total bulk C = C1C2

is reported in blue; in (e), the bulk portions C1 and C2 are reported
in blue and in green, respectively. The diamonds are generic and
can correspond to a single fermionic site when referred to a chain
or a tie and to two fermionic sites when referred to a ladder. In the
quadripartition, when not otherwise specified, the length LC1 of the
bulk portion C1 is fixed at LC1 = 1.

scheme of how the multipartitions reported in Fig. 1 are ap-
plied to these three explicit cases.

As detailed in the next sections, both the Kitaev ladder and
the Kitaev tie can be obtained, respectively, from two coupled
Kitaev chains and by adding to the Hamiltonian of a single
chain a symmetric long–range hopping that couples a single
lattice site at position d with its symmetric counterpart at
position L − d + 1. In panels (d) and (e) of Fig. 2, we provide
a schematics of the two basic multipartitions for the model
systems considered.

In the following, the lengths of the various subsystems will
be denoted by Lα , with α = A, B, C, C1, C2. Throughout, the
lengths of the two edges are assumed to coincide, LA = LB.
Denoting by L the chain length, when not otherwise specified
we will set LA = LB = Le, with Le = L/3. The latter choice
allows to take into account the exponential bulk–edge decou-
pling behavior as a function of the system size that is typical
of topological modes.

Moreover, as explained later on [see Fig. 5, panel (a)], our
results will be independent of the relative size of the two sub-
bulks, so that without loss of generality we will take LC1 = 1
throughout, as reported in panel (e) of Fig. 2.

A crucial step in order to compute the TSE consists in
diagonalizing the reduced density matrices of the various

subsystems, once the many body ground state density matrix
ρ = |�〉GG〈�| is assigned.

When interactions are neglected, the Kitaev-type Hamil-
tonians are quadratic in the fermionic degrees of freedoms
and can be diagonalized by a Bogoliubov transformation. In
this case, an appropriate approach to compute the von Neu-
mann entropies of the subsystems has been introduced by
Peschel [74].

The Bogoliubov transformation ensures a direct access
to fermionic correlations on the many body ground state
|�〉G and the reduced density matrix of a given subsystem
α can be recast in the form of a thermal density matrix,
ρα = (1/Z )e−Hα , where Hα = ∑Lα

l=1 εl f †
l fl is the effective

entanglement Hamiltonian of the reduced system [75–78], and
the constant factor Z (the “partition function”) ensures the
correct normalization Tr(ρα ) = 1.

Given the lattice fermionic creation and annihilation oper-
ators {ci, c†

i }, the spectrum of the entanglement Hamiltonian
can be evaluated numerically by solving the eigenvalue
problem:

(
2T − 1 − 2D

)(
2T − 1 + 2D

)
φl = tanh2

(
εl

2

)
φl , (6)

where Ti j = 〈�|c†
i c j |�〉 and Di j = 〈�|c†

i c†
j |�〉 are the matrix

elements of the fermionic two-point correlations in a quantum
state |�〉 (for instance, the ground state |�〉G), and 1 is the
identity matrix. The index l runs over all the lattice sites
belonging to subsystem α.

Due to the form of ρα , the von Neumann entropy of the re-
duced state S(ρα ) can be obtained in terms of the eigenvalues
of entanglement Hamiltonian:

S(ρα ) =
∑

l

ln(1 + e−εl ) +
∑

l

εl

eεl + 1
. (7)

The Peschel algorithm for free fermionic systems reduces the
computational efforts and allows to access the entanglement
properties for systems of very large sizes.

When interactions are included in the models, the mapping
to the effective entanglement Hamiltonian and the Gaussian
thermal structure of the reduced density matrix are no longer
applicable and one must resort to numerical techniques, e.g.,
the density matrix renormalization group (DMRG) method,
particularly well suited to treat one-dimensional systems
[79–81].

Complementary to numerical methods, one can resort to di-
rect numerical matrix diagonalization in the parameter region
that allows for exact analytic expressions of the state vectors,
such as along the exact factorization lines of interacting spin
models and Kitaev–type fermionic systems [82–85], as we
will discuss in the following.

IV. TOPOLOGICAL SQUASHED ENTANGLEMENT OF
THE KITAEV CHAIN

A. The nonlocal order parameter

Here and in the following we investigate the paradigmatic
case of the fermionic Kitaev chain [41], considering first the
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FIG. 3. (a) Phase diagram of the noninteracting Kitaev chain as measured by the two-dimensional contour plot of the ratio between the
QCMI I(4) and the quantized TSE E 0

sq = ln(2)/2 on the 	–μ plane with a grid of 25 × 25 points, reference hopping amplitude t = 1, chain
length L = 60, and edge length Le = L/3. (b) Scaling-size effects on I(4)/E 0

sq as a function of L for different values of the chemical potential
μ. (c) Scaling of I(4)/E 0

sq as a function of μ for different values of L.

noninteracting model:

HK =
L∑

j=1

−μc†
j c j +

L−1∑
j=1

(	c†
j+1c†

j − tc†
j c j+1 + H.c.). (8)

The Hamiltonian HK in Eq. (8) describes a system of
spinless fermions confined to a one dimensional lattice of
length L with on site creation and annihilation operators c†

j ,
c j ( j = 1, . . . , L), subject to a p-wave superconducting cou-
pling. The coefficients 	, t and μ are respectively the strength
of the superconducting pairing, the nearest-neighbor hopping
amplitude and the on-site energy offset.

This model features a topological phase for μ < 2t and
	 	= 0 with two robust Majorana zero-energy modes local-
ized at the two edges. The energy EM of such MZEMs
scales exponentially to zero with the system’s size and is
expected to vanish asymptotically in the thermodynamic
limit.

In the limit of small on site energy offset (chemical poten-
tial), precisely at the analytically solvable point μ = 0 and t =
	, the model features exact twofold topological ground-state
degeneracy and two MZEMs with exactly EM = 0, indepen-

dently of the chain length. The remaining nontopological
modes of the spectrum are gapped and form a band. In the
opposite regime of large on site energy offset μ > 2t , the
Kitaev wire is a trivial band insulator.

By construction the Hamiltonian satisfies the particle-hole
symmetry and belongs to the class D of the tenfold classifi-
cation [86], with topological invariant given by the Pfaffian
invariant [67].

For the noninteracting Kitaev chain, we have computed the
two QCMIs I(3) and I(4) and verified that I(3) = I(4) throughout
the entire phase diagram, so that in the reminder of the present
subsection we will focus only on I(4). The physical origin of
the equality between the two QCMIs in the topological case
will become clear in the following.

In panel (a) of Fig. 3, we report the phase diagram obtained
by means of the ratio between the QCMI I(4) and the constant
quantity E0

sq = ln(2)/2. One finds that throughout the entire
topological phase the ratio I(4)/E0

sq = 1 so that I(4) is quantized
exactly at the value I(4) = E0

sq = ln(2)/2. Moreover, one has
that I(4) = 0 throughout the entire trivial phase.

Finite-size effects are clearly visible near the phase transi-
tion line at μ = 2t , as also shown in panel (b) of Fig. 3, where

033088-8



TOPOLOGICAL SQUASHED ENTANGLEMENT: NONLOCAL … PHYSICAL REVIEW RESEARCH 4, 033088 (2022)

the ratio I(4)/E0
sq is plotted as a function of the length L of the

chain for t = 	 = 1 and three different values of the chemical
potential μ, respectively close to the exact topological point,
in the topological phase close to the critical point, and well
into the trivial phase.

In particular, I(4) scales exponentially to the quantized
value E0

sq inside the topological phase (red curve) and it coin-
cides with E0

sq independently of the size of the chain for values
of μ sufficiently close to the analytic point (blue curve). The
QCMIs vanish identically at all values of μ in the trivial phase
(green curve).

Finally, in panel (c) of Fig. 3, we report the behavior of
the ratio I(4)/E0

sq as a function of μ for different values of the
length of the chain L, showing the correct approach to quan-
tization inside the topological phase and the correct scaling
behavior approaching the critical point. These results show
that the QCMIs I(3) and I(4) provide a completely equivalent
detection and characterization of the topologically nontrivial
regime of a superconducting wire.

In fact, by applying the lower-bound inequalities holding
on SE [31,38–40], it turns out that the constant value E0

sq =
ln(2)/2 is a lower bound to the true SE Esq(ρAB) between the
edges at the exact topological point μ = 0. By continuity, the
bound extends to neighboring values of μ. Since the upper
bound I(4) and the quantized lower bound E0

sq coincide in this
region, both coincide with the true long-distance SE Esq(ρAB)
between the two disconnected edges A and B.

In conclusion, collecting all the above results, the quan-
tized TSE

Esq(ρAB) = E0
sq = ln(

√
2) = ln(2)

2
(9)

is the nonlocal order parameter for a Kitaev superconducting
wire.

The physical origin of a quantized nonvanishing long-
distance entanglement between the system edges in the
topological phase arises from the interplay between the ex-
ponential bulk-edge separation due to the topological nature
of the system and the fundamental monogamy property of
nonlocal quantum correlations [28].

As the two edges progressively decouple from the bulk
their mutual information and correlation are enhanced by the
monogamy constraint on the shared information and on the
amount of shareable entanglement among the different sub-
systems. When the system moves away from the topological
phase, correlations become once again short-ranged and the
long-distance entanglement between the two extremes of the
chain collapses.

The quantized value of the edge–edge TSE is ln(2)/2
rather than the maximal Bell-pair entanglement ln(2). This
fact shows that the TSE is fully sensitive to and takes correctly
into account the nature of the topological modes, distinguish-
ing between the entanglement of half-fermions, like MZMEs,
from the maximal Bell-pair entanglement.

The TSE can be compared with the so-called entanglement
topological invariant (ETI), a nonlocal order parameter for
one-dimensional topological superconductors introduced in
Ref. [66]. This quantity is defined in terms of a combination
of reduced von Neumann entropies associated to a pseudo-
quadripartition obtained by considering two disconnected and

partially overlapping sets, A1 and A2, their union A1 ∪ A2, and
their intersection A1 ∩ A2. As such, the ETI has no sensible
relation to a real physical multipartition of the system and the
corresponding nonlocal quantum correlations between sepa-
rated and nonoverlapping subsystems. In particular, it is not
an entanglement monotone, let alone a genuine entanglement
measure between any two separated and distinguishable sub-
systems like, e.g., the system edges.

One particularly limiting tenet of the ETI as introduced
in Ref. [66] is that a key ingredient for its derivation is the
existence of disconnected partitions of the system. In fact, we
have just shown and explained in detail why a fully connected
edge-bulk-edge system tripartition and the associated QCMI
I(3) yield exactly the same characterization of the edge modes
and the topologically ordered phases as the one provided by
the quadripartition edge-bulk-bulk-edge and the associated
QCMI I(4).

Also, in Ref. [66] it is found that the ETI takes the value
ln(2), i.e., twice the value of the TSE. As discussed above,
the value ln(2)/2 assumed by the TSE is the one that takes
correctly into account the statistics of the Majorana excita-
tions versus that of full Dirac fermions; moreover, the factor
1/2 provides the correct reduction on pure states to the unique
entanglement measure, i.e., the von Neumann entanglement
entropy. Such correct identifications are a direct consequence
of the precise physical identification of the system multipar-
tition and general definition and properties of the edge-edge
QCMI and TSE. No such comprehensive framework exists
for the ETI. In conclusion, the scheme based on the edge-edge
bipartite QCMI and TSE defined on multipartitions provides
a well-defined, general physical framework to determine the
correct nonlocal order parameter for topologically ordered
phases in one dimension. Moreover, this framework can be
extended in principle to the study of topological systems in
any dimension and at any temperature, either at equilibrium
or in nonequilibrium.

Concerning the experimental accessibility of topological
squashed entanglement, the problem boils down to that of
measuring quantum entropies of a set of reduced states in
quantum many–body systems. A recent proposal relies on the
thermodynamic study of the entanglement Hamiltonian for
the direct experimental probing of von Neumann entropies
via quantum quenches [87]. Another possibility, specific for
systems featuring topological order, consists in identifying
minimum entropy states and then experimentally simulating
the behavior of the associated von Neumann entropies via the
classical microwave analogs of such states. In this way, it is
in principle possible to simulate various nontrivial instances
of reduced entropies and topological order, as shown explic-
itly for the transition from a trivial phase to a Z2-symmetric
topological phase [88].

Another intriguing possibility arises from the observation
that highly informative bounds on von Neumann entropies,
quantum conditional mutual information, and squashed en-
tanglement can be constructed in terms of Rényi entropies
[39,40]. A possible strategy is then to adapt to fermionic
systems [89] the schemes previously proposed for the experi-
mental measurement of Rényi entropies in bosonic and spin
systems [90–92] and the corresponding experimental tech-
niques that led to the first experimental measurement of the
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2-Rényi entropy in a many-body system [93]. This possibility
has been already suggested in Ref. [66] for the experimental
measurement of the ETI.

B. SE and TSE: discriminating between symmetry breaking
magnets and topological superconductors

A core question concerns the ability of a proposed nonlocal
order parameter to discriminate topological superconductors
from systems featuring local order parameters, spontaneous
symmetry breaking and Ginzburg-Landau type of ordered
phases, addressing their different entanglement properties and
patterns.

We focus our attention on the comparison between the
spin-1/2 Ising chain and the fermionic Kitaev chain. Setting
t = 	 = 1 and applying the global Jordan-Wigner transfor-
mations [65], the Hamiltonian in Eq. (8) can be mapped into
that of the 1D Ising model in transverse field:

HI = J
L−1∑
j=1

σ x
j σ

x
j+1 + h

L∑
j=1

σ z
j , (10)

with J = −t and h = μ/2. Both models share a twofold de-
generate ground state and the parity symmetry Z2, but the
physics of the order displayed is radically different. While in
the Ising model the Z2 spin reflection symmetry is sponta-
neously broken with the appearance of a nonvanishing local
order parameter, the topological degeneracy in the Kitaev
chain is realized with perfect conservation of the Hamiltonian
symmetry and no local order parameters.

Despite the different type of order that they support, the
two models share the same bipartite entanglement spectrum
and bipartite von Neumann block entanglement entropy. This
is not surprising, since the nonlocal Jordan-Wigner transfor-
mation (a particular case of the general Klein transformation
in quantum field theory) does not affect the short-distance
entanglement structure across the separation between the sys-
tem’s halves for Hamiltonian sums of local (nearest-neighbor
or short-ranged) interaction terms.

The landscape is quite different when dealing with the
structure of long-distance entanglement (LDE) between the
end boundaries of a many-body system: clearly, we expect
LDE to be significantly affected by global transformations
acting on the entire system.

In panels (a) and (b) of Fig. 4, we report the behavior of
the end-to-end QCMI I(3) for the Ising and the Kitaev chains
for two lengths L = 6 and 9. The two curves intersect at
the critical points h = 1 and μ = 2. In the thermodynamic
limit, the following behaviors are expected: I(3),Ising/E0

sq,Ising =
1 (I(3),Kitaev/E0

sq,Kitaev = 1) for 0 < h < 1 (0 < μ < 2) and
I(3),Ising/E0

sq,Ising = 0 (I(3),Kitaev/E0
sq,Kitaev = 0) for h > 1 (μ >

2). This analysis shows that the QCMI I(3) detects and charac-
terizes both topological and symmetry breaking orders but is
not capable of distinguishing between them.

In panels (c) and (d) of Fig. 4, we report the behavior of
the end-to-end QCMI I(4) for the Ising and Kitaev chains; we
see that I(4) distinguishes topological superconducting phases
from ordered phases with spontaneously broken symmetries.

For the Ising chain, we see that removing any finite part
C2 of the bulk C = C1C2 before performing the partial trace

FIG. 4. Ratios of the end-to-end QCMIs I(3) and I(4) to the
quantized TSE unit E 0

SQ = ln(2)/2 for the Ising chain [(a) and (c)]
as functions of the transverse field h, and for the Kitaev chain
[(b) and (d)] as functions of the chemical potential μ. While for the
Kitaev chain the equality I(3) = I(4) always holds, for the Ising chain
I(3) 	= I(4) and I(4) tends to vanish as the system size increases. The
QCMI I(4) thus discriminates between topological and symmetry-
breaking systems. Throughout, the Hamiltonian parameters are set
at t = 	 = 1 for the Kitaev chain and J = −1 for the Ising chain.

with respect to the reminder C1 returns a strongly suppressed
end-to-end QCMI I(4) that is expected to vanish in the thermo-
dynamic limit.

At variance with the symmetry-breaking case, the topology
of the Kitaev chain is essentially concentrated on the bound-
aries, so that in the computation of the end-to-end QCMIs
performing the partial trace with respect to the entire bulk C
is entirely equivalent to removing a part of the bulk (C2) and
then performing the partial trace with respect to the remaining
part of the bulk (C1). As a consequence, I(3) = I(4) for a topo-
logical system, while in general I(3) 	= I(4) for a system with
symmetry-breaking order.

Ultimately, these results depend on and highlight the dif-
ferent global properties of the two systems. Indeed, the bulk
of the Kitaev chain is insulating and exponentially decoupled
from the boundaries, forcing (by monogamy) the onset of
the long-distance correlation between the ends of the chain.
Vice versa, the bulk of the Ising chain is conductive, so that
cutting one part of it before performing the partial trace on the
reminder abruptly interrupts the information flow and destroys
the correlation structure between the two ends of the chain.
These physical differences determine the different structure
of the end-to-end QCMIs and of the end-to-end SE in the two
models.

Concerning quadripartitions, an interesting, although not
surprising, feature is the independence of the results on the
relative sizes of the two parts of the bulk C2 (the cut) and
C1 (the reminder), so that one can always adopt the most
convenient choice C1 = 1 in the actual calculations.

In Fig. 5(a), we report the behavior of the difference I(4) −
E0

sq as a function of LC1 with μ = 0.5, t = 1, and L = 60,
and for 	 = t (green curve) and 	 = 0.1t (red curve). We
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FIG. 5. (a) The difference I(4) − E 0
sq as a function of the size LC1

of the reminder of the bulk in a Kitaev chain of L = 60 sites. We have
considered both the balanced case t = 	 = 1 (green curve) and the
unbalanced case t = 1, 	 = 0.1 (red curve). Different choices of LC1

have no effect on the evaluation of I(4). The inset shows the scaling
of I(4) towards the quantized value E 0

SQ = ln(2)/2 of the TSE in the
balanced regime as the size L of the chain is increased. (b) Schematic
representation of the chain in the Majorana basis {aj , bj}) for t 	= 	.
(c) Same, with t = 	.

see that I(4) − E0
sq is constant in both cases, regardless of the

length LC1 .
In the balanced hopping-pairing case t = 	, the SE is fully

quantized at the fundamental unit E0
sq = ln(2)/2 already for

an intermediate chain length of L = 60 (green curve), while in
the strongly unbalanced case 	 = 0.1t one can observe (red
curve) a finite-size scaling on I(4) − E0

sq.
These behaviors show that the balanced case t = 	 is way

more insensitive to finite size effects than the unbalanced case
t 	= 	. On the other hand, as the inset in panel (a) of Fig. 5
shows, for the unbalanced case t 	= 	 the difference I(4) − E0

sq
decreases with increasing sizes of the system, tending to van-
ish, as expected, in the thermodynamic limit.

The different robustness to finite size effects between
the balanced and unbalanced configurations is illustrated in
panels (b) and (c) of Fig. 5, where we draw sketches of the
Kitaev chain in the basis of Majorana fermions aj = c j + c†

j

and b j = −i(c j − c†
j ) for the two aforementioned cases. The

balanced setting t = 	 illustrated in panel (c) corresponds
to turning off the coupling (t − 	) a jb j+1 between third-
neighboring Majorana fermions. In this configuration the
Majorana fermions are thus more weakly coupled than in the
unbalanced case t 	= 	 illustrated in panel (b). On the other
hand, the setting t = 	 and μ = 0 corresponds to the exact
analytic, topological degeneracy point of the model, where the

FIG. 6. Phase diagram of the interacting Kitaev chain on the
μ–U plane for 	 = t . The dashed black curve is the factorization line
μ = μ∗ = 4

√
U 2 + t U . It starts at the exact topological degeneracy

point μ = U = 0, develops entirely inside the topological phase, and
pinches asymptotically into the trivial phase for sufficiently large
values of μ and U . The acronym ICDW stands for incommensurate
charge density wave.

edge modes a1 and bL at the two ends of the chain decouple
from the lattice and become exact zero energy modes.

C. TSE in the presence of interactions

The standard interacting Kitaev chain is obtained by adding
a nearest-neighbor density-density interaction term to the free
Kitaev Hamiltonian:

HIK = HK + U
L−1∑
j=1

n jn j+1, (11)

where U is the interaction coupling constant and nj = c†
j c j

is the on site fermion number operator. The intervals U > 0
and U < 0 correspond, respectively, to a repulsive and to
an attractive interaction. The phase diagram of the model
has been investigated in depth by a variety of numerical and
approximate analytical methods [66,85,94–96] and is reported
schematically in Fig. 6.

We see that, although very strong repulsive interactions
eventually force the system into a Mott insulating phase, a
topological superconducting state is established in between
the trivial band insulator phase and the Mott localization
even for fairly strong repulsive interactions. The black dashed
line inside the topological phase is the factorization line of
equation μ = μ∗ described in the following.

The interacting Kitaev chain can be mapped exactly onto
the interacting XY Z spin-1/2 model in an external magnetic
field

Hxyz =
L−1∑
j=1

[
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
j σ

z
j+1

] + h
L∑

j=1

σ z
j ,

(12)

where Jx = −(	 + t )/2, Jy = (	 − t )/2, Jz = −U , and
h = μ/2.

The model admits exact ground state solutions fac-
torized in the product of single-spin (single-site) wave
functions along the so-called factorization line h = h∗ =
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zd
√

(Jx + Jz )(Jy + Jz ) in any dimension [82,83,97], with zd

the coordination number (so that, e.g., zd = 2 in the 1D case).
For the Kitaev chain, this corresponds to the exact solu-

tion for the many-body ground states along the factorization
line [85]:

μ = μ∗ = 4
√

U 2 + t U + (t2 − 	2)/4, (13)

which reduces to μ∗ = 4
√

U (U + t ) for t = 	.
In general, along any factorization line (provided it exists)

an interacting model Hamiltonian H becomes frustration-free
and can be written as the sum of commuting local terms Hj :
H = ∑

j Hj with [Hi, Hj] = 0 [84].
The exact ground states of definite symmetry of the inter-

acting Kitaev chain for μ = μ∗ are the following entangled
linear combinations [85]:

|�even〉 = 1√
2

(|�+〉 + |�−〉), (14)

|�odd〉 = 1√
2

(|�+〉 − |�−〉), (15)

where the nonorthogonal states |�+〉 and |�−〉 are fully
factorized in the product of single-site wave functions and
read [85]

|�±〉 = 1

(α + 1)L/2
e±αc†

1 . . . e±αc†
L |vac〉, (16)

where

α =
√

cot(θ∗/2), θ∗ = arctan(2	/μ∗), (17)

with |vac〉 denoting the lattice vacuum state.
The ground states |�even〉 and |�odd〉 are orthogonal and

are the only possible ground state of HIK for μ = μ∗. Ground
state factorization holds in the topological phase with a repul-
sive interaction U � 0, and the even and odd ground states are
degenerate with energy E0 = −(L − 1)(U + t ).

The behavior of the QCMI I(4) normalized to the quan-
tized unit of TSE E0

sq = log(2)/2 along the Illuminati-Katsura
factorization line μ = μ∗ is reported in Fig. 7 panel (a) as
a function of the chain length L for different values of the
interaction strength, and in panel (b) as a function of the
interaction strength for different values of the chain length L.

The QCMI I(4) exhibits the correct scaling, saturating to the
quantized value ln(2)/2 of the SE for sufficiently large values
of the chain size L, and vanishing asymptotically for very
large values of the interaction strength U as the factorization
line pinches the boundary of the topological phase and the
system enters in the trivial phase.

In conclusion, we see that the quantized TSE E0
sq identifies

the correct nonlinear order parameter for the topological phase
of the fermionic Kitaev chain, either free or interacting.

D. Robustness of TSE against disorder

Disorder plays a fundamental role in low-dimensional elec-
tronic systems [55,98–100] and robustness against disorder is
a defining property of topological materials. In fact, disorder
may even induce localization effects as in the case of An-
derson insulators [101], thus favoring topological phases of
matter, whereas in other systems such as, e.g., semiconductor
Majorana nanowires and topological insulator nanoribbons,

FIG. 7. The QCMI to TSE ratio I(4)/E 0
sq for the exact ground state

solutions of the interacting Kitaev chain on the Illuminati-Katsura
factorization line μ = μ∗ as a function of the chain length L for
different values of the interaction strength U (a), and as a function of
U for different values of L (b). In both cases, the scaling behavior of
I(4) converges to the quantized value ln(2)/2 of the TSE for the non-
interacting Kitaev chain. Eventually, for increasingly large values of
U , the factorization line pinches into the trivial phase and the QCMI
I(4) vanishes asymptotically. Throughout, t = 	 and Le = L/3.

it can yield detrimental effects [99,102]. It has been shown
that topological phases of the Kitaev chain are robust to the
effects of disorder and local perturbations [55,98,103,104].
Such immunity is a fundamental property that is expected
to hold whenever topological superconductors are involved.
This observation suggests that the edge-to-edge QCMIs and
SE should also be as robust to disorder as other topological
indicators defined in terms of spectral or transport properties
[105,106].

We study two distinct classes of configurations, each char-
acterized by a different source of disorder with a clear tracking
of its physical origin. Since one of the prominent schemes
to realize a topological Kitaev chain is by proximity ef-
fects between a semiconducting nanowire and a conventional
superconductor [42,43], we consider two distinct sources
of disorder: random site-dependent hopping amplitudes ti
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FIG. 8. The QCMI to TSE ratio I(4)/E 0
sq as a function of the

chemical potential μ for a chain of length L = 70 and two different
types of disorder. (a) Behavior of I(4)/E 0

sq in the presence of random
hopping amplitudes ti. (b) Behavior of I(4)/E 0

sq in the presence of
random pairing potentials 	i. The random realizations are gener-
ated by a continuous probability distribution defined in the interval
ti ∈ (t − τ , t + τ ), 	i ∈ (	 − δ, 	 + δ). The reference values of
the parameters have been fixed as t = 1 and 	 = 0.1. The different
curves are parameterized by disorder of increasing strength.

and random site-dependent pairing potentials 	i. The for-
mer provides a model of the effective mass gradient and
random doping along the nanowire that originate from the
growth process of the nanowire itself; the latter emulates un-
wanted spatial variations along the wire which can affect the
nanowire-superconducting coupling and therefore the induced
superconducting gap.

In Fig. 8, we report the behavior of the QCMI to TSE
ratio I(4)/E0

sq of the Kitaev chain Eq. (8) as a function of
the chemical potential μ for the aforementioned two different
sources of disorder. In panels (a) and (b), we consider re-
spectively random hopping integrals ti = t + τ dis

i and random
pairing potentials 	i = 	 + δdis

i with the random strengths
of disorder τ dis

i and δdis
i uniformly distributed in the intervals

(−τ , τ ) and (−δ, δ).
In Fig. 8, for the sake of completeness, disorder effects are

investigated spanning the spectrum of noise strengths from
the perturbative regime up to strongly disordered configura-
tions. It is worth mentioning here that the maximum disorder
strength considered in panel (b) of Fig. 8 is comparable with
the mean value of the pairing potential 	. Such configuration
corresponds to an extremely disordered system, a situation
that is not expected in realistic experimental conditions. A
similar phenomenology can be observed by studying disorder
effects induced by random values of the hopping integral, see
Fig. 8(a), from τ = 	/4 up to τ = 	, while for τ = 5	 the

phase boundary defining the topological transition is reduced.
This behavior suggests that a random hopping is more effec-
tive in perturbing topologically ordered phases than a random
superconducting pairing.

The actual values of disorder experimentally achievable
with currently available technologies are in general signifi-
cantly smaller than those simulated in Fig. 8; the latter must
thus be taken as a theoretical-numerical test/prediction of the
robustness of edge QCMI and edge TSE. In particular, the
value τ = 5	, although not comparable with the maximally
allowed disorder on the energy gap, is of the order of half
of the band width; therefore, it must certainly be considered
nonperturbative.

Indeed, Fig. 8 shows, as it should be expected, that within
the typical regimes of weak to moderate disorder the TSE
nonlocal order parameter is strongly resilient in the entire
superconducting phase.

V. SYSTEMS WITH MULTIPLE TOPOLOGICAL PHASES
AND EDGE MODES: TSE OF THE KITAEV LADDER

In this section, we generalize the previous investigations
to consider systems enjoying multiple topological phases and
multiple MZEMs, i.e., more than one Majorana zero mode
per edge.

Various such generalizations of the 1D Kitaev model have
been introduced [48–51,107,108]; the simplest instance can
be realized by coupling multiple Kitaev chains with transverse
hopping and pairing terms to form quasi-one-dimensional
n-leg Kitaev ladders [52,109]. The case n = 2 defines the
two-leg Kitaev ladder. This is the minimal model featuring
multimode topological phases, which usually arise in mod-
els of significant complexity that involve higher-dimensional
platforms [110–113].

The Hamiltonian HKL of the two-leg Kitaev ladder can be
written as follows:

HKL = HK1 + HK2 + HK12 , (18)

where the two Kitaev chains HK1 and HK2 define the legs of
the ladder and

HK12 =
L∑

i=1

[−t1c†
i,1ci,2 + 	1ci,1ci,2 + H.c.] (19)

describes the coupling between the two legs HK1 and HK2 .
The coupling is realized by means of a transverse hopping
with amplitude t1 and a transverse pairing with amplitude 	1;
these two transverse Hamiltonian terms provide the rungs of
the ladder.

The model has been introduced and discussed at length
in Ref. [52]. The Kitaev ladder satisfies particle-hole, time
reversal and chiral symmetry, belonging to the BDI class of
the tenfold classification.

The phase diagram of the model can be investigated by
means of the winding number:

W = Tr
∫ π

−π

dk

2π i
A−1

k ∂kAk

= −
∫ π

−π

dk

2π i
∂k ln DetAk, (20)
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where Ak can be expressed in terms of the model parameters
once we impose periodic boundary conditions and the bulk-
edge correspondence is invoked:

Ak =
(

εk − 	k −t1 − 	1

−t1 + 	1 εk − 	k

)
, (21)

where εk = 2t cos k + μ, 	k = 2i	 sin k, and k ∈ [−π, π ].
In Fig. 9, we report the phase diagrams of the two-leg

Kitaev ladder obtained respectively by means of the winding
number, as shown in panels (a) and (c), and by means of the
QCMI I(4) normalized by the quantized edge-edge TSE E0

sq,
as shown in panel (b) for the same choice of Hamiltonian pa-
rameters as in panel (a). The diagram in panel (b) is obtained
for a ladder of L = 50 sites per leg (chain), with the length of
each edge partition fixed at Le = 12, and via an interpolation
on a grid of 25 × 25 points.

The digits drawn on the phase diagrams in panels (a) and
(c) count the number of MZEMs per ladder edge in each
phase. Indeed, the system possesses a richer phase diagram
compared to that of the single Kitaev chain. Denoting by Nm

the number of MZEMs per edge, the two-leg Kitaev ladder
features two alternating topological phases, respectively en-
dowed with Nm = 1 and Nm = 2 edge modes, and a trivial
phase with no edge modes (Nm = 0).

Despite the fact that the phase diagrams in panels (a) and
(c) are defined in terms of bulk properties, while the phase
diagram in panel (b) is obtained in terms of the topological
boundary entanglement, they show an excellent qualitative
and quantitative agreement already at moderate system sizes.

In panel (c), we report the contour plot of the winding num-
ber for a different set of values of the Hamiltonian parameters
with respect to the ones of panels (a) and (b). Indeed, with the
choice of Hamiltonian parameters as in panel (c), the system
features the possibility of moving along straight transition
lines that cross all the three different phases 2-1-0, once either
t1 or μ is kept constant. The dashed red lines drawn in panel
(c) denote such horizontal (constant t1) and vertical (constant
μ) cuts across the different phase boundaries.

In Fig. 10, we report the behavior of the QCMI-TSE ratio
I(4)/E0

sq, respectively along the horizontal and vertical cuts
crossing the different phases of the ladder, as drawn in panel
(c) of Fig. 9. In both cases, we observe the three plateaux
I(4)/E0

sq = 2, 1, 0 corresponding, respectively, to the two topo-
logical phases and to the trivial phase.

Remarkably, we find that TSE not only discriminates topo-
logical phases from trivial ones but also distinguishes different
topological phases by counting the corresponding number of
Majorana edge modes Nm. Indeed, for the two-leg Kitaev
ladder, we have

I(4)

E0
sq

= Nm. (22)

If the above relation has general validity, then in principle
QCMI and TSE could apply to topological systems of arbi-
trary complexity featuring any number of topological modes.
Besides its conceptual importance, this property bears a clear
practical advantage, since while the definition of the TSE
is unique and system-independent, different invariants have
to be defined each time, following the tenfold classification,

FIG. 9. [(a) and (c)] Phase diagram of the two-leg Kitaev ladder
determined by means of the winding number in k space. (a) Phase di-
agram in the μ-t1 plane, with the remaining Hamiltonian parameters
fixed at t = 1, 	 = 0.8, and 	1 = 0.8. (c) Phase diagram in the μ-t1

plane, with the remaining Hamiltonian parameters fixed at t = 1,
	 = 0.8, and 	1 = 0.09. (b) Phase diagram of the two-leg Kitaev
ladder determined by means of the QCMI to TSE ratio I(4)/E 0

sq. The
phase diagram is in the same μ-t1 plane, with the values of the
remaining Hamiltonian parameters set as in (a), and it is obtained
on a grid of 25 × 25 points with the order of the interpolating poly-
nomial equal to 1. The dashed red lines in (c) denote the straight
transition lines (“cuts”) that cross the different phase boundaries.
The horizontal cut is at constant transverse hopping t1; the vertical
cut is at constant chemical potential μ. In all panels, the length L per
ladder leg and the length Le per edge partition are fixed, respectively,
at L = 50 and Le = 12.

depending on the symmetries obeyed by each specific system
under investigation.
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FIG. 10. (a) QCMI-TSE ratio I(4)/E 0
sq as a function of the chem-

ical potential μ along the horizontal cut at fixed transverse hopping
t1 drawn in panel (c) of Fig. 9, for different lengths L of the ladder.
(b) I(4)/E 0

sq as a function of t1 along the vertical cut at constant μ

drawn in (c) of Fig. 9, for different values of the length L of any
of the two equal legs of the ladder. The plots at different lengths
of the ladder legs show the fast scaling behavior of the QCMI-TSE
ratio with the system size. Irrespective of the choice of the transition
line crossing the different phase boundaries, in each phase, I(4)/E 0

sq

is quantized to an integer counting the number of edge MZEMs
featured by the phase, and jumps by one unit at each transition,
realizing a series of Hall-like plateaux.

Another paradigmatic model belonging to the same BDI
topological class of the two-leg Kitaev ladder is the Su-
Schrieffer-Heeger (SSH) fermionic chain [114]. For such
system the disconnected Rényi entropy has been shown to
reproduce correctly the phase diagram of the model [115].

Despite belonging to the same topological universality
class and therefore sharing the same topological band in-
variant (i.e., the winding number), the two models feature
different phase diagrams and, perhaps more importantly, dif-
fer in the statistics of the edge modes. In particular, while
the SSH model exhibits a trivial phase and one topological
phase with one fermionic mode per edge, the two-leg Kitaev
ladder features a trivial phase and two different topological
phases, respectively with one and two Majorana modes per
edge. Therefore, in one case (SSH), we have a simple phase
diagram with one topological phase and fermionic edge statis-

tics, while in the other case (ladder) we have a richer phase
diagram with two different topological phases and nonabelian
anyon edge statistics.

What motivates the investigation of the relatively simple
example of the two-leg superconducting ladder is precisely
that it allows to study the transition between different multi-
mode topological phases and to verify that our scheme indeed
discriminates between them by the occurrence of different
quantized plateaux of the TSE that count the integer number
of edge modes present in each phase. These results indi-
cate that our scheme is in principle also applicable to any
multimode system with multiple topological phases. Thus, in
conclusion, edge-edge QCMI and TSE not only discriminate
topological regimes from ordered phases with broken sym-
metries and from trivial phases, but also distinguish different
types of topologically ordered phases.

VI. SYSTEMS WITH SUPPRESSED BULK EDGE
CORRESPONDENCE: TSE OF THE KITAEV TIE

In this section, we study by means of the edge-to-edge
QCMI and the quantized TSE the effects of the geometrical
frustration induced by adding an hopping term of arbi-
trary spatial range to a Kitaev chain. The model has been
originally introduced and investigated in Refs. [53,68]. The
tight-binding Hamiltonian of the model can be written as

HT = HK + Hd , (23)

where HK denotes the Kitaev chain Hamiltonian and

Hd = −td (c†
d cL−d+1 + H.c.) (24)

is an extra long-range hopping term, connecting two sym-
metrical sites of the chain d and L − d + 1 with an hopping
amplitude td . The long-range hopping, identified by the pa-
rameter d , can vary along the length of the chain, playing
the role of a movable knot which induces a geometric frus-
tration on the original chain Hamiltonian. This results in a
legged-ring system with no clearly identifiable bulk, and con-
sequently a suppressed bulk-edge correspondence, referred to
as a Kitaev tie.

The phase diagram of the system in the μ-d plane shows an
interstitial character with topological phases nucleating inside
trivial regions as the knot position d is varied while keep-
ing μ < 2t . This phenomenon is referred to as topological
frustration.

For small values of d , the interstitial character of the non-
trivial phases is more evident, since the system resembles a
ring with very short legs. On the other hand, for large values
of d there is a significant growth of the topological phase
domains, since the ring is reduced and the system approaches
the limiting regime of a perturbed Kitaev chain.

The Kitaev tie is realizable in single-walled carbon nan-
otubes [53,68]; these are flexible ballistic conductors [116]
where superconducting proximity effect can be easily imple-
mented [117–119].

In Fig. 11, we report the behavior of different indicators
based on the edge-to-edge QCMI I(4) and the TSE E0

sq as func-
tions of the chemical potential μ for a Kitaev tie of L = 121
sites (blue curves) and we compare it with the behavior of
the spectral energy function of the system (orange curves).
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FIG. 11. (a) Red curve: behavior of the complement 1 − I(4)/Imax

of the ratio between the QCMI and its maximum value as a function
of the chemical potential μ. Blue curve: behavior of the lowest
energy eigenvalue E as a function of μ. Both curves are drawn
for a Kitaev tie of L = 121 sites, edges of Le = 40 sites, and the
long-range hopping term positioned at d = 30, i.e., within the system
edges. (b) Red curve: behavior of the complement of the QCMI-TSE
ratio 1 − I(4)/E 0

sq as a function of μ. (b) Blue curve: behavior of the
lowest energy eigenvalue E as functions of μ. Both curves are drawn
for the same Kitaev tie as in (a), but this time with the long-range
hopping positioned at d = 50, i.e., outside the system edges. The
QCMI I(4) is evaluated for an edge length Le = 40. In all plots the
Hamiltonian parameters are fixed at t = td , 	 = 0.02 and in the unit
of the hopping t = 1.

Specifically, denoting by Imax the maximum value achieved
by I(4) and by E the lowest energy eigenvalue, in panel (a),
we compare E and the complement 1 − I(4)/Imax of the QCMI
normalized to its maximum value as functions of μ, while in
panel (b) we compare E and the complement of the QCMI to
TSE ratio 1 − I(4)/E0

sq. With respect to the extension of the
edges, Le = L/3 = 40, we consider two different positions
of the long-range hopping. In panel (a), we fix d = 30, i.e.,
with the knot included within the edges A and B. In panel (b),
we fix d = 50, i.e., with the knot included in the traced out
bulk C2.

In the presence of topological frustration, the occurrence
of unpaired Majorana modes can be related, respectively, to
minima or vanishing values of the energy eigenvalue [68].
Indeed, by means of Majorana polarization [105,120] it can
be shown that energy minima are associated to localized

Majorana modes, while energy maxima correspond to hy-
bridized modes [68].

All plots in Fig. 11 clearly show signatures of the topolog-
ical frustration, pinpointed by an oscillating behavior of the
various quantities as functions of the chemical potential. For
systems with an associated bulk, the QCMI I(4) converges to
the quantized TSE E0

sq already for moderate lattice sizes, as
shown in the discussion of the Kitaev chain and of the Kitaev
ladder. For the Kitaev tie, the absence of an associated bulk is
signaled by the fact that the complement of the QCMI to TSE
ratio does not vanish, reaching instead nonvanishing minima,
even for lattices of relatively large sizes (L = 121).

On the other hand, the perfect correspondence of the po-
sitions of both the minima and the maxima of the different
functions shows that the QCMI and the TSE capture the main
features of the topological frustration phenomenon just as well
as the energy. In particular, although the energy eigenvalue
provides a stronger marker of the presence of MZEMs, re-
markably the QCMI to TSE ratio I(4)/E0

sq is a good quantifier
of the emerging topological features even for systems, like the
Kitaev tie, that do not allow the existence of a bulk.

Figure 11 shows that the actual value of the absolute max-
imum Imax reached by the QCMI I(4) strongly depends on
whether the scope d of the long-range hopping falls inside
the edge extension, i.e., d < Le, as in panel (a), or outside the
edge extension, i.e., d > Le, as in panel (b). Remarkably, I(4)

exceeds E0
sq (Imax ≈ 0.62) when d < Le, while when d > Le,

the QCMI converges to the TSE E0
sq as in the cases of the

Kitaev chains and ladders. In the case of the Kitaev tie the
inapplicability of the bulk-edge correspondence is responsi-
ble for the partial loss of quantization of the QCMI that is
recovered in the limit of very large scopes d of the long-range
hopping.

From Fig. 11, we see that both indicators, the energy and
the QCMI to TSE ratio I(4)/E0

sq, are reliable indicators of the
tie phenomenology, as both detect and capture the essentials
of the topological frustration. As both indicators are sensitive
to finite-size effects, the effect is stronger for the QCMI to
TSE ratio: while the energy approaches the zero value, the
QCMI remains within a smal but finite range from the TSE.

VII. DISCUSSION AND OUTLOOK

In the present work, we have discussed the application
of squashed entanglement to the study of one-dimensional
topological systems. Squashed entanglement is a measure of
bipartite entanglement defined on multipartitions that gener-
alizes the von Neumann entanglement entropy; it allows to
quantify the bipartite entanglement between any two subsys-
tems, connected or disconnected, in any quantum state, either
pure or mixed, and reduces to the von Neumann entanglement
entropy on pure states. Introducing generic tripartitions and
quadripartitions of a quantum system, we have identified two
general classes of upper bounds on the bipartite squashed
entanglement in terms of the quantum conditional mutual
information between subsystems.

For models of topological superconductors that admit
Majorana zero energy modes at the system edges, we have
shown that in the topological phase the upper bound provided
by the edge-edge quantum conditional mutual information
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associated to the system quadripartition in fact coincides with
the squashed entanglement between the system edges in the
ground state at the exact topological point. The squashed
entanglement in the topological phase is quantized at ln(2)/2,
half the value of the maximal Bell entanglement, counting the
Majorana splitting of the Dirac fermions.

The long-distance topological squashed entanglement be-
tween the edges is constant throughout the topological phase,
exhibits the correct scaling when approaching the critical
point, and vanishes identically in the trivial phase. More-
over, it is stable in the presence of interactions, resilient to
the effects of disorder and local perturbations, and discrimi-
nates topological superconductivity from orders associated to
spontaneous symmetry breaking. It thus realizes the desired,
and long-sought for, entanglement-based order parameter for
symmetry-protected topological superconductivity.

For systems with geometries of higher complexity with
respect to the 1D Kitaev chain, featuring multiple topolog-
ical phases and more than one Majorana zero energy mode
per edge, like, e.g., the quasi-one-dimensional Kitaev lad-
der, topological squashed entanglement distinguishes between
the multiple phases by plateaux that count the number of
Majorana edge modes. For systems with suppressed bulk-edge
correspondence, like, e.g., the Kitaev tie, topological squashed
entanglement, though ceasing to be perfectly quantized, is
anyway able to identify the interstitial topological phases and
discriminate them from the trivial ones.

The long-distance TSE between the edges of a fermionic
chain is reminiscent of other forms of long-distance entangle-
ment (LDE) that are established by entanglement monogamy
between the end points of one-dimensional spin-1/2 chains
with complex interaction patterns [69–73]. It is unclear at
the moment whether TSE and LDE in modulated spin are
related and share some common feature/origin. We plan to
investigate the problem, also in connection with the intrigu-
ing possibility that complex patterns of interaction strengths
might induce a kind of topological order also in some classes
of spin-1/2 systems. Finally, we would like to remark that
end-to-end LDE and Wens long-range entanglement patterns
in the bulk are in principle quite distinct concepts; as such,
making use of both of them and their interplay might lead to
a deeper understanding and finer classification of topological
phases of matter in higher dimensions.

The generality of the concept of squashed entanglement
between arbitrary subsystems allows for several possible fu-
ture research directions. Leaving aside for the moment being
the tantalizing possibility of monogamy-induced multipartite
extensions, here we wish to discuss the application of bipartite
SE to the study of topological systems in higher dimensions
as well as at finite temperature and out of equilibrium.

A crucial challenge in order to generalize the framework
introduced in the present work to systems in D � 2 spatial
dimensions concerns the correct identification of the dif-
ferent bulk and edge parts in the multipartitions. Here we
wish to mention that among topological two-dimensional sys-
tems, second order topological superconductors (HOT SC2)
[112,113,121,122] are of particular relevance both for their
fundamental properties and for the possibility that they offer
to implement braiding dynamics in a rather straightfor-
ward way [123]. Second-order topological superconductors

are two-dimensional systems with gapped one-dimensional
boundaries and zero-dimensional localized modes (corner
modes). For these systems, the identifications of edges A, B
and bulks C C1, C2 is clear and easily connected to that of the
one-dimensional case. This class of systems represents pro-
vides a suitable arena to generalize TSE, albeit numerically,
in D = 2 dimensions. We plan to report on these and related
problems in upcoming future work.

In order to extend even further the concept of edge QCMI
and edge SE to the full generality of arbitrary systems in
any spatial dimension, the central issue concerns the correct
identification of the system edges, their localization proper-
ties, and their degree of connectivity or lack thereof. Clearly,
this type of analysis will be heavily model-dependent. For
instance, regarding the role of open boundary conditions in
higher dimensions, identification of the bulk and of the edges
will depend on the form of the boundaries, for instance on
the number and form of the corners and vertices for different
lattice geometries.

When considering periodic or partially periodic boundary
conditions, including, e.g., ring, cylinder, and torus geome-
tries, the straightforward choices appear to be tripartitions
and quadripartitions of the system in adjacent arches in order
to realize and isolate effectively disconnected edges. To set
the stage, consider for instance a ring geometry fixed by
imposing periodic boundary conditions (PBCs). In such a
geometrical configuration, the two edge Majorana zero energy
modes (MZEMs) of the original open chain recombine with
each other and annihilate in a full fermion. Despite the fact
that MZEMs are no longer present, the topological invariants
continue to yield signatures of the topological nature of the
system, provided one suitably modifies the choice of parti-
tions. Considering an elongated ring (think for instance of an
autodrome), in order to realize a tripartition suitable for long-
distance entanglement (LDE) of the topological squashed
entanglement (TSE) type, we need to cut the two antipodal
curves that will then play the role of the long-distance sub-
systems A, B, and consider as the bulk C the two remaining
disconnected segments connecting the two arches A, B. By
taking each of the two segments separately, i.e., as parts C1,
C2 of the full bulk C, we can then realize the desired quadri-
partition as well.

Finally, in a very trivial sense, given that on pure quan-
tum states, e.g., ground states of many–body systems, the
squashed entanglement reduces exactly to the von Neumann
block entanglement entropy when the system is partitioned
into just two simple blocks, the subleading contribution to the
von Neumann block entanglement entropy, the block topo-
logical squashed entanglement, trivially coincides with the
topological entanglement entropy in the case of true topo-
logical order in two-dimensional systems. Restricted to this
obvious meaning, squashed entanglement already provides a
framework unifying different classes of topological order in
higher dimensions.

Another relevant line of research concerns the general-
ization of TSE to open topological systems, i.e., topological
systems coupled to an environment. In this case a first possible
step forward can be based on the self-energy formalism, by
reducing the original model to an effective system structurally
equivalent to the original but where the edges and the bulk
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are renormalized by the effects of the environment. Indeed, in
such a case, it is possible to recover the full partition structure
of a closed system. We plan to apply this method, via the cor-
responding non-Hermitian Hamiltonians, to the investigation
of edge QCMI and edge SE for open topological systems in
one dimension.

Extending further the above line of research leads to the
problem of applying QCMI and SE to the study in full general-
ity of topological quantum matter at finite temperature and out
of equilibrium [124]. In fact, even for nontopological matter
it would be interesting to study finite temperature quantum
criticality resorting to squashed entanglement and compare
it systematically with other measures of nonclassicality such
as, e.g., the entropic discord [125] or the Bell nonlocality
[126]. In this perspective, hierarchies of quantum complexity
according to different layers of quantumness, ranging from
discord and coherence to entanglement and nonlocality, could
realize the scaffold of a unified research framework applicable

to a wide spectrum of problems, ranging from quantum infor-
mation and quantum matter to elementary particle physics and
quantum gravity.
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