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Neural computation in biological and artificial networks relies on the nonlinear summation of many inputs.
The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall
network function, but quantitative links between neural network structure and function are complex and subtle.
For example, many networks can give rise to similar functional responses, and the same network can function
differently depending on context. Whether certain patterns of synaptic connectivity are required to generate
specific network-level computations is largely unknown. Here we introduce a geometric framework for identi-
fying synaptic connections required by steady-state responses in recurrent networks of threshold-linear neurons.
Assuming that the number of specified response patterns does not exceed the number of input synapses, we
analytically calculate the solution space of all feedforward and recurrent connectivity matrices that can generate
the specified responses from the network inputs. A generalization accounting for noise further reveals that the
solution space geometry can undergo topological transitions as the allowed error increases, which could provide
insight into both neuroscience and machine learning. We ultimately use this geometric characterization to derive
certainty conditions guaranteeing a nonzero synapse between neurons. Our theoretical framework could thus be
applied to neural activity data to make rigorous anatomical predictions that follow generally from the model
architecture.
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I. INTRODUCTION

Structure-function relationships are fundamental to biol-
ogy [1–3]. In neural networks, the structure of synaptic
connectivity critically shapes the functional responses of neu-
rons [4,5], and large-scale techniques for measuring neural
network structure and function provide exciting opportunities
for examining this link quantitatively [6–15]. The ellipsoid
body in the central complex of Drosophila is a beautiful
example where modeling showed how the structural pattern
of excitatory and inhibitory connections enables a persistent
representation of heading direction [16–19]. Lucid structure-
function links have also been found in several other neural
networks [20–23]. However, it is generally hard to predict ei-
ther neural network structure or function from the other [5,24].
For example, functionally inferred connectivity can capture
neuronal response correlations without matching structural
connectivity [25–28], and network simulations with structural
constraints do not automatically reproduce function [29–31].
Two broad modeling difficulties hinder the establishment of
robust structure-function links. First, models with too much
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detail are difficult to adequately constrain and analyze. Sec-
ond, models with too little detail may poorly match biological
mechanisms, the model mismatch problem. Here we propose
a rigorous theoretical framework that attempts to balance
these competing factors to predict components of network
structure required for function.

Neural network function probably does not depend on the
exact strength of every synapse. Indeed, multiple network
connectivity structures can generate the same functional re-
sponses [32,33], as illustrated by structural variability across
individual animals [24,34] and artificial neural networks
[29,35–37]. Such redundancy may be a general feature of
emergent phenomena in physics, biology, and neuroscience
[38–40]. Nevertheless, some important details may be consis-
tent despite this variability, and here we find well-constrained
structure-function links by characterizing all connectivity
structures that are consistent with the desired functional re-
sponses [24]. We also account for ambiguities caused by
measurement noise. Our goal is not to find degenerate net-
works that perform equivalently in all possible scenarios. We
instead seek a framework that finds connectivity required for
specific functional responses, independently of whatever else
the network might do.

The model mismatch problem has at least two facets. First,
neurons and synapses are incredibly complex [41–44], but
which complexities are needed to elucidate specific structure-
function relationships is unclear [5,45,46]. This issue is
very hard to address in full generality, and here we seek a
theoretical framework that makes clear experimental predic-
tions that can adjudicate candidate models empirically. In
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FIG. 1. Cartoon of theoretical framework. (a) We first specify
some steady-state responses of a recurrent threshold-linear neural
network receiving feedforward input. (b) We then find all synaptic
weight matrices that have fixed points at the specified responses.
Red (blue) matrix elements are positive (negative) synaptic weights.
(c) When a weight is consistently positive (or consistently negative)
across all possibilities, then the model needs a nonzero synaptic
connection to generate the responses. We therefore make the ex-
perimental prediction that this synapse must exist. We also predict
whether the synapse is excitatory or inhibitory.

particular, we predict neural network structure only when it
occurs in all networks generating the functional responses.
This high bar precludes the analysis of biophysically-detailed
network models, which require numerical exploration of the
connectivity space that is typically incomplete [24,32,47–49].
We instead focus on recurrent firing rate networks of
threshold-linear neurons, which are growing in popularity
because they strike an appealing balance between biological
realism, computational power, and mathematical tractability
[12,16,18,20,22,23,29,30,37,50–55].

The second facet of the model mismatch problem is hidden
variables, such as missing neurons, neuromodulator levels,
and physiological states [5,56–58]. Here we take inspiration
from whole-brain imaging in small organisms [15], such as
Caenorhabditis elegans [9], larval zebrafish [8,12,57], and
larval Drosophila [11], and assume access to all relevant
neurons. Our model neglects neuromodulators and other state
variables, which would be interesting to consider in the future.
Furthermore, many experiments indirectly assess neuronal
spiking activity, such as by calcium florescence [58–61] or
hemodynamic responses [25,62–64]. We restrict our analysis
to steady-state responses to mitigate mismatch between fast
firing rate changes and these inherently slow measurement
techniques.

Our analysis begins with an analytical characterization of
synaptic weight matrices that realize specified steady-state re-
sponses as fixed points of neural network dynamics [Figs. 1(a)
and 1(b)]. A key insight is that asymmetrically constrained
dimensions appear as a consequence of the threshold nonlin-
earity. Synaptic weight components in these semiconstrained
dimensions are completely uncertain in one half of the dimen-
sion but well-constrained in the other. We then compute error
surfaces by finding weight matrices with fixed points near
the desired ones. This error landscape has a continuum of
local and global minima, and constant-error surfaces exhibit
topological transitions that add semiconstrained dimensions
as the error increases. This may help explain the importance

of weight initialization in machine learning, as poorly ini-
tialized models can get stuck in semiconstrained dimensions
that abruptly vanish at nonzero error. By studying the ge-
ometric structure of the neural network ensemble that can
approximate the functional responses, we derive analytical
formulas that pinpoint a subset of connections, which we
term certain synapses, that must exist for the model to work
[Fig. 1(c)]. These analytical results are especially useful for
studying high-dimensional synaptic weight spaces that are
otherwise intractable. Since the presence of a synapse is read-
ily measurable, our theory generates accessible experimental
predictions [Fig. 1(c)]. Tests of these predictions assess the
utility of the modeling framework itself, as the predictions
hold across model parameters. Their successes and failures
can thus move us forward toward identifying the mechanistic
principles governing how neural networks implement brain
computations.

The rest of the paper begins in Sec. II with a toy prob-
lem that concretely demonstrates the approach illustrated in
Fig. 1 and relates the geometry of the solution space (all
synaptic weight matrices that realize a given set of response
patterns) to the concept of a certain synapse. In Sec. III,
we explain how the solution space for a limited number of
response patterns can be calculated for an arbitrarily large
threshold-linear recurrent neural network. Section IV is de-
voted to three simple toy problems that provide additional
insights into how the geometry of the solution space can help
us to identify certain synapses. This is followed by Sec. V,
where we explain and numerically test the precise algebraic
relation that must be satisfied for a synapse to be certain when
the response patterns are orthonormal. Section VI generalizes
our analyses to include noise, including numerical tests via
simulation. Finally, Sec. VII concludes the paper by sum-
marizing our main results and discussing important future
directions.

II. AN ILLUSTRATIVE TOY PROBLEM

To gain intuition on how robust structure-function links
can be established, including the effects of nonlinearity, we
begin by analyzing the structural implications of functional re-
sponses in a very simple threshold-linear feedforward network
[Fig. 2(a)]. We assume that two input neurons, x1 and x2, pro-
vide signals to a single driven neuron, y, via synaptic weights,
w1 and w2. The weights are unknown, and we constrain their
possible values using two neuronal response patterns, labeled
μ = + and μ = −. We suppose that steady-state activities of
the input neurons and driven neuron are nonlinearly related
according to

y = �(w1x1 + w2x2), (1)

where x1, x2, and y denote firing rates of the corresponding
neurons, and

�(s) = max(0, s) (2)

is the threshold-linear transfer function. The driven neuron
responds (y = 1) when x1 = x2 = 1 in the μ = + pattern. In
contrast, the driven neuron does not respond (y = 0) when
x1 = −x2 = 1 in the μ = − pattern. If the transfer function
were linear, then it is easy to see that there is a unique set
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FIG. 2. An illustrative two-dimensional problem. (a) Cartoon
depicting two stimulus response patterns in a simple feedforward
network with two input neurons and one driven neuron. (b) Since
the driven neuron in panel (a) responds in one condition but not the
other, we have one constrained dimension (magenta axis) and one
semiconstrained dimension (green axis). The yellow ray depicts the
space of weights, (w1, w2), that generate the stimulus transformation.
The weight vector ( 1

2 , 1
2 ) (brown dot) would uniquely generate the

neural responses in a linear network. We assume that the magnitude
of the weight vector is bounded by W , such that all candidate weight
vectors lie within a circle of that radius. A nonzero synapse x2 → y
exists in all solutions, but the x1 → y synapse can be zero because
the yellow ray intersects the w1 = 0 axis.

of weights, w1 = w2 = 1
2 , that produces these driven neuron

responses, the brown dot in Fig. 2(b).
How does the nonlinearity change the solution space of

weights that reproduce the driven neuron responses? To an-
swer this question, we define two linear combinations of
weights,

η± = w1 ± w2, (3)

which correspond to the driven neuron’s input drive in pat-
terns μ = ±. Equation (1) now yields rather simple algebraic
constraints for the two patterns:

y+ = 1 = �(η+) ⇒ η+ = 1, (4)

y− = 0 = �(η−) ⇒ η− � 0. (5)

Note that η− would have had to be zero if � were linear, but
because the threshold-linear transfer function turns everything
negative into a null response, η− can now also be any negative
number. However, sufficiently negative values of η− corre-
spond to implausibly large weight vectors, and hence we focus
on solutions with norm bounded above by some value, W . The
nonlinearity thus turns the unique linear solution [brown dot in
Fig. 2(b)] into a continuum of solutions [yellow line segment
in Fig. 2(b)]. This continuum lies along what we will refer to
as a semiconstrained dimension. Indeed, this will turn out to
be a generic feature of threshold-linear neural networks: every

time there is a null response, a semiconstrained dimension
emerges in the solution space.1

Although we found infinitely many weight vectors that
solve the problem, all solutions to the problem have a synaptic
connection x2 → y, and this connection is always excitatory
[Fig. 2(b)]. Positive, negative, or zero connection weights are
all possible for x1 → y. However, this reveals why the value
of the synaptic weight bound, W , has important implications
for the solution space. For example, all solutions in Fig. 2(b)
with | �w| < 1 have w1 > 0, whereas larger magnitude weight
vectors have w1 � 0. Therefore, one would be certain that an
excitatory x1 → y synapse exists if the weight bound were
biologically known to be less than Wcr = 1. We refer to this
weight bound as W -critical. Looser weight bounds raise the
possibility that the synapse is absent or inhibitory. Note that
too tight weight bounds, here less than Wmin = 1/

√
2, can

exclude all solutions.
The example of Fig. 2 concretely illustrates the general

procedure diagramed in Fig. 1. First, we specified a network
architecture and steady-state response patterns [Figs. 1(a) and
2(a)]. Second, we found all synaptic weight vectors that can
implement the nonlinear transformation [Figs. 1(b) and 2(b)].
Finally, we determined whether individual synaptic weights
varied in sign across the solution space [Figs. 1(c) and 2(b)].
Section III will generalize the first two parts of this procedure
to characterize the solution space of any threshold-linear re-
current neural network, assuming that the number of response
patterns is at most the dimensionality of the weight vectors.
Sections IV and V will then generalize the final part of this
procedure to pinpoint synaptic connections that are critical for
generating any specified set of orthonormal responses.

III. SOLUTION SPACE GEOMETRY

A. Neural network structure and dynamics

Consider a neural network of I input neurons that send sig-
nals to a recurrently connected population of D driven neurons
[Fig. 3(a)]. We compactly represent the network connectivity
with a matrix of synaptic weights, wim, where i = 1, . . . ,D
indexes the driven neurons, and m = 1, . . . ,D + I indexes
presynaptic neurons from both the driven and input popula-
tions. We suppose that activity in the population of driven
neurons dynamically evolves according to

τi
dyi

dt
= −yi + �

( D∑
m=1

wimym +
D+I∑

m=D+1

wimxm−D

)
, (6)

where yi is the firing rate of the ith driven neuron, xm is the fir-
ing rate of the mth input neuron, and τi is the time constant that
determines how long the ith driven neuron integrates its presy-
naptic signals. It is possible that prior biological knowledge
dictates that certain synapses appearing in Eq. (6) are absent.
For notational convenience, in this paper we will assume that
the number of synapses onto each driven neuron remains

1Assuming that the number of patterns does not exceed the dimen-
sionality of the synaptic weight vector.
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FIG. 3. Finding network structure that implements functional re-
sponses. (a) Cartoon depicting a recurrent network of driven neurons
(blue) receiving feedforward input from a population of input neu-
rons (orange). (b) The μth pattern of input neuron activity (xμm)
appears at t = 0 and drives the recurrent neurons to approach the
steady-state response pattern (yμi) via feedforward and recurrent
network connectivity (wim). (c) (Left) We focus on one driven neuron
at a time, referred to henceforth as the target neuron, to deter-
mine its possible incoming synaptic weights, wm. (Right) These
weights must reproduce the target neuron’s P steady-state responses
from the steady-state activity patterns of all N presynaptic neurons.
(d) The yellow planes depict the subspace of incoming weights that
can exactly reproduce all nonzero responses of the target neuron,
and the subregion shaded dark yellow indicates weights that also
reproduce the target neuron’s zero responses. The top graph depicts
the weight space parametrized by physically meaningful w coordi-
nates, but the solution space is more simply parametrized by abstract
η coordinates (bottom). The η coordinates depend on the specified
stimulus transformation (xμm → yμi), and ηc, ηs, and ηu are coordi-
nates in C-dimensional constrained, S-dimensional semiconstrained,
and U-dimensional unconstrained subspaces, respectively.

the same,2 and we will denote this number of the incoming
synapses as N . Note that N = I + D for a general recur-
rent network, N = I + D − 1 for recurrent networks without
self-synapses, and N = I for feedforward networks. We sup-
pose that the network functionally maps input patterns, xμm,
to steady-state driven signals, yμi � 0, where μ = 1, . . . ,P
labels the patterns [Fig. 3(b)]. We assume throughout that
P � N , as the number of known response patterns is typically
small, and the number of possible synaptic inputs is large.
Experimentally, different response patterns often correspond

2It will become progressively evident that our construction of the
solution space and certainty condition can be trivially adapted to the
case where the number of presynaptic neurons changes from one
driven neuron to another.

to different stimulus conditions, so we will often refer to μ as
a stimulus index and xμm → yμi as a stimulus transformation.

B. Decomposing a recurrent network into D
feedforward networks

Our goal is to find features of the synaptic weight matrix
that are required for the stimulus transformation discussed
above. For notational simplicity, let us consider the case where
we potentially have all-to-all connectivity, so that N = D +
I, but we will later explain how our arguments generalize.
Since all time-derivatives are zero at steady-state, the response
properties provide D × P nonlinear equations for D × N un-
known parameters3:

yμi = �

( D∑
m=1

wimyμm +
D+I∑

m=D+1

wimxμ,m−D

)
. (7)

Inspection of the above equation, however, reveals that each
neuron’s steady-state activity depends only on a single row
of the connectivity matrix [Fig. 3(c)]; the responses of the ith
driven neuron, {yμi, μ = 1, . . . ,P}, are only affected by its
incoming synaptic weights, {wim, m = 1, . . . ,N }. Thus, the
above equations separate into D independent sets of equa-
tions, one for each driven neuron. In other words, we now
have to solve D feedforward problems, each of which will
characterize the incoming synaptic weights of a particular
driven neuron, which we term the target neuron. Note that
since a generic target neuron receives signals from both the
input and the driven populations, the activities of both input
and driven neurons serve to produce the presynaptic input
patterns that drive the responses of the target neuron in the
reduced feedforward problem.

C. Solution space for feedforward networks

We have just seen how we can solve the problem of finding
synaptic weights consistent with steady-state responses of a
recurrent population of neurons, provided we know how to
solve the equivalent problem for feedforward networks. Ac-
cordingly, we will now focus on a feedforward network, where
a single target neuron, y, receives inputs from N neurons
{xm; m = 1, . . . ,N }, to find the ensemble of synaptic weights
that reproduce this target neuron’s observed responses. The
constraint equations are

yμ = �

( N∑
m=1

xμmwm

)
, (8)

where yμ now stands for the activity of the target neuron
driven by the μth input pattern, and �w is the N -vector of

3A slightly different rate equation,

τi
dvi

dt
= −vi +

D∑
m=1

wimrm +
D+I∑

m=D+1

wimxm−D,

with ri = �(vi ), is also in vogue. While the dynamics of this model
are slightly different from Eq. (6), at steady state they reduce
to the same form as Eq. (7). In particular, ri = �(

∑D
m=1 wimrm +∑D+I

m=D+1 wimxm−D ).
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synaptic weights onto the target neuron. Assuming that the
P × N matrix x is rank P , we let the N × N matrix X be
rank N with Xμm = xμm for μ = 1, . . . ,P . This implies that
the last N − P rows of X span the null space of x, and X
defines a basis transformation on the weight space,

ημ =
N∑

m=1

Xμmwm ⇔ wm =
N∑

μ=1

X −1
mμημ. (9)

The N linearly independent columns of X −1 define the basis
vectors corresponding to the η coordinates,

X −1 = (�ε1 · · · �εμ · · · �εN ). (10)

In other words,

�εμ =
N∑

m=1

êmX −1
mμ, (11)

where {̂em} is the physical orthonormal basis whose coordi-
nates, {wm}, correspond to the material substrates of network
connectivity. These basis vectors can be obtained from {�εμ}
by an inverse basis transformation:

êm =
N∑

μ=1

�εμXμm. (12)

We can thus write any vector of incoming weights as

�w =
N∑

m=1

wmêm =
N∑

μ=1

ημ�εμ. (13)

In terms of η coordinates, the nonlinear constraint equa-
tions take a rather simple form:

yμ = �(ημ) for μ = 1, · · · ,P . (14)

Accordingly, η coordinates succinctly parametrize the solu-
tion space of all weight matrices that support the specified
fixed points [Fig. 3(d)]. Each η dimension can be neatly
categorized into one of three types. First, for each stimulus
condition μ where yμ > 0, we must have ημ > 0. This in
turn implies that �(ημ) = ημ = yμ. Because the coordinate
ημ must adopt a specific value to generate the transformation,
we say that μ defines a constrained dimension. We denote
the number of constrained dimensions as C � P . Second, note
that the threshold in the transfer function implies that �(a) =
0 for all a � 0. Therefore, for any stimulus condition such
that yμ = 0, we have a solution whenever ημ � 0. Because
positive values of ημ are excluded but all negative values
are equally consistent with the transformation, we say that μ

defines a semiconstrained dimension. We denote the number
of semiconstrained dimensions as S = P − C. Finally, we
have no constraint equations for ημ if μ = P + 1, · · · ,N .
Because all positive or negative values of ημ are equally
consistent with the stimulus transformation, we say that μ

defines an unconstrained dimension. We denote the number
of unconstrained dimensions as U = N − P . Altogether, the
stimulus transformation is consistent with every incoming

weight vector that satisfies

ημ = yμ if yμ > 0, μ � P
−∞ < ημ � 0 if yμ = 0, μ � P
−∞ < ημ < ∞ if μ > P . (15)

Note that one can enumerate the solutions in the physically
meaningful w coordinates by simply applying the inverse
basis transformation in Eq. (9) to any solution found in η

coordinates.
Going forward, it will be convenient to extend the

P-dimensional vector of target neuron activity to an N -
dimensional vector whose components along the uncon-
strained dimensions are equal to zero, because this will allow
us to compactly write equations in terms of dot products
between the activity vector and vectors in the N -dimensional
weight space. Rather than introducing a new notation for
this extended N -dimensional vector, we simply write �y with
yμ = 0 for μ = P + 1, . . . ,N . It is critical to remember
that this is merely a notational convenience, and the solu-
tion space distinguishes between semiconstrained dimensions
and unconstrained dimensions according to Eq. (15). In par-
ticular, yμ = 0 is a constraint equation for semiconstrained
dimensions, but yμ = 0 is a notational convenience for un-
constrained dimensions.

D. Back to the recurrent network

To understand how the solution space geometry of the
feedforward network can be translated back to the recurrent
network, it is useful to group together the steady-state activ-
ities of all input and driven neurons that are presynaptic to
the ith driven neuron as a P × N input pattern matrix, z(i).4

The entries of the matrix, z(i)
μm, correspond to the responses of

the mth presynaptic neuron to the μth stimulus. At this point
it is easy to see that when biological constraints dictate that
some of the synapses are absent, then one should just exclude
those presynaptic neurons when constructing z(i), such that the
m index excludes those presynaptic neurons. Similarly, by a
suitable reordering, which will depend on the driven neuron,
we can always ensure that m = 1, . . . ,N runs only over the
neurons that are presynaptic to the given driven neuron.

Once the input patterns feeding into the ith neuron are
known, we can follow the steps outlined in the previous sub-
section to define the N × N full rank extension of z(i), Z (i),
and the η(i) coordinates via

η(i)
μ =

N∑
m=1

Z (i)
μmwim. (16)

The nature of the η(i)
μ coordinates, that is whether they are

constrained, semiconstrained, or unconstrained, is determined
by how the ith neuron responded to the stimulus conditions,
as in Eq. (15). Repeating this process for all driven neurons

4In fact, one can easily incorporate the case when the number of
presynaptic partners differs from one driven neuron to another. This
just means that the z(i) matrices will have dimensions P × Ni, where
Ni represents the number of presynaptic partners of the ith neuron.
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provides a geometric characterization of the entire recurrent
network solution space, which involves all elements of the
synaptic weight matrix, wim.

An important special case is all-to-all network connectiv-
ity. In this case, the Z (i) matrices are the same for all driven
neurons, and therefore the directions corresponding to the η

coordinates are also preserved.5 In particular, the orientation
of the unconstrained subspace with respect to the physical
basis does not change from one driven neuron to another.
However, how a given driven neuron responds to a particular
stimulus determines whether the corresponding η direction is
going to be constrained or semiconstrained for the feedfor-
ward network associated with that driven neuron.

IV. CERTAIN SYNAPSES IN ILLUSTRATIVE
3D EXAMPLES

Although we have found infinitely many weight matrices
that produce a given stimulus transformation, it is nevertheless
possible that the solutions imply firm anatomical constraints
(e.g., Sec. II). In this paper we focus on finding synapses
that must be nonzero in order for the response patterns to
be fixed points of the neural network dynamics. We refer
to such synapses as certain, because the synapse must exist
in the model, and its sign is identifiable from the response
patterns. It is clear from the geometry of the solution space
that the relative orientations between the η coordinates and the
physical w coordinates are significant determinants of synapse
certainty. To build quantitative intuition for how the solution
space geometry precisely determines synapse certainty, we
begin by first analyzing a few illustrative toy problems. In
the next section we will describe the more general treat-
ment of high-dimensional networks. Importantly, we select
and parametrize each toy problem to introduce concepts and
notations that will reappear in the general solution.

More specifically, we first consider three feedforward ex-
amples with N = 3 [Fig. 4(a)]. The first two examples have
P = 3, and the third has P = 2. In the first example, we
will assume that the driven neuron does not respond to the
first two stimulus patterns, but responds positively to the third
pattern. So we have two semiconstrained and one constrained
dimension,

η1 � 0, η2 � 0, and η3 = y3 > 0. (17)

In contrast, in the second example we will have two con-
strained and one semiconstrained dimension,

η1 = y1 > 0, η2 = y2 > 0, and η3 � 0. (18)

The final example will feature one unconstrained, one semi-
constrained, and one constrained dimension,

η1 � 0, η2 = y2 > 0, and − ∞ < η3 < ∞. (19)

5Nevertheless, the vector spaces of synaptic weights are funda-
mentally distinct for different driven neurons, as these vector spaces
pertain to the incoming synapses onto different driven neurons. The
fact that the Z (i) matrices are the same for all i means that the
relative orientation of the η directions, with respect to the physical
w-coordinate axes (labeled by the presynaptic indices), remains the
same for all the driven neurons.

For technical simplicity we will consider orthonormal input
patterns, X −1 = X T , which implies that

N∑
m=1

XμmXνm = δμν = �εμ · �εν, (20)

where δμν is the Kronecker δ function, which equals 1 if
μ = ν and 0 if μ �= ν, so ε̂μ = �εμ. This trivially implies that
the η coordinates are related to the synaptic coordinates via
a rotation, so the spherical biological bound on the physical
coordinates transforms to an identical spherical bound on the
η coordinates:

N=3∑
μ=1

η2
μ =

N=3∑
m=1

w2
m � W 2. (21)

A. Problem 1

Let us first focus on the example with two semiconstrained
and one constrained dimension, whose solution space is de-
picted in deep yellow in Fig. 4(b). Suppose we are interested
in assessing whether the w1 synapse is certain. Since the w1 =
0 plane divides the weight space into the positive and the
negative halves, the synapse will be certain if this plane does
not intersect with the solution space, which clearly depends on
the orientation of the plane relative to the various η directions
[Fig. 4(b)]. It is thus useful to consider how the w1 = 0 plane’s
unit normal vector pointing toward positive weights, ê ≡ ê1,
is oriented relative to the η directions. For ease of graphical
illustration, here we assume the specific orientation diagramed
in Figs. 4(b) and 4(c). Using Eq. (12) and the orthogonality of
X , we can parametrize ê as

ê =
N=3∑
μ=1

Xμ1ε̂μ = cos θ ĉ + sin θ ŝ, (22)

where

ĉ = −ε̂3, and ŝ = − cos γ ε̂1 + sin γ ε̂2 (23)

[Figs. 4(b) and 4(c)]. Geometrically, ĉ and ŝ are unit vectors
along the projections of ê onto the constrained and semicon-
strained subspaces [Fig. 4(b)]. Thus, cos θ � 0 and sin θ � 0,
making θ an acute angle. In this example, γ is also an acute
angle, as depicted in Fig. 4(c).

Note that all solutions lie within the two-dimensional
semiconstrained subspace having η3 = y3. The w1 = 0 plane
intersects this semiconstrained subspace as a line [Figs. 4(b)
and 4(c)], and its equation in η coordinates is

w1 = ê · �w = sin θ (− cos γ η1 + sin γ η2) − cos θy3 = 0.

(24)
From the geometry of the problem [Fig. 4(c)], it is clear
that if the perpendicular distance, ds, from the origin to this
line is large enough, then it will not intersect the all-negative
quadrant of the semiconstrained subspace within the weight
bound. According to simple trigonometry, this occurs when

ds > W̃ cos γ =
√

W 2 − y2
3 cos γ , (25)

where W̃ =
√

W 2 − y2
3 is the radius of the semiconstrained

subspace containing the solutions. The perpendicular distance
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(a)

(d)

(e)

(f)

(b) (c)

FIG. 4. Geometric quantities determining whether neurons must be synaptically connected in several three-dimensional toy problems.
(a) Cartoon depicting the N = 3 feedforward network corresponding to the toy problems. (b), (c) Geometrically determining whether a
synapse is nonzero when the target neuron responds to one input pattern but does not to two other patterns. A synapse can only vanish if the
w1 = 0 plane (orange circle) intersects the solution space (dark yellow wedge) within the weight bounds (bounding sphere). For example, this
intersection occurs in panel (b), so the synapse is not required for the responses. For every synapse one can associate a direction in synaptic
weight space (orange arrow) that is normal to the planes with constant synaptic weight. This synapse vector can be decomposed into its
projections into the semiconstrained subspace (green arrow, �s) and along the constrained dimension (pink arrow, �c). In this example, whether
the synapse is certain is determined by the size of the bounding synapse space, W [see panel (b)], the angle θ between the synapse direction
(orange arrow) and the closest axis of the constrained dimension (-�ε3) [see panel (b)], and the angle γ between �s and its closest vector in the
solution space (�s∗) [see panel (c)]. In panel (c), ds depicts the perpendicular distance from the origin of the yellow semiconstrained plane in
panel (b) to its intersection line with the w1 = 0 orange plane. If this distance is sufficiently large, then the orange line will not intersect the
solution space within the yellow plane’s circular bound of radius W̃ . (d), (e) Geometrically determining whether a synapse is nonzero when the
target neuron responds to two input patterns but not the third pattern. In panel (d), the orange w1 = 0 plane intersects the solution space (deep
yellow line) within the bounding sphere, so the synapse is not certain. In this example, the factors that determine synapse certainty are W [see
panel (d)], the angle θ that the synapse vector (orange arrow) makes with its projection along the constrained subspace (pink arrow) [see panel
(d)], and the angle α between the target response vector (brown arrow) and the pink arrow [see panel (e)]. The angle β does not ultimately
matter, but it is included in the diagrams to aid the derivation. Here ds is the distance from the brown dot to the point of intersection between the
yellow line and the orange plane. Again this point will lie outside the bounding sphere if ds is large enough, and this signals a certain synapse.
(f) Geometrically determining whether a synapse is nonzero when the target neuron responds to one input pattern but does not to a second
pattern. In the figure shown, the w1 = 0 orange plane intersects the solution space (deep yellow semicircle) within the bounding sphere, so
the synapse is not certain. In this example, apart from W , what determines synapse certainty are the angles θ and φ, which encode how the
synapse vector (orange arrow) can be decomposed into its projections along the constrained direction (pink arrow), semiconstrained direction
(green arrow) and unconstrained direction (purple arrow).

can be identified from Eq. (24) as

ds = y3 cot θ. (26)

Substituting this expression for ds into Eq. (25), one finds
through simple algebra that the w1 = 0 hyperplane does not
intersect the solution space, and hence the synapse is certain,

if the response magnitude exceeds a critical value,

y3 > ycr = W

√
sin2 θ cos2 γ

cos2 θ + sin2 θ cos2 γ
, (27)

which we generally refer to as y-critical.
Notice that if θ increases in Fig. 4(b), then the orange line

in Fig. 4(c) comes closer to the origin, making it intersect with
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the solution space for more γ angles. Therefore, the synapse
is more difficult to identify, and indeed Eq. (27) shows that
ycr increases. However, if γ increases, then the orange line
in Fig. 4(c) rotates away from the solution space, making
the synapse easier to identify with small ds. Accordingly, ycr
decreases.

It will turn out that the concept of y-critical is general,
and ycr can always be expressed in terms of projections of ê
along several specific directions. In this example, if we define
es∗ and ey to be projections of ê along ŝ∗ = −�ε1 and ŷ = �ε3,
respectively, then it is easy to check that one can re-express
ycr as

ycr = W

√
e2

s∗
e2

y + e2
s∗

. (28)

We will later discover that these projections are closely re-
lated to correlations between pre-synaptic and postsynaptic
neuronal activity patterns. Thus, the expressions in Eq. (28)
will provide a deeper understanding of the determinants of
synapse certainty.

B. Problem 2

Having identified two key angles, θ and γ , that play a role
in synapse certainty, let us look at the example of two con-
strained and one semiconstrained dimensions to uncover other
important geometric quantities. In this case, the solution space
is a ray defined by η1 = y1, η2 = y2, and −∞ < η3 � 0, and
the magnitude of η3 is at most

W̃ =
√

W 2 − y2
1 − y2

2 (29)

for solutions within the weight bound [Fig. 4(d)]. Figure 4(d)
shows a geometry where the w1 = 0 plane intersects the solu-
tion space at the point

�wint = y1�ε1 + y2�ε2 + η3�ε3. (30)

Now we must have

ê · �wint = 0, (31)

as the intersection point lies on the w1 = 0 plane by definition,
where we have defined ê ≡ ê1 as in the previous toy problem.
The projection directions of ê onto the constrained and semi-
constrained subspaces are given by

ĉ = cos βε̂1 + sin βε̂2, and ŝ = ε̂3, (32)

[Fig. 4(d)]. Then combining Eqs. (22) and (32), we can find
an equation to determine η3 at the intersection point

ê · �wint = cos θ (y1 cos β + y2 sin β ) + η3 sin θ = 0. (33)

We next introduce α to represent the angle between ĉ and �y
[Fig. 4(e)], such that

y1 = y cos(β − α) and y2 = y sin(β − α), (34)

where y = |�y|. The first two terms in Eq. (33) can then be
trigonometrically combined with a difference of angles iden-
tity to arrive at

y cos θ cos α + η3 sin θ = 0 �⇒ η3 = −y cot θ cos α. (35)

To be able to identify the sign of w1, this intersection point
must lie beyond the weight bounds of the solution line seg-
ment, so η3 < −W̃ . After some straightforward algebra we
obtain the certainty condition as

y > ycr ≡ W

√
sin2 θ

cos2 θ cos2 α + sin2 θ
. (36)

From the geometry of the problem in Figs. 4(d) and 4(e),
one sees that as θ or α increases, the point where the orange
hyperplane intersects the yellow line is closer to the origin.
Indeed, ycr increases, making it more difficult to identify the
synapse sign. Again, one can re-express ycr as Eq. (28) in
terms of projections, with the role of ŝ∗ being played by �ε3.

C. Problem 3

Through the two above examples we found three angles,
θ, α, and γ , that determine how large the response of the
driven neuron has to be in order for a given synapse to be
certain. However in both examples the number of patterns
were equal to the number of synapses, P = N . When P < N ,
we have unconstrained dimensions, and the projection of the
ê ≡ ê1 vector into the unconstrained subspace will also matter,
because it relates to how much we do not know about the
response properties of the driven neuron.

Here we consider a N = 3 example with one constrained,
one semiconstrained, and one unconstrained dimension
[Fig. 4(f)]. In this case, we can express the ê synaptic di-
rection as a linear combination of its projections along the
constrained, semiconstrained and unconstrained dimension as

ê =
N∑

μ=1

Xμ1�εμ = cos θ ĉ + sin θ cos φ̂s + sin θ sin φû, (37)

where we can always choose the directions of the unit vectors
to make θ and φ acute angles. For the example shown in
Fig. 4(f), this is achieved by choosing

ĉ = �ε2, ŝ = −�ε1, and û = �ε3. (38)

Obtaining the certainty condition again involves ascertaining
whether the w1 = 0 hyperplane intersects the deep yellow
solution space [Fig. 4(f)]. In the example of Fig. 4(f), one
can see that increasing the driven neuron response moves the
yellow plane up, and there will come a critical point when
the orange w1 = 0 plane just touches the solution space at the
corner (η1 = 0, η2 = ycr, η3). Thus,

�wint = ycr�ε2 + η3�ε3. (39)

Since this corner point has a negative η3 component and lies
on the bounding sphere, we must also have

η3 = −
√

W 2 − y2
cr, (40)

[Fig. 4(f)]. Substituting �wint in the w1 = 0 plane equation,

ê · �wint = − sin θ sin φ

√
W 2 − y2

cr + cos θ ycr = 0, (41)

we can then determine ycr through simple algebra as

ycr = W

√
sin2 θ sin2 φ

cos2 θ + sin2 θ sin2 φ
. (42)
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The final result now depends on the two acute orientation
angles, θ and φ. By inspection of Fig. 4(f) or Eq. (42), it is
clear that ycr increases if either θ or φ increases toward π/2.
One therefore needs a larger response (y3) to make the synapse
certain. We can again express ycr in terms of projections

ycr = W

√
e2

u

e2
y + e2

u

, (43)

where eu is the projection of ê along û, and es∗ does not
appear because the intersection occurred at the origin of the
semiconstrained subspace.

V. CERTAIN SYNAPSES, THE GENERAL TREATMENT

A. High-dimensional feedforward networks

We have seen in the previous section how geometric
considerations can identify synapses that must be present
to generate observed response patterns in small networks.
One can similarly ask when a synapse is required in high-
dimensional networks [Fig. 5(a)].

Although the rigorous derivation is intricate, this cer-
tainty condition is remarkably simple for orthonormal X
(Appendix A). Quantitatively, orthonormal X imply that only
a few parameters matter for the certainty condition, each il-
lustrated in the previous section and abstractly summarized in
Fig. 5(b).

For any given synapse, its physical basis vector, êm, can
always be written as a sum of components in the constrained,
semiconstrained, and unconstrained subspaces,

êm =
N∑

μ=1

Xμm�εμ = �cm + �sm + �um, (44)

where �cm, �sm, and �um denote the partial sums over μ in the
constrained, semiconstrained, and unconstrained subspaces,
respectively. Note that {�εμ} are orthogonal unit vectors if and
only if X is an orthogonal matrix. In this case, the decompo-
sition of êm is a sum of three orthogonal vectors that can be
parameterized by two angles,

êm = cos θ ĉm + sin θ cos φ ŝm + sin θ sin φ ûm, (45)

where ĉm, ŝm, and ûm are unit vectors in the constrained,
semiconstrained, and unconstrained subspaces, and (θ, φ) are
spherical coordinates6 specifying the orientation of êm with
respect to these subspaces [e.g., Fig. 4(f)]. In particular,

cos θ =
√√√√ P∑

{μ|yμ>0}
X 2

μm,

sin θ cos φ =
√√√√ P∑

{μ|yμ=0}
X 2

μm,

sin θ sin φ =
√√√√ N∑

μ=P+1

X 2
μm. (46)

6The angles also depend on the synapse but we have dropped the m
index for brevity.

D

ep= 0.3

ep= 0.6

ep= 0.9

1

0.4
0                           0.5                          1

y-
lac itirc

(c)

(b)

mû

s
eu

ŷ

mê
ey

(a)

es*

FIG. 5. Identifying certain synapses in high-dimensional net-
works. (a) Cartoon depicting the high-dimensional feedforward
network under consideration. (b) Geometrically determining whether
a synapse is nonzero throughout a high-dimensional solution space.
A synapse can only vanish if the wm = 0 hyperplane (orange circle)
intersects the solution space (dark yellow wedge) within the weight
bounds (bounding sphere). In the example shown, this intersection
does not occur, so the synapse must be present. For orthonormal
neural responses, only a few parameters determine whether this
intersection occurs (Appendix A). First, the magnitude of the weight
bound, W , controls the extent of the solution space. Second, there
are three projections of the synapse direction (orange arrow) whose
lengths are important determinants of the certainty condition: ey, the
length of projection along the target response vector (pink arrow);
es∗, the length of projection along the closest boundary vector in
the semiconstrained solution subspace [green arrow, see also �s∗ in
Fig. 4(c)]; and eu, the length of projection into the unconstrained
subspace (purple arrow). Note that the shown example would have
had an intersection if the solution space (dark yellow wedge) were
moved down (along ĉ) to lie below the hyperplane (orange circle).
The solution space’s height is proportional to the magnitude of the
postsynaptic responses, y. Thus, the solution space does not intersect
the hyperplane only if y exceeds a critical value, ycr. (c) Plots of the
certainty condition, Eq. (57), for W = 1. The red, blue, and purple
curves plot ycr as a function of ry = ey/ep for ep = 0.3, 0.6, and 0.9,
respectively. Different purple shades correspond to different values
of rs∗ = es∗/

√
e2

p − e2
y . As this ratio increases, nonlinear effects in-

crease ycr and make the sign harder to determine. The red and blue
curves are for the maximally nonlinear case when rs∗ = 1 ⇒ es∗ =√

e2
p − e2

y . The dashed black curves represent ycr in a linear model,

which cannot exceed the nonlinear ycr.

As we have seen in the toy examples, these two orientation
angles heavily influence whether the synapse is certain.

Additionally, because the solution space’s height along ĉm

[e.g., Fig. 4(b)] is controlled by the angle between ĉm and
ŷ, the equation for the wm = 0 hyperplane that divides the
positive and negative synaptic regions in the solution space
depends on

�y · ĉm = y cos α, (47)

where y is the length of �y and α is the angle between �y and
ĉm [Fig. 4(e)]. Finally, there is another critical angle, which
we call γ , that encodes how ŝm is oriented with respect to
the solution space in the semiconstrained subspace. Using
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a more convenient direction, ŝ ′
m ≡ −Sgn(cos α )̂sm, which is

either along or opposite to the ŝm direction, we define γ to be
the minimal angle between ŝ ′

m and the solution space [e.g.,
Fig. 4(b)]. It is generally given by

cos γ =
√ ∑

{μ|̂s ′
μ<0}

ŝ ′2
μ (48)

(Appendix A), where ŝ ′
μ is the μth component of ŝ ′

m, and we
have suppressed m to avoid cluttered notation. Although this
definition and equation for γ may initially appear opaque, we
soon clarify its meaning in terms of interpretable projections
of the synapse vector.

Putting all the pieces together, we find that the mth synapse
must be present, and its sign is unambiguous, if and only if y
exceeds the critical value

ycr=W

√
cos2 γ sin2 θ cos2 φ + sin2 θ sin2 φ

cos2 α cos2 θ + cos2 γ sin2 θ cos2 φ + sin2 θ sin2 φ

(49)

(Appendix A). Intuitively, W bounds the magnitude of weight
vectors, and large W increase ycr by admitting more solutions.
Note that a synapse is certain, for a given y, when the weight
bound is less than a critical value,

Wcr=y

√
cos2 α cos2 θ + cos2 γ sin2 θ cos2 φ + sin2 θ sin2 φ

cos2 γ sin2 θ cos2 φ + sin2 θ sin2 φ
.

(50)

Finally, we note that we must have W � y for any solutions
to exist. One can straightforwardly obtain the special cases
Eqs. (27), (36), and (42), by substituting α = φ = 0, γ =
φ = 0, and α = cos γ = 0 in the general expression given by
Eq. (49).

The geometric description of Eq. (49) can be written more
intuitively as

ycr = W

√
e2

s∗ + e2
u

e2
y + e2

s∗ + e2
u

= W

√
1

1 + e2
y/
(
e2

s∗ + e2
u

) (51)

(Appendix A), where ŝ∗ is the unit vector in the solution space
that is most aligned with ŝ ′

m [e.g., Fig. 4(b)], and ey, es∗, and eu

are the projections of êm onto ŷ = �y/y, ŝ∗, and ûm [Fig. 5(b)].
Indeed, Eqs. (28) and (43) can be readily recognized as special
cases of the above general expression.

Each of these projections is interpretable in light of the fact
that xμm represents the activity level of the mth presynaptic
neuron in the μth response pattern. Most simply,

ey = êm · ŷ =
∑P

μ=1 yμxμm√∑P
ν=1 y2

ν

(52)

is a normalized correlation of the pre- and postsynaptic activ-
ity (note that

∑N
ρ=1 X 2

ρm = 1). As expected, synapse certainty
is aided by large magnitudes of ey. Moreover, the sign of a
certain synapse is the sign of this correlation, or equivalently
the sign of ey. Synapse sign identifiability is hindered by large

values of

eu = êm · ûm =
√√√√1 −

P∑
μ=1

x2
μm, (53)

which effectively measures the weakness of the presynaptic
neuron’s activity, as it is the amount of presynaptic drive for
which we do not have any information on the target neuron’s
response. The more subtle quantity is

es∗ = êm · ŝ∗ = −Sgn(cos α)

√√√√√ P∑
{μ|s′

μ<0}
x2
μm

�⇒ e2
s∗ =

P∑
{μ|s′

μ<0}
x2
μm. (54)

The condition that s′
μ < 0 selects for patterns where the sign

of the presynaptic activity is Sgn(cos α) = Sgn(ey), but the
postsynaptic neuron does not respond. In other words, presy-
naptic activity should have promoted a response in the target
neuron according to the observed activity correlation. That
it does not generates uncertainty in the sign of the synapse.
See Appendix A for a heuristic derivation of ycr based on this
argument.

We can gain more useful intuition by interpreting our result
in relation to what we would obtain in a linear neural net-
work. In the linear problem, there are only constrained and
unconstrained dimensions; every dimension that was semi-
constrained in the nonlinear problem becomes constrained,
with all solutions having ημ = yμ for μ = 1, . . . ,P . This
implies that

ycr,lin = W

√
e2

u

e2
y + e2

u

. (55)

Returning to the nonlinear problem, recall that the certainty
condition finds the largest y for which the solution space
and wm = 0 hyperplane intersect within the weight bound,
and this intersection is simply a point when y = ycr. Impor-
tantly, each semiconstrained dimension can either behave like
a linear constrained dimension with ημ = yμ = 0 at this inter-
section point (toy problems 1 and 3), or like an unconstrained
dimension with ημ < 0 at the intersection point (toy problems
1 and 2).7 The first case occurs when êm · �εμ and ey = êm · ŷ
have opposite signs and s′

μ > 0; the second case occurs when
they have the same sign and s′

μ < 0. This means that one
could compute the nonlinear theory’s y-critical from ycr,lin
by appending the second class of semiconstrained dimensions
onto the unconstrained dimensions. Mathematically, this cor-
responds to the replacement

e2
u → e2

u + e2
s∗ =

N∑
μ=P+1

x2
μm +

P∑
{μ|s′

μ<0}
x2
μm, (56)

7Since this intersection point depends on m, the semiconstrained di-
mension indexed by μ can behave as constrained for some synapses
and unconstrained for others.
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which indeed transforms Eq. (55) to Eq. (51). The role of
e2

s∗ is to quantify the uncertainty introduced by the subset of
semiconstrained dimensions that do not behave as constrained
at the intersection point.

Since the parameters ey, es∗, and eu cannot be set indepen-
dently, it is convenient to reparameterize Eq. (51) as

ycr = W

√
1

1 + r2
y e2

p/
{
1 − e2

p

[
1 − r2

s∗
(
1 − r2

y

)]} , (57)

where e2
p = 1 − e2

u, r2
y = e2

y/e2
p, r2

s∗ = e2
s∗/(e2

p − e2
y ), and all

three composite parameters can be independently set between
0 and 1. Conceptually, ry and rs∗ merely normalize ey and es∗
by their maximal values, and ep is the projection of êm into
the activity-constrained subspace spanned by both constrained
and semiconstrained dimensions. One could also interpret rs∗
as quantifying the effect of threshold nonlinearity. For in-
stance, rs∗ = 0 describes the case where all semiconstrained
dimensions are effectively constrained, but rs∗ increases as
some of the semiconstrained dimensions start to behave like
unconstrained dimensions. As expected, ycr is a decreas-
ing function of r2

y and e2
p and an increasing function of r2

s∗
[Fig. 5(c)].

B. Regarding nonorthogonal input patterns

While a complete treatment of the certainty condition for
generally correlated input patterns is beyond the scope of this
paper, we could find a conservative bound for y-critical that
may be useful when patterns are close to being orthogonal.
The details of the derivation are discussed in the final subsec-
tion of Appendix A.

The major challenge caused by nonorthogonal patterns is
that the spherical weight space becomes elliptical in terms
of the η coordinates. Thus, the main idea behind the bound
is that one can always find the sphere that just encompasses
this ellipse. We can then use our formalism to obtain a con-
servative y-critical, such that if the norm of �y is larger than
this value then all solutions within the encompassing sphere
have a consistent sign for the synapse under consideration.
An interesting insight that emerges from our analysis is that
the relative orientations between

�nm ≡
N∑

μ=1

X −1
mμ�εμ (58)

and the various important η directions play the role of θ, φ, α

and γ (Appendix A). Note that �nm = êm when X is an orthog-
onal matrix. We anticipate that �n will also be an important
player in a more comprehensive treatment of nonorthogonal
patterns.

C. Application to recurrent networks

As we explained in Sec. III, to find the ensemble of all
incoming weight vectors onto the ith driven neuron, one can
use the results obtained for the feedforward network and just
substitute X with the Z (i) matrix. Consequently, identifying
certain synapses onto the ith neuron can follow the route
outlined for the feedforward scenario as long as Z (i) is or-
thogonal. So for example, if we want to ascertain whether any

(a)

(c)

(b)

FIG. 6. Testing the certainty condition with exhaustive low-
dimensional simulations. (a) A simple recurrent network with three
input neurons and three driven neurons (Appendix E). (b) We plot
the theoretically derived ycr for feedforward synapses to y1 as we
vary θ (green curves) or φ (magenta curves), keeping the other angle
fixed at 45◦. The lighter shades correspond to cos γ = 1 ⇒ rs∗ = 1.
The darker shades correspond to cos γ = 0 ⇒ rs∗ = 0, where the
predictions from the nonlinear network match those of a linear net-
work. The dots represent ycr estimated through simulations, and they
agree well with the theory. (c) (Bottom) Bar graph of the fraction
of solutions with positive (red) and negative (blue) self-couplings
(y3 → y3) as a function of θ . (Top) As predicted, all solutions have
positive wy3,y3 when y − ycr > 0.

incoming synapse to the ith neuron is certain, we have to re-
place xμm → z(i)

μm and yμ → yμi in Eqs. (51)–(54) to compute
ycr.

D. Numerical illustration of the certainty condition

To illustrate and test the theory numerically, we first
considered a small neural network of three input neurons
and three driven neurons [Fig. 6(a)]. This small number of
synapses meant that we could comprehensively scan the entire
spherical weight space without relying on a numerical algo-
rithm to find solutions.8 This is important because numerical
techniques, such as gradient descent learning, potentially find
a biased set of solutions that incompletely test the theory.
We supposed that each driven neuron has three inputs, and
we constrained weights with two orthonormal stimulus re-
sponses. We set W = 1 for all simulations and numerically
screened weights randomly. See Appendix F for complete
simulation details.

The first driven neuron in Fig. 6(a), y1, receives only feed-
forward drive, and we suppose that it responds to one stimulus
condition with response y (μ = 2), but it does not respond to
the other (μ = 1). Its synapses thus have one constrained, one
semiconstrained, and one unconstrained dimension, and all of
the terms in Eq. (49) contribute to y-critical. We could thus
use y1 to verify Eq. (49). Moreover, this scenario includes the
illustrative example of Fig. 4(f) as a special case, so we could
also use y1 to verify Eq. (42).

8Our results for the certainty condition hold for network ensembles
that exactly generate the desired responses. For numerical tests, we
had to allow for small deviations from the desired responses, but our
predictions proved robust.
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To these ends, we decided to focus on a two-parameter
family of input patterns,

x =
(− sin ψ cos χ cos ψ cos χ sin χ

cos ψ sin ψ 0

)
, (59)

where rows correspond to different input patterns and columns
correspond to different input neurons, as usual, and we extend
x to the full-rank orthogonal matrix

X =

⎛⎜⎝− sin ψ cos χ cos ψ cos χ sin χ

cos ψ sin ψ 0

sin ψ sin χ − cos ψ sin χ cos χ

⎞⎟⎠. (60)

By Eq. (44), the physical basis vector corresponding to the
synapse from the first input neuron is thus

ê1 = cos ψ�ε2 + sin ψ cos χ (−�ε1) + sin ψ sin χ�ε3, (61)

and it has the same general form as Eqs. (37) and (45), where
�ε3 plays the role of û. If ψ and χ are both acute, then one
can identify them with θ and φ in Fig. 4(f), and the roles of
ĉ and ŝ are played by �ε2 and −�ε1, respectively. In this case
α = 0, cos γ = 0, and the theoretical dependencies of ycr on
θ and φ are given by Eq. (42). Figure 6(b) illustrates these de-
pendencies as the purple and dark green curves. If ψ is acute,
but χ is obtuse, then according to our conventions, θ = ψ ,
φ = π − χ , ĉ = �ε2, and ŝ = �ε1. Now α = 0 and cos γ = 1,
and our general formula, Eq. (49), implies

ycr = W sin θ = W sin ψ. (62)

These dependencies are plotted as the pink and the light green
curves in Fig. 6(b). We do not plot cases where ψ is obtuse,
because obtuse and acute ψ result in equivalent ycr formulas.
Whether ψ is acute or obtuse nevertheless matters because it
determines the sign of the w1 synapse when it is certain.

The black dots in Fig. 6(b) show the largest response
magnitude, y, for which we numerically found solutions with
both positive and negative w1 (see Appendix F for numerical
methods), thereby providing a numerical estimate of ycr. The
theoretical curves and numerical points precisely aligned in all
cases. The differences between the light and dark theoretical
curves illustrates the effect of nonlinearity. When χ is obtuse,
the semiconstrained dimension effectively behaves as uncon-
strained, and the mixing angle between the semiconstrained
and unconstrained dimension is irrelevant to y-critical. When
χ is acute, the semiconstrained dimension effectively behaves
as constrained, as if its coordinate were set to zero. Moreover,
these results confirmed that stronger responses were needed to
make synapses fixed sign when the synaptic direction was less
aligned with the constrained dimension [Fig. 6(b), purple and
pink]. Furthermore, smaller y-critical values occurred when
the synaptic direction anti-aligned with the semiconstrained
dimension [Fig. 6(b), purple versus pink, dark green versus
light green].

We next wanted to check the validity of our results for
the recurrently connected neurons in Fig. 6(a). We therefore
needed to tailor the steady-state activity levels of the recurrent
network to result in orthogonal presynaptic input patterns for
each driven neuron. In mathematical terms, Z (i) must be an
orthogonal matrix for i = 1, 2, 3. We achieved this by con-
sidering a two-parameter family of driven neuronal responses

in which the activity patterns of y2 and y3 were matched to
those of x1 and x3, respectively. This construction means that
all three driven neurons receive the same input patterns. To
ensure positivity of driven neuronal responses, we set χ as an
acute angle and ψ as the negative of an acute angle.

Although y2 has both feedforward and recurrent inputs,
we can analyze its connectivity in exactly the same way as
y1. Recurrence only complicates the analysis for neurons that
synapse onto themselves, like y3, since changing the output
activity also changes the input drive. So |�y3| and ycr are not in-
dependent. Here we focused on the certainty condition for the
self-synapse, wy3,y3 , for which ycr = cos χ , and |�y3| = sin χ .
Therefore, the synapse should be certain if 450 < χ � 900.
Since θ = π/2 − χ according to our conventions,9 this is
equivalent to 0 � θ < 450 [Fig. 6(c), top]. Our numerical
results precisely recapitulated these theoretical expectations
[Fig. 6(c), bottom], as the self-connection was consistently
positive across all simulations whenever this condition on θ

was met. See Appendix E for certainty condition analyses for
other synapses onto y3 and Appendix F for complete simula-
tion details.

VI. ACCOUNTING FOR NOISE

A. Finding the solution space in the presence of noise

So far we have only considered exact solutions to the
fixed point equations. However, it is also important to de-
termine weights that lead to fixed points near the specified
ones. For example, biological variability and measurement
noise generally make it infeasible to specify exact biologi-
cal responses. Furthermore, numerical optimization typically
produces model networks that only approximate the specified
computation. We therefore define the E-error surface as those
weights that generate fixed points a distance E from the spec-
ified ones,

VE =
{

w

∣∣∣∣∣
P∑

μ=1

D∑
i=1

(yμi − ỹμi(w))2 = E2

}
, (63)

where yμi is the specified activity of the ith driven neuron in
the μth fixed point, and ỹμi is the corresponding activity level
in the fixed point approached by the model network when it
is initialized as yi(t = 0) = yμi. If the network dynamics do
not approach a fixed point, perhaps oscillating or diverging
instead [54], we say E = ∞.

Each E-error surface can be found exactly for feedforward
networks. For illustrative purposes, let us first consider the
D = 1 feedforward scenario in which the driven neuron is
active in every response pattern. This means that yμ > 0 for
all μ = 1, . . . ,P , and we can reorder the μ indices to sort
the driven neuron responses in ascending order, 0 < y1 <

y2 < · · · < yP . Here we assumed that no two response lev-
els are exactly equal, as is typical of noisy responses. Since
all responses are positive, the zero-error solution space has

9For y3, μ = 1, 2 are constrained and semiconstrained, respec-
tively. Accordingly,

êy3y3 = sin χ�ε1 + cos χ�ε3 = cos θ�ε1 + sin θ�ε3 = cos θ ĉ + sin θ û.
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(a)

(b)

FIG. 7. The solution space geometry changes as the allowed
error increases. (a) Error surface contours in a three-dimensional
subspace corresponding to η1, η2, and η3. Several topological tran-
sitions occur as the error increases. (i) We consider the case where
all responses are positive, so the contours are spherical for small
errors, just like in a linear neural network. (ii), (iii) Two cylindrical
dimensions sequentially open up when the error is large enough for
some η coordinates to become negative. (iv), (v) After that, either
a third cylindrical dimension can open up, or the two cylindrical
axes can join to form a plane. Which transition occurs at lower
error depends on the pattern of neural responses. (b) (Left) We
illustrate a case where there is a unique exact solution to the problem
(brown dot). Allowing error but neglecting topological transitions
would expand the solution space to an ellipse (here, brown circle),
but the signs of w1 and w2 remains positive. Including topological
transitions in the error surface can cap the ellipse with a cylinder
(full yellow solution space). Now we can say with certainty that the
sign of w2 is positive, but negative values of w1 become possible.
(Right) Graphical conventions are the same. However, in this case all
solutions inside the cylinder have w2 > 0. Therefore, the topological
transition breaks a near symmetry between positive and negative
weights.

no semiconstrained dimensions, and the only freedom for
choosing w is in the U = N − P unconstrained dimensions.
Therefore, the zero-error surface of exact solutions, V0, is
a U -dimensional linear subspace, and V0 is a point in the
P-dimensional activity-constrained subspace.

How does this geometry change as we allow error? For
0 < E < y1, we must have ỹμ > 0 for all μ. Therefore, the
nonlinearity is irrelevant, and E-error surfaces are spherical in
the activity-constrained η coordinates [Eq. (63), Fig. 7(a(i))].
However, once E = y1 it becomes possible that ỹ1 = 0, and
suddenly a semi-infinite line of solutions appears with η1 � 0.
As E further increases, this line dilates to a high-dimensional

cylinder [Fig. 7(a(ii))]. A similar transition happens at E =
y2, whereafter two cylinders cap the sphere [Fig. 7(a(iii))].
Things get more interesting as E increases further because two
transitions are possible. A third cylinder appears at E ′ = y3.
However, at E ′′ =

√
(y1)2 + (y2)2 it is possible for both ỹ1

and ỹ2 to be zero, and the two cylindrical axes merge into
a semi-infinite hyperplane defined by η1 � 0, η2 � 0. Thus,
when E ′ < E ′′ the error surface grows to attach a third cylinder
[Fig. 7(a(iv))], and when E ′′ < E ′ the two cylindrical surfaces
merge to also include planar surfaces in between [Fig. 7(av)].
These topological transitions continue by adding new cylin-
ders and merging existing ones, and the sequence is easily
calculable from {yμ}. Note that we use the terminology “topo-
logical transition” to emphasize that the structure of the error
surface changes discontinuously at these values of error. The
geometric transitions we observe here also relate to topolog-
ical changes in a formal mathematical sense. For instance,
while there are no incontractible circles in Fig. 7(a(ii)), one
develops as we transition to Fig. 7(a(iii)).

In general, yμ may also be zero or negative in the pres-
ence of noise. Whenever yμ = 0, the μth response pattern
generates a semiconstrained dimension in V0. However, if
some response levels are negative, then there are no exact
solutions at all. However, it becomes possible to find solutions

when E =
√∑

{μ|yμ<0} y2
μ, and each response pattern associ-

ated with a negative yμ acts as a semiconstrained dimension
in VE . As illustrated above, more semiconstrained dimensions
open up as more error is allowed in each of these cases.

This geometry only approximates E-error surfaces for re-
current networks (Appendix C). For instance, displacing yμi

from its specified value changes the input pattern that define
the �εμ directions for downstream driven neurons, but this
effect is neglected here. We will nevertheless find that this
feedforward approximation to E-error surfaces is practically
useful for predicting synaptic connectivity in recurrent net-
works as well.

B. Predicting connectivity in the presence of noise

The threshold nonlinearity and error-induced topological
transitions can have a major impact on synapse certainty
[Fig. 7(b)]. For example, one might model a neuronal dataset
with a linear neural network and find that models with ac-
ceptably low error consistently have positive signs for some
synapses. However, if measured neural activity was some-
times comparable to the noise level, then semiconstrained
dimensions could open up that suddenly make some of these
synapse signs ambiguous [Fig. 7(b), left]. Although semicon-
strained dimensions can never make an ambiguous synapse
fully unambiguous, semiconstrained dimensions can heavily
affect the distribution of synapse signs across the model en-
semble by providing a large number of solutions that have
consistent anatomical features [Fig. 7(b), right].

We therefore generalized the certainty condition to include
the effects of error, including topological transitions in the
error surface (Appendix C). As before, finding the certainty
condition amounts to determining when the wm = 0 hyper-
plane intersects the solution space within the weight bound,
but to account for noise of magnitude ε, we must now check
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whether an intersection occurs with any E-error surface with
E � ε. No intersections will occur if and only if every non-
negative �̃y within ε of the provided P-vector of noisy target
neuron activity [Fig. 3(c)] satisfies its zero-error certainty
condition, and each �̃y is a possible denoised version of it
[Eq. (63)]. We thus define y-critical in the presence of noise
as the maximal ycr [Eq. (51)] among this set of �̃y.

Although we lack an exact expression for y-critical in
the presence of noise, we derived several useful bounds
and approximations (Appendix C). We usually focus on a
theoretical upper bound for y-critical, ycr,max. Note that this
upper bound suffices for making rigorous predictions for cer-
tain synapses, because y > ycr,max �⇒ y > y-critical. In the
absence of topological transitions, this formula is

ycr,max = W

⎡⎣√√√√( e2
s∗ + e2

u

e2
y + e2

s∗ + e2
u

)
+ ε2

W 2

(
1 + e2

y

(
e2

p − e2
y

)(
e2

y + e2
s∗ + e2

u

)2

)
+ ε

W

√√√√1 + e2
y

(
e2

p − e2
y

)(
e2

y + e2
s∗ + e2

u

)2

⎤⎦. (64)

We also computed a lower bound, ycr,min, to assess the tight-
ness of the upper bound. This bound is

ycr,min = W

[√
e2

s∗ + e2
u

e2
y + e2

s∗ + e2
u

+ ε

W

]
(65)

without topological transitions. Both bounds increase with
error and should be considered to be bounded above by W . As
expected, both expressions reduce to Eq. (51) as ε/W → 0.
We also note that the two bounds coincide, to leading order in
ε/W , if ey � max(es∗, eu) and ep/ max(es∗, eu) = O(1), and
we argue in Appendix B that this is typical when the network
size is large.

The effect of topological transitions is that ycr,max and
ycr,min become the maximums of several terms, each corre-
sponding to a way that constrained dimensions could behave
as semiconstrained within the error bound (Appendix C). We
compute each term from generalizations of Eqs. (64) and
(65) that account for the amount of error needed to open up
semiconstrained dimensions.

C. Testing the theory with simulations

To examine our theory’s validity, we assessed its predic-
tions with numerical simulations of feedforward and recurrent
networks [Fig. 8(a)]. Each assessment used gradient descent
learning to find neural networks whose late time activity ap-
proximated some specified orthogonal configuration of input
neuron activity and driven neuron activity (Appendix F). We
then used our analytically derived certainty condition with
noise to identify a subset of synapses that were predicted to
not vary in sign across the model ensemble (W = 1), and we
checked these predictions using the numerical ensemble. We
similarly checked predictions from simpler certainty condi-
tions that ignored the nonlinearity or neglected topological
transitions in the error surface (Appendix C). Note that we
expected gradient descent learning to often fail at finding good
solutions in high dimensions, as our theory predicts that each
semiconstrained dimension induces local minima in the error
surface [Fig. 7(a)]. Since we did not want the theory to bias
our numerical verification of it, we focused our simulations on
small to moderately sized networks, where we could reason-
ably sample the initial weight distribution randomly. Future
work will consider more realistic neural network applications.

We first considered feedforward network architectures, for
which our analytical treatment of noise is exact. To illustrate
how nonlinearity and noise affect synapse certainty, we calcu-

lated the magnitude of postsynaptic activity needed to make
a particular synapse sign certain [Fig. 8(b)]. We specifically
considered 102 random input-output configurations of a small
feedforward network with 6 input neurons (P = 5, C = 2),
which were tailored to have orthonormal input patterns and
generate one topological error surface transition at small er-
rors. In particular, we generated random orthogonal matrices
by exponentiating random antisymmetric matrices, we set
one element of ŷ to a small random value to encourage the
topological transition, and we ensured that the other nonzero
random element of ŷ was large enough to preclude additional
transitions (Appendices C and F). For each input-output con-
figuration, we then systematically varied the magnitude of
driven neuron activity, y, finding 105 synaptic weight matrices
with moderate error, E2 ≈ ε2, for each magnitude y. Since
randomly screening a six-dimensional synaptic weight space
is not numerically efficient, we applied gradient descent learn-
ing. Nevertheless, the small network size meant that we could
comprehensively sample the solution space and numerically
probe the distinct predictions made by each bound or approx-
imation used to estimate y-critical.

As expected, the maximum value of y that produced
numerical solutions with mixed synapse signs [Fig. 8(b),
black dots] was always below the theoretical upper bound
for y-critical [Fig. 8(b), black line]. In contrast, mixed-sign
numerical ensembles were often found above theoretical y-
critical values that neglected topological transitions in the
error surface [Fig. 8(b), yellow line] or that neglected the
nonlinearity entirely [Fig. 8(b), cyan line]. This means that
these simplified calculations for estimating y-critical make
erroneous predictions, because the synapse sign is supposed
to be exclusively positive or negative whenever y exceeds
y-critical, by definition. Therefore, we were able to accurately
assess synapse certainty, and this generally required us to
include both the nonlinearity and noise-induced topological
transitions in the error surface.

We next asked how often we could identify certain
synapses in larger networks. For this purpose, we generated 25
random input-output configurations in the feedforward setting
(Appendix F), again with orthonormal input patterns, but this
time we increased the number of input neurons from 4 to
100 across the configurations [Fig. 8(c)]. As we increased
the size of the network, we kept C/N fixed at 0.25 and
P/N fixed at 1 [Fig. 8(c), brown] or 0.5 [Fig. 8(c), purple].
These scaling relationships put our simulations in the setting
of high-dimensional statistics [65], where both the number
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FIG. 8. The theory accounting for error explains numerical ensembles of feedforward and recurrent networks. (a) Cartoon of a recurrent
neural network. We disallow recurrent connectivity of neurons onto themselves throughout this figure. D = 1 corresponds to the feedforward
case, and W = 1 for all panels. (b) Comparison of numerical and theoretical y-critical values for 102 random configurations of input-output
activity (Appendix F). We considered a feedforward network with I = 6, P = 5, C = 2. For each configuration and postsynaptic activity
level y, we used gradient descent learning to numerically find many solutions to the problem with E ≈ 0.1. The black dots correspond to
the maximal value of y in our simulations that resulted in an inconsistent sign for the synaptic weight under consideration. The continuous
curves show theoretical values for y-critical that upper bound the true y-critical (ycr,max, black), that neglect topological transitions in the error
surface (yellow), or that neglect the threshold nonlinearity (cyan). Only the black curve successfully upper bounded the numerical points.
Configurations were sorted by the ycr,max value predicted by the black curve. (c) The number of certain synapses increased with the total
number of synapses in feedforward networks. Purple and brown correspond to N = 2P = 4C and N = P = 4C, respectively. The solid lines
plot the predicted number of certain synapses. The circles represent the number of correctly predicted synapse signs in the simulations. The
dashed brown and purple lines are best-fit linear curves with slopes 0.16(±0.01) and 0.07(±0.01) at 95% confidence level, significantly
less than the zero error theoretical estimates of 0.28 and 0.18 (Appendix B). (d), (e) Testing the theory in a recurrent neural network with
N = 10, I = 7, D = 4, P = 8, and C = 3. Each dot shows a model found with gradient descent learning. (d) x and y axes show two η

coordinates predicted to be constrained and semiconstrained, respectively, and the color axis shows the model’s root-mean-square error over
neurons, E/

√
D. Although our theory for error surfaces is approximate for recurrent networks, the solution space was well explained by

the constrained and semiconstrained dimensions. Note that the numerical solutions tend to have constrained coordinates smaller than the
theoretical value (vertical line) because the learning procedure is initialized with small weights and stops at nonzero error. (e) The x axis shows
the model’s error, and the y axis shows the number of synapse signs correctly predicted by the nonlinear theory (yellow dots or red crosses) or
linear theory (cyan dots or blue crosses). Dots denote models for which every model prediction was accurate, and crosses denote models for
which some predictions failed.

of parameters and the number of constraints increase with
the size of the network. In this high-dimensional regime, a
simple heuristic argument suggests that the number of zero-
error certain synapses should scale linearly with the number
of synapses (Appendix B), because ycr and the typical mag-

nitude of y scale equivalently with N . Here we tested this
prediction by setting ŷ randomly, setting y = 1 − ln 2/C to
approximate the median norm of vectors in the unit C-ball
(Appendix B), and numerically finding a small error solution
for each configuration (E2/P ≈ 10−6).
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As expected, we empirically found that the number of
certain synapses predicted by the theory [Fig. 8(c), solid lines]
scaled with the network size linearly [Fig. 8(c), dashed lines].
The jaggedness of the solid curves reflect the fact that each
point is specific to the random input-output configuration con-
structed for that value of N . The purple curve corresponds to
the case when N = 2P = 4C and the brown curve when N =
P = 4C. Furthermore, for every certain synapse predicted, we
verified that its predicted sign was realized in the numerical
solution we found [Fig. 8(c), circles]. These results suggest
that the theory will predict many synapses to be certain in
realistically large neural systems.

Finally, we empirically tested our theory for a recurrent
network [Figs. 8(d) and 8(e)], where our treatment of noise
is only approximate. For this purpose, we considered net-
works without the self-coupling terms, N = I + D − 1. We
constructed a single random configuration with nonnegative
driven neuron responses and orthogonal presynaptic patterns
for one of the driven neurons10 (Appendix F). This driven
neuron could thus serve as the target neuron for our analyses.
Note that it is sometimes possible to orthogonalize the input
patterns for more than one driven neuron, but this is irrele-
vant to our analysis and is not pursued here. We then used
gradient descent learning to find around 4500 networks that
approximated the desired fixed points with variable accuracy.
For technical simplicity, we first found connectivity matrices
using a proxy cost function that treated the network as if it
were feedforward. We then simulated the neural network dy-
namics with these weights and correctly evaluated the model’s
error as prescribed by Eq. (63).

This network ensemble revealed that constrained and semi-
constrained dimensions accurately explained the structure of
the solution space for recurrent networks with nonzero error.
Figure 8(d) shows the projection of the corresponding solution
space along two η directions, one predicted to be constrained
by the feedforward theory and the other predicted to be semi-
constrained. As predicted, the extension of the solution space
along the negative semiconstrained direction was clearly dis-
cernible. However, recurrence implies that the exact solution
space is not perfectly cylindrical around the semiconstrained
axes (Appendix C), because the driven neuron inputs to the
target neuron can themselves vary due to noise. Here this ef-
fect was empirically insignificant, and the geometric structure
of the solution space conformed rather well to our feedfor-
ward prediction. One might have expected the error [color in
Fig. 8(d)] to increase monotonically as one moves away from
the center of semiconstrained cylinder, but this expectation is
incorrect for two reasons. First, we are visualizing the error
surface as a projection along two dimensions, yet variations
in other η coordinates add variation to the error.11 Second, we
are visualizing the solution space for one target neuron, but
other driven neurons in the recurrent network contribute to
the summed error represented by the color.

10We performed this numerical experiment with several random
configurations to confirm that the results did not qualitatively depend
on the random sample.

11For example, imagine projecting the 3D surfaces in Fig. 7(a)
along two dimensions.

Moreover, the theory correctly predicted how the num-
ber of certain synapses would decrease as a function of ε

[Fig. 8(e)], and we never found a numerical violation of the
theoretical certainty condition that included nonlinearity and
noise. In Fig. 8(e), the yellow circles represent the number
of certain synapses that were predicted by the theory and
verified to have synapse signs that agreed with the theoretical
prediction. Here accurate predictions did not require us to
account for topological error surface transitions. In contrast,
although our simulations usually agreed with the predictions
of the linear theory [Fig. 8(e), cyan circles], they could also
disagree. In Fig. 8(e), the blue crosses indicate configurations
where the linear theory incorrectly predicted some synapse
signs. The absence of red crosses reiterates the consistency of
predictions coming from the nonlinear treatment.

VII. DISCUSSION

In summary, we enumerated all threshold-linear recur-
rent neural networks that generate specified sets of fixed
points, under the assumption that the number of candidate
synapses onto a neuron is at least the specified number of
fixed points. We found that the geometry of the solution space
was elegantly simple, and we described a coordinate trans-
formation that permits easy classification of weight-space
dimensions into constrained, semiconstrained, and uncon-
strained varieties. This geometric approach also generalized
to approximate error-surfaces of model parameters that im-
precisely generate the fixed points. We used this geometric
description of the error surface to analyze structure-function
links in neural networks. In particular, we found that it is
often possible to identify synapses that must be present for the
network to perform its task, and we verified the theory with
simulations of feedforward and recurrent neural networks.

Rectified-linear units are also popular in state of the art ma-
chine learning models [29,66–68], so the fundamental insights
we provide into the effects of neuronal thresholds on neural
network error landscapes may have practical significance. For
example, machine learning often works by taking a model
that initially has high error and gradually improving it by
modifying its parameters in the gradient direction [69]. How-
ever, error surfaces with high error can have semiconstrained
dimensions that abruptly vanish at lower errors (Fig. 7). Local
parameter changes typically cannot move the model through
these topological transitions, because models that wander
deeply into semiconstrained dimensions are far from where
they must be to move down the error surface. The model has
continua of local and global minima, and the network needs to
be initialized correctly to reach its lowest possible errors. This
could provide insight into deep learning theories that view its
success as a consequence of weight subspaces that happen to
be initialized well [70,71].

The geometric simplicity of the zero-error solution space
provides several insights into neural network computation.
Every time a neuron has a vanishing response, half of a di-
mension remains part of the solution space, which the network
could explore to perform other tasks. In other words, by re-
placing an equality constraint with an inequality constraint,
simple thresholding nonlinearities effectively increase the
computational capacity of the network [72,73]. The flexibility
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afforded by vanishing neuronal responses thereby provides
an intuitive way to understand the impressive computational
power of sparse neural representations [50,74–76]. Further-
more, the brain could potentially use this flexibility to set
some synaptic strengths to zero, thereby improving wiring
efficiency. This would link sparse connectivity to sparse re-
sponse patterns, both of which are observed ubiquitously in
neural systems.

Our theory could be extended in several important ways.
First, we only derived the certainty condition to identify criti-
cal synapses from orthonormal sets of fixed points. Although
our orthogonal analysis also provides a conservative bound
for a general set of fixed points (Appendix A), a more pre-
cise analysis will be needed to pinpoint synapses in realistic
biological settings where stimulus-induced activity patterns
may be strongly correlated. Since our error surface description
made no orthonormality assumptions, this analysis will only
require more complicated geometrical calculations to discern
whether the synapse sign is consistent across the space of low-
error models. Furthermore, we could use the error surfaces to
identify multisynapse anatomical motifs that are required for
function, or to estimate the fraction of models in which an
uncertain synapse is excitatory versus inhibitory. It would also
be interesting to relax the assumption that the number of fixed
points is small. This would allow us to consider scenarios
where the fixed points can only be generated nonlinearly. We
could also consider cases where no exact solution exists at
all. Here we assumed that we knew the activity level of every
neuron in the circuit. This is not always the case, and it will be
important to determine how unobserved neurons alter the error
landscape for synaptic weights connecting the observed neu-
rons. The error landscape geometry will also be affected by
recurrent network effects that we ignored here (Appendix C).
It will be interesting to see whether the geometric toolbox
of theoretical physics can provide insights into the nontrivial
effects of unobserved neurons and recurrent network dynam-
ics. Finally, we note that it will sometimes be important to
analyze networks with alternate nonlinear transfer functions.
Our analyses already apply exactly to recurrent networks with
arbitrary threshold-monotonic nonlinear transfer functions
(Appendix D). Moreover, our analyses can approximate any
nonlinearity by treating its departures from threshold-linearity
as noise (Appendix D). An extension to capped rectified
linear units [67], which saturate above a second threshold,
would also be straightforward. In particular, semiconstrained
dimensions would emerge from any condition where the target
neuron is inactive or saturated.

Our primary motivation for undertaking this study was to
find rigorous theoretical methods for predicting neural circuit
structure from its functional responses. This identification
can be used to corroborate or broaden circuit models that
posit specific connectivity patterns, such as center-surround
excitation-inhibition in ring attractors [16–18] or contralat-
eral relay neuron connectivity in zebrafish binocular vision
[12,77]. More generally, if an experimental test violates the
certainty conditions we derived using our ensemble modeling
approach, it will suggest that some aspect of model mismatch
is important. We could then move on to the development of
qualitatively improved models that might modify neuronal
nonlinearities, relax weight bounds, incorporate subcellular
processes or neuromodulation, or hypothesize hidden cell

populations. However, we hope that our focus on predictions
that follow with certainty from simple network assumptions
will enable predictions that are relatively insensitive to minor
mismatches between our abstract model and the real bio-
logical brain. More nuanced predictions may require more
nuanced models.

An important parameter of the theory is the weight bound.
In particular, W bounds the magnitude of synaptic weight
vectors in biological networks, and our certainty condition de-
clares a synapse to be necessary when the ratio y/W exceeds
a critical value. It is not a priori clear how to set this scale pa-
rameter without additional biological data. Nevertheless, one
could use the neuronal activity data to compute each synapse’s
W -critical value, below which the certainty condition is sat-
isfied, and rank-order the synapses according to decreasing
W -critical values. Until we know the value of W , we do not
know where to draw the line between certain synapses and
uncertain synapses. However, our theory predicts that all of
the certain synapses will be at the top of the list, which speci-
fies a sequence of experimentally testable predictions and may
already provide biological insights into the important synaptic
connections. Testing these predictions can help constrain the
theory’s biological bound parameter.

Our theory describes function at the level of neural repre-
sentations. This description is useful because many systems
neuroscience experiments measure representations directly,
and it is important to build mechanistic models that ex-
plain these data in terms of neural network interactions
[12,15,18,77]. However, it would also be interesting to link
structure to function at the higher levels of behavior and
cognition. This is a significantly different problem because
multiple representations can support the same high-level func-
tions, and both neural network structure and representation
can change over time [78–85]. Consequently, experimen-
tal tests of our current framework must measure network
structure and representation on timescales shorter than the
network’s representational dynamics, and certain synapses
may be most biologically meaningful in innate circuits with
limited plasticity. Extensions to our framework may also be
useful for relating structural and representational dynamics in
circuits for learning [86].

An exciting prospect is to explore how our ensemble
modeling framework can be combined with other theoretical
principles and biological constraints to obtain more refined
structure-function links. For instance, we could refine our
ensemble by restricting to stable fixed points. Alternatively,
once the sign of a given synapse is identified, Dale’s principle
might allow us to fix the signs of all other synapses from this
neuron [87]. This would restrict the solution space and could
make other synapses certain. Utilizing limited connectomic
data to impose similar restrictions might also be a fruitful way
to benefit from large-scale anatomical efforts [7,10,13,14].
Finally, rather than restricting the magnitude of the incoming
synaptic weight vector, we could consider alternate biolog-
ically relevant constraints, such as limiting the number of
synapses, minimizing the total wiring length, or positing
that the network operates at capacity [88,89]. These changes
would modify the certainty conditions in our framework, as
well as our experimental predictions. We could therefore as-
sess candidate optimization principles and biological priors
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experimentally. While the base framework developed here
was designed to identify crucial network connections required
for function, we hope that our approach will eventually allow
us to assess theoretical principles that determine how neural
network structure follows from function.
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APPENDIX A: A CERTAINTY CONDITION TO PINPOINT
SYNAPSES REQUIRED FOR SPECIFIED RESPONSE

PATTERNS

1. Preliminaries

For completeness, we begin by briefly reviewing a few
central concepts from the main manuscript.

a. From recurrent to feedforward networks

Let us consider a neural network of I input neurons that
send signals to an interconnected population of D driven neu-
rons governed by dynamical equations (6), as described in the
main manuscript. At steady-state, since all time-derivatives
are zero, Eq. (6) yields

yμi = �

( D∑
m=1

wimyμm +
D+I∑

m=D+1

wimxμ,m−D

)

= �

( N∑
m=1

wimzμm

)
, (A1)

where, as prescribed in the main manuscript, yμi and xμm

denote steady-state activity levels of the driven and input
neurons to the μth stimulus, which we have combined into
zμm, and N is the number of incoming synapses onto each
of the driven neurons. Equation (A1) provides D × P non-
linear equations for D × N unknown parameters. However,
we immediately notice that the steady-state activity of neuron
i depends only on the ith row of the connectivity matrix,
so these equations separate into D independent sets of P
equations with N unknowns, the weights onto a given driven
neuron. In other words, the recurrent network involving D
driven and I input neurons decomposes into D feedforward
networks with N = D + I feedforward inputs. The steady-
state equations for these feedforward networks are given by

yμ = �

( N∑
m=1

zμmwm

)
, (A2)

where we have now suppressed the i index in yμi and in wim.
For this feedforward network we will refer the ith neuron as
the target neuron, and it is as if that all the neurons (driven

and input) are providing feedforward inputs to it. As long as
we only consider exact solutions to the fixed point equations,
the problem of identifying synaptic connectivity in a recur-
rent network reduces to solving the problem for feedforward
networks. Thus, in the rest of this Appendix we will focus on
identifying wm’s satisfying Eq. (A2).

Note that the main text used the notation z(i)
μm to empha-

size that the set of presynaptic neurons may depend on the
target neuron, but we simply write zμm throughout the Appen-
dices with the understanding that the formalism applies to a
specified target neuron whose index is suppressed. Further-
more, for conceptual simplicity the main text first stated many
results in a feedforward setting with a single driven neuron,
but the Appendices immediately treat the general case where
presynaptic partners may come from either the input or driven
populations of neurons.

b. A convenient set of variables

In all our discussions in this section the input neuronal
response matrix, zμm, will be assumed to be fixed. Note that
zμm connects synaptic weight vectors to the target response
vector and can be used to define P weight combinations, the
η coordinates. Each η coordinate controls the target response
to a single stimulus condition:

yμ = �(ημ), where ημ ≡
N∑

m=1

zμmwm. (A3)

It is rather convenient to extend this set of P η coordinates to a
basis set of N η coordinates, such that all synaptic weights can
be uniquely expressed as a linear combination of these η coor-
dinates, and vice versa. To see how this can be done, we will
henceforth make the simplifying assumption that the P × N
matrix has the maximal rank, P , although we anticipate that
much of our framework, results, and insights will apply more
generally. If z has maximal rank, then its kernel will be an
(N − P )-dimensional linear subspace spanned by (N − P )
orthogonal basis vectors, denoted by �εμ for μ = P + 1 . . .N .
We can now extend z to an N × N matrix, Z , as follows:

Zμm = zμm for μ = 1 . . .P, and ∀ m,
(A4)

Zμm = εμm for μ = P + 1 . . .N , and ∀ m,

where εμm is the mth component of the null vector �εμ. With
this construction, it is easy to see that the new η coordinates,

ημ ≡
N∑

m=1

Zμmwm, for μ = P + 1, . . . ,N , (A5)

remain completely unconstrained by the specified response
patterns, as these linear combinations do not contribute to any
of the target responses. In contrast, the original η coordinates,

ημ =
N∑

m=1

Zμmwm =
N∑

m=1

zμmwm, for μ = 1, . . . ,P,

(A6)
are all constrained by the data:

ημ

{=yμ for μ = 1, . . . , C, the constrained dimensions,
� 0 for μ = C + 1, . . . ,P, the semiconstrained dimensions,

(A7)
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where for notational simplicity we have ordered the response
patterns such that yμ �= 0 only for μ = 1, . . . , C. Also, we
extend the yμ’s to an N -dimensional vector, �y, by assigning
yμ = 0 for μ = P + 1 . . .N .

The extended response matrix Z defines a basis trans-
formation connecting physical synaptic directions, êm, with
directions

�εμ ≡
N∑

m=1

êmZ−1
mμ, (A8)

along which the η coordinates change. These �ε vectors clearly
differentiate directions in the weight space that are activity-
constrained by neuronal responses (μ = 1, . . . ,P) from those
that are not (μ = P + 1, . . . ,N ). We can express any weight
vector in either the {̂em} basis or the {�εμ} basis:

�w =
N∑

m=1

wmêm =
N∑

μ=1

ημ�εμ,

where wm =
N∑

μ=1

Z−1
mμημ, ημ =

N∑
m=1

Zμmwm,

�εμ ≡
N∑

m=1

êmZ−1
mμ, êm =

N∑
μ=1

�εμZμm. (A9)

For later convenience we also define the number of semi-
constrained and unconstrained dimensions as, S = P − C and
U = N − P , respectively.

2. Derivation of the certainty condition for orthogonal
input patterns

Our goal here is to use the solution space (i.e., ensemble of
weights that are precisely able to recover the specified target
responses) to derive a condition for when we can be certain
that a given synapse must be nonzero. For technical simplicity,
we will specialize to the case when all the response patterns
are orthonormal, i.e.,

N∑
m=1

zμmzνm = δμν ⇔ zzT = I, (A10)

where I is the identity matrix. Then we can always choose the
extended Z matrix to be an N × N orthogonal matrix, such
that Z−1 = ZT and the �εμ vectors now form an orthonormal
basis. Motivated by biological constraints, we will impose a
bound on the magnitude of the synaptic weight vector. For
orthonormal response patterns, this translates into a spherical
bound on η coordinates as well [see Fig. 5(b)]:

| �w|2 =
N∑

m=1

w2
m =

N∑
μ=1

η2
μ � W 2. (A11)

We refer to this N -dimensional ball, in which all admissable
synaptic weights reside, as the weight space.

a. A heuristic argument for y-critical

Before diving into the rigorous and technical derivation,
in this subsection we first try to intuitively understand how
the certainty condition (51) can arise. For this purpose, let us

start with a linear theory with no unconstrained dimension, so
S = U = 0. In this case, there is a unique set of weights that
can precisely reproduce the observed responses:

wm =
N∑

μ=1

Z−1
mμyμ =

N∑
μ=1

Zμmyμ. (A12)

Since Zμm = zμm represents the responses of the mth presy-
naptic neuron, the solution for the mth synaptic weight (A12)
is simply the correlation between the pre and post synaptic
activity. In a linear theory, the sign of the synapse is thus
dictated by the sign of the correlation between the pre and
post synaptic neuron.

Let us now allow a single (N th) unconstrained direction.
One can think of this situation as if we do not have the
information on how the target neuron would respond to the
unconstrained stimulus pattern. If we knew that this response
was say, yu, then we would have been able to determine the
sign of wm:

Sgn(wm) = Sgn

(N−1∑
μ=1

Zμmyμ + ZNmyu

)
. (A13)

However, since we do not know what the last term is, if it
can cancel the first term for some allowed value of yu then
the overall sign becomes ambiguous. Conversely, wm becomes
certain if ∣∣∣∣∣

N−1∑
μ=1

Zμmyμ

∣∣∣∣∣ > |ZNmyu| ∀ yu. (A14)

Now, it is easy to recognize that the first term is just ê · �y =
yey, where we have suppressed the m index on êm here to
reduce notational clutter and will continue to do so while
referring to the synapse direction whose sign we are consid-
ering.12 ey = ê · ŷ refers to the projection of ê along ŷ. Also,
note that in this simple case with one unconstrained direction,
the projection of ê along the unconstrained subspace is just
given by eu = ê · �εN = ZNm. Further, since Z is orthogonal,
to have any solution at all

y2 + y2
u � W 2. (A15)

Substituting the maximum |yu| from Eq. (A15) into Eq. (A14),
after some algebra we get the condition for sign certainty as

y > ycr = W

√
e2

u

e2
u + e2

y

. (A16)

The same argument applies if the N th direction is semicon-
strained instead of unconstrained, with one notable difference.
If the N th pattern was semiconstrained that means yN = 0,
and the nonlinear thresholding is masking how the target
neuron would have responded in a linear model.13 However,
the ambiguity in sign can only arise if the second term has a

12We do want to point out that in the main manuscript since we were
introducing the various concepts and relevant quantities, for clarity
we did explicitly keep track of the m index.

13Note that our relation between the sign of the synapse and the
sign of the correlation is based on a linear response.
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sign opposite to the first term, or a sign opposite to Sgn(ey).
Moreover, for the thresholding to act, the target response for
the semiconstrained pattern must be negative in the linear
theory, so ZNm has to have the same sign as ey to generate the
ambiguity. And, if it is indeed so, then we obtain a certainty
condition that is identical to Eq. (A16) except that eu → es,
the projection of ê along the semiconstrained direction:

y > ycr = W

√
e2

s

e2
s + e2

y

. (A17)

If ZNm and ey have opposite signs, then the synapse always
has the same sign throughout the solution space.

While this derivation of ycr is heuristic and only deals with
a single semiconstrained or unconstrained dimension, it pro-
vides intuition for the general result (51). Essentially, whether
the sign of a given synapse is constant across the solution
space depends on two competing quantities: the correlation
between the pre- and postsynaptic responses; and the strength
of the postsynaptic drive for patterns where the target response
is either unknown or masked by the thresholding nonlinearity.

b. Hyperplane dividing excitatory and inhibitory
synaptic regions

Having gained some intuition about the certainty condition,
let us now proceed to a rigorous derivation of the result. Since

the constrained coordinates are fixed for the weight vectors
that belong to the solution space [the deep yellow wedge in
Fig. 5(b)], we must have

y2 ≡
C∑

μ=1

y2
μ =

C∑
μ=1

η2
μ, (A18)

so that the solution space resides within an (U + S )-
dimensional ball with radius

W ≡
√

W 2 − y2, (A19)

as depicted in Fig. 5(b), by the yellow region. We refer to this
semiconstrained plus unconstrained subspace as the flexible
subspace.

Now, the synaptic direction of interest, ê, can be decom-
posed into its projections along constrained, semiconstrained
and unconstrained subspaces. For notational simplicity, let us
denote eμ ≡ (̂e · �εμ) = Zμm as the component of ê along �εμ.
Note that the second equality follows from the orthogonality
assumption and Eq. (A9). In general, in this manuscript we
will use subscripts on e to denote projections of ê along
different directions or subspaces. We can now write14

ê =
N∑

μ=1

eμ�εμ =
C∑

μ=1

eμ�εμ +
P∑

μ=C+1

eμ�εμ +
N∑

μ=P+1

eμ�εμ = cos θ ĉ + sin θ cos φ̂s + sin θ sin φû , (A20)

where

ĉ ≡
∑C

μ=1 eμ�εμ√∑C
μ=1 e2

μ

, ŝ ≡
∑P

μ=C+1 eμ�εμ√∑P
μ=C+1 e2

μ

, û ≡
∑N

μ=P+1 eμ�εμ√∑N
μ=P+1 e2

μ

, (A21)

are unit vectors that lie within the constrained, semiconstrained and unconstrained subspaces, and

ec ≡ ĉ · ê = cos θ =
√√√√ C∑

μ=1

e2
μ � 0, es ≡ ŝ · ê = sin θ cos φ =

√√√√ P∑
μ=C+1

e2
μ � 0,

eu ≡ û · ê = sin θ sin φ =
√√√√ N∑

μ=P+1

e2
μ � 0 (A22)

are the projections of ê along these directions. One could think of θ, φ as representing a spherical coordinate system where the
role of x, y, and z axes are played by ŝ, û and ĉ respectively, and our definitions (A20)–(A22) imply the convention, 0 � {θ, φ} <

π/2. For later convenience, let us also introduce the projection of ê onto the activity-constrained subspace:

ep ≡ p̂ · ê =
√

cos2 θ + sin2 θ cos2 φ =
√√√√ P∑

μ=1

e2
μ � 0, where p̂ ≡

∑P
μ=1 eμ�εμ√∑P

μ=1 e2
μ

. (A23)

We would also like to emphasize that we can compute θ, φ just from the knowledge of the neuronal responses, zμm = eμ, which
is particularly useful for numerical calculations:

θ ≡ cos−1

⎛⎝√√√√ C∑
μ=1

z2
μm

⎞⎠, and φ ≡ cos−1

⎛⎝√√√√ P∑
μ=C+1

z2
μm

/√√√√1 −
C∑

μ=1

z2
μm

⎞⎠. (A24)

14Again, we remind the readers that in the main manuscript these
projected vectors were denoted by ĉm, ŝm and ûm.
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(a) (b)

FIG. 9. Cartoons depicting the orientation of the semiconstrained projection of a given synaptic weight direction (̂s ′) within the semicon-
strained subspace and its impact on determining the sign of the given weight. In these plots, the yellow wedges represent the solution space,
η1, η2 � 0. ds is the distance of the wm = 0 orange line (hyperplane in higher dimension) from the origin. If ds is small, as in the left plot (a),
then the projection angle γ is smaller than ϕ, half of the angle subtended by the orange line to the origin, and therefore the orange line and the
yellow cone intersect. This means that solutions with both positive and negative w’s are present. In the right plot (b), ds is sufficiently large
such that γ > ϕ and consequently, all the solutions must have consistent sign.

Now, any weight vector in the solution space can be written
as

�w = �y + �ws + �wu, (A25)

where �ws and �wu are the projections of �w onto the semi-
constrained and unconstrained subspaces, and the constrained
part of �w is fixed at �y. Using Eqs. (A20) and (A25), one
then finds that the wm = 0 hyperplane dividing the excitatory
and inhibitory regions in the flexible subspace satisfies the
equation

w = �w · ê

= y cos θ cos α + sin θ cos φ ŝ · �ws

+ sin θ sin φ û · �wu = 0, (A26)

where we have now also suppressed the index m in wm. Also,
we have defined α ∈ [0, π ] to be the angle between �y and ĉ.
We now notice that the origin of the flexible subspace, �ws =
�wu = 0, is in the solution space and the sign of w for this
solution point is given by

Sgn(w) = Sgn(cos α) = Sgn(ey) = Sgn

( C∑
μ=1

zμmyμ

)
.

(A27)

In other words, if the sign of the synapse is certain, this certain
sign must be Sgn(cos α), which corresponds to the sign of
the correlation between the target neuron and the presynaptic
neuron. Intuitively, positive correlations point to an excitatory

connection, and negative correlations point to an inhibitory
connection.

c. Special case without unconstrained dimensions

To derive the certainty condition, let us start by looking
at the case when P = N , so that there are no unconstrained
directions, or equivalently, φ = 0. In this case, the solution
space is just the all-negative orthant in the S-dimensional
semiconstrained hypersphere (Fig. 9), and the equation for the
w = 0 hyperplane can be written as

sin θ (̂s ′ · �ws) = y cos θ | cos α|, (A28)

where the right-hand side (RHS) is positive, and we have
introduced

ŝ ′ ≡ −Sgn(cos α )̂s , (A29)

which flips the direction of ŝ if cos α > 0, or equivalently,
if ey > 0. Now, if the w = 0 hyperplane (orange lines in
Fig. 9) is far enough along ŝ ′ from the origin that it does
not intersect with the all-negative orthant within the weight
bounds, then we can be certain that w is nonzero and always
has a consistent sign. To check this, we need to compare the
cone angle that the orange hyperplane subtends at the center,
ϕ, with the minimum angle, γ , that the ŝ ′ vector makes with
the all-negative orthant.

First, ϕ can easily be inferred from trigonometry:

cos ϕ = ds

W
= y cot θ | cos α|√

W 2 − y2
, (A30)
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where ds = y cot θ | cos α| represents the distance from the
center of the semiconstrained sphere to the hyperplane. The
expression for ds follows from the general mathematical result
that if

�β · �x + β0 = 0 (A31)

is an equation for a hyperplane, where �x denotes the coor-
dinate vector and �β, β0 are constants, then the perpendicular
distance, d⊥, to it from a point �x = �ζ is given by

d⊥ = |�β · �ζ + β0|
|�β| . (A32)

Note, we are interested in the distance from the origin, �ζ =
0, to the hyperplane satisfying Eq. (A28), so �β = sin θ ŝ ′ ⇒
|�β| = sin θ and β0 = −y cos θ | cos α|.

To provide a geometric intuition for γ , let us first assume
that ŝ ′ does not point into the all-negative orthant. If we can
find the projection of ŝ ′ on the correct boundary of the solu-
tion space, then γ will be given by the angle between ŝ ′ and
the appropriate semiconstrained boundary vector, �s∗ (Fig. 9).
Since all the components in the solution space (all-negative
orthant) have to be negative or zero, to find the appropriate
projection vector of ŝ ′ onto the boundary of solution space,
we essentially have to set all the positive components to zero:

�s∗ =
P∑

μ=C+1

s′
μ�(−s′

μ)�εμ = ∓
P∑

μ=C+1

sμ �(±sμ)�εμ, (A33)

depending upon whether Sgn(ey) = ±. Here s′
μ, sμ are just the

μth components of ŝ ′ and ŝ vectors, and �(x) is the Heaviside
step function, which is one if x is positive and zero otherwise.
Then, γ is given by

cos γ = ŝ ′ · ŝ∗ = ŝ ′ · �s∗
|�s∗| =

√√√√ P∑
μ=C+1

s′2
μ �(−s′

μ)

=
√√√√ P∑

μ=C+1

s2
μ �(±sμ) = |�s∗|, (A34)

where again the sign in � is determined by the sign of ey.
A formal way to see that γ is indeed given by Eq. (A34)

is to start with any unit vector, �ws, lying in the solution space.
Then, the angle, γ , between ŝ ′ and �ws is given by

cos γ =
P∑

μ=C+1

s′
μwsμ =

∑
μ∈A+

s′
μwsμ +

∑
μ∈A−

s′
μwsμ, (A35)

where we have defined A± as the set of all μ indices for
which s′

μ is positive/negative, respectively. Since �ws is in the
solution space, wsμ � 0, and therefore the second term sums
positive quantities while the first term subtracts. Thus,

cos γ �
∑
μ∈A−

s′
μwsμ = �s∗ · �ws � |�s∗|, (A36)

where both the equalities are achieved when �ws is aligned with
the boundary semiconstrained vector, �s∗, or �ws = ŝ∗, as argued
previously. Note also, that this formal proof did not assume
any restrictions on ŝ ′ direction and thus Eq. (A34) turns out

to be a general result that also holds if ŝ ′ points into the all-
negative orthant.

Combining Eqs. (A34) and (A30), the certainty condition
now reads

ϕ < γ ⇒ y2 cot2 θ cos2 α

W 2 − y2
> cos2 γ

⇒ y > ycr ≡ W

√
cos2 γ sin2 θ

cos2 α cos2 θ + cos2 γ sin2 θ
. (A37)

d. General case with unconstrained dimensions

We can extend the above analysis to the case when we
have unconstrained dimensions by noting that, for a given set
of unconstrained coordinates, the solution space is again the
all-negative orthant in a semiconstrained hypersphere. Isom-
etry along unconstrained dimensions ensures that it is always
possible to make one of the null directions, lets say �εN , align
with û. Then, the w = 0 hyperplane Eq. (A26) reads

w = sin θ cos φ ŝ · �ws + y cos θ cos α + ηu sin θ sin φ = 0,

(A38)
which can be rewritten as

sin θ cos φ ŝ ′ · �ws = y cos θ | cos α| − η′
u sin θ sin φ, (A39)

where we have introduced η′
u = −Sgn(cos α)ηu. To have a

certain synapse, the w = 0 hyperplane cannot intersect the
solution space for any allowed value of η′

u.
The direction of ŝ ′ is independent of the unconstrained

coordinates and hence the value of γ remains unchanged.
However, the cone-angle, ϕ, does depend on the uncon-
strained coordinates in two ways. First, the radius, W̃ , of
the S-dimensional spherical subspace containing admissible
solutions is now

W̃ =
√

W 2 − y2 − η2
⊥ − η′2

u , (A40)

where η⊥ is the magnitude of the weight-vector in the (U −
1)-dimensional subspace that is perpendicular to �εN = û. We
note in passing that Eq. (A40) implies η⊥, η′

u �
√

W 2 − y2 =
W . Second, the distance of the hyperplane from the origin that
follows from Eq. (A39) is now a function of η′

u:

ds = y| cos θ cos α| − η′
u sin θ sin φ

sin θ cos φ
. (A41)

Strictly speaking, this expression for the distance is only
valid as long as the numerator in the ds expression stays pos-
itive. However, if there exists an allowed η′

u � W (let us call
it ηu0) for which the numerator can vanish, then the synapse
cannot have a certain sign, because at that point ds = 0, the
hyperplane intersects the origin, and the weight can vanish
even for a linear theory. In fact, the ds = 0 condition provides
us with the y-critical value below which the synapse sign
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becomes uncertain in a linear theory:

ηu0 = y cos θ | cos α|
sin θ sin φ

� W ⇒ ycr,lin = W

√
sin2 θ sin2 φ

cos2 θ cos2 α + sin2 θ sin2 φ
. (A42)

So we will now look into cases when y � ycr,lin which also means that Eq. (A41) will remain valid.
Combining Eqs. (A40) and (A41) we get

cos ϕ = ds

W̃
= y| cos θ cos α| − η′

u sin θ sin φ

sin θ cos φ

√
W 2 − y2 − η2

⊥ − η′2
u

. (A43)

For us to be certain that w is nonzero, we have to make sure that even the largest ϕ that one can obtain by varying η⊥ and η′
u

is still smaller than γ . Clearly, to make ϕ large it is best to make η⊥ = 0. Also, it is clear from inspection that cos ϕ starts to
initially decrease as η′

u increases from zero, being dominated by the linear term. However, as the quadratic term in η′
u in the

denominator becomes more and more important, cos ϕ reaches a minimum and starts to increase. Imposing d cos ϕ/dη′
u = 0, we

can find that this minimum is reached at

η′
u = sin θ sin φ (W 2 − y2)

y cos θ | cos α| = W

√
(W/y)2 − 1

(W/ycr,lin)2 − 1
� W , (A44)

where we substituted ycr,lin from Eq. (A42) and used the fact that W � y � ycr,lin to obtain the inequality. This proves that
the minimum cos ϕ indeed occurs at an allowed positive value of η′

u � W . Substituting the above η′
u in Eq. (A43), after some

algebra we find that this minimum value of cos ϕ, or equivalently the maximum ϕ, is given by

cos ϕ =
√

y2 cos2 θ cos2 α − (W 2 − y2) sin2 θ sin2 φ

(W 2 − y2) cos2 φ sin2 θ
. (A45)

The certainty condition then requires

cos2 ϕ = y2 cos2 θ cos2 α − (W 2 − y2) sin2 θ sin2 φ

(W 2 − y2) cos2 φ sin2 θ
> cos2 γ , (A46)

which can be recast as

y > ycr ≡ W

√
cos2 γ sin2 θ cos2 φ + sin2 θ sin2 φ

cos2 α cos2 θ + cos2 γ sin2 θ cos2 φ + sin2 θ sin2 φ
, (A47)

It is illuminating to express y-critical in terms of the projections, ey, eu, es∗, of the synaptic direction, ê, respectively along the
data vector, ŷ, the unconstrained unit vector, û, and the semiconstrained boundary vector, �s∗:

ycr = W

√
e2

s∗ + e2
u

e2
y + e2

s∗ + e2
u

, (A48)

where

ey ≡ ê · ŷ =
∑C

μ=1 yμeμ√∑C
μ=1 y2

μ

= cos θ cos α, es∗ ≡ ê · ŝ∗ =
√∑

μ∈A−

e2
μ = −Sgn(cos α) sin θ cos φ cos γ , (A49)

and eu is given by Eq. (A22). We note that setting φ = 0
precisely reproduces the correct limit with no unconstrained
directions (A37).

3. Regarding orthogonal input patterns in recurrent networks

While our analysis of the solution space and the certainty
condition (A48) translate directly to recurrent networks, the
requirement of orthogonality for the derivation of our cer-
tainty condition imposes certain technical restrictions on its
scope when it comes to recurrent neural networks.

The certainty condition we derived for feedforward net-
works can be applied to two different recurrent neural network
set ups. First, let us consider networks where neurons have

self-couplings. A consequence of having orthogonal response
patterns in this case is that the certainty condition can only
be satisfied for self-couplings wii, as long as W � 1. This is
because the imposition of orthogonality in response patterns
also restricts the correlation between the target neuron and the
other neurons:

N∑
m=1

ZμmZνm = δμν ⇒
N∑

μ=1

ZμmZμn = δmn. (A50)

However, for the synapse-sign to be certain, the responses of
pre and postsynaptic neurons need to be correlated. To see
the problem more quantitatively, suppose we are interested
in constraining the synapse from the mth neuron onto the
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ith neuron, as before. Now, the first P elements of the unit
vectors, êi and êm contain the responses of the ith and the
mth neuron in the P patterns. We have already derived a
decomposition of êm in terms of its projections onto the con-
strained, semiconstrained and unconstrained subspaces (A20).
Similarly, êi can be decomposed as

êi = ŷy +
√

1 − y2ŷ⊥, (A51)

where ŷ lies entirely along the constrained directions, and ŷ⊥
is orthogonal to it and only has components along uncon-
strained directions. Then, orthogonality implies

êi · êm = y cos θ cos α +
√

1 − y2 sin θ sin φ (̂y⊥ · û)

= 0 ⇒ sin θ sin φ = − y cos θ cos α

(̂y⊥ · û)
√

1 − y2
. (A52)

Starting from the certainty condition (A48), we can now go
through a sequence of (in)equalities:

y2 > W 2 sin2 θ sin2 φ + sin2 θ cos2 φ cos2 γ

sin2 θ sin2 φ + sin2 θ cos2 φ cos2 γ + cos2 θ cos2 α

� W 2 sin2 θ sin2 φ

sin2 θ sin2 φ + cos2 θ cos2 α

= W 2y2 cos2 θ cos2 α

y2 cos2 θ cos2 α + (1 − y2)(̂y⊥ · û)2 cos2 θ cos2 α

= W 2y2

y2 + (1 − y2)(̂y⊥ · û)2
� W 2y2, (A53)

where we substituted sin θ sin φ from Eq. (A52). Note that the
RHS is minimized when û and ŷ⊥ are either aligned or anti-
aligned. Even in this case, RHS = W 2y2, and thus the certainty
condition cannot be satisfied if W � 1. One can check that
when i = m, because the RHS in the first equation of (A52)
is one and not zero, no similar constraints appear. Indeed,
the certainty condition may be satisfied depending upon the
specific response patterns.

As a second possibility, suppose that no self-couplings
are present. Then to be able to apply our framework and
determine the couplings wim for a given i, we only need the
truncated row vectors of z whose ith column entry is absent,
to be orthonormal. Therefore, the response of the ith driven
neuron, which consists of the entries of the ith column, can
now be chosen independently from the responses of its input
neurons. In other words, êi and êm , m �= i, no longer need to
satisfy orthogonality constraint of Eq. (A52). Consequently,
the wim weights can indeed satisfy the certainty condition, just
as in the feedforward case.

4. Implied conservative bound on the certainty condition
for nonorthogonal input patterns

A complete treatment of the certainty conditions for
nonorthogonal fixed point patterns is beyond the scope of
this work. However, here we provide some preliminary results
and insights by explaining how our formalism for analyzing
orthogonal fixed-point patterns can be simply adapted to de-
rive an exact, but conservative, upper bound for y-critical that
applies to general sets of patterns.

Conceptually speaking, deriving the certainty condition
amounts to determining when the wm = 0 hyperplane inter-
sects the solution space within the sphere of weight vectors
with norm at most W . Because the solution space is ex-
ceedingly simple in η coordinates, our orthogonal analysis
used η coordinates to conveniently recast the equations for
the bounding sphere and wm = 0 hyperplane. To adapt this
analysis to the nonorthogonal case, it is important to account
for three important changes to the geometry of the problem.
Most fundamentally, the �εμ directions corresponding to η

coordinates are no longer orthonormal. However, the math-
ematical notions of orthogonality and normality are implicitly
defined with respect to the inner-product structure imposed
on the vector space, and our geometrical calculations from
the orthogonal case easily carry over to the nonorthogonal
case if we redefine the inner product structure of the weight
space to give an orthonormal coordinate system with respect
to the η coordinates rather than the physical coordinates.15 In
practice, all that this will entail is interpreting the η coordi-
nates as if they define coordinates along orthogonal axes, and
we will never need to explicitly write down the associated
inner product. Second, the equation for the weight bound in
the orthogonal system of η coordinates is elliptical around
the origin, rather than spherical. However, for any ellipse one
can find a sphere that just encompasses it. If we can find
the radius of this bounding sphere, then one can look for an
intersection anywhere within this sphere and our geometrical
approach for deriving Eq. (A48) will carry over and provide
a conservative bound for y-critical. This bound will poorly
approximate the true y-critical when some axes of the ellipse
are much longer than others. Third, the normal vector to the
wm = 0 hyperplane is no longer êm in the orthogonal system
of η coordinates. Therefore, the projections of êm in Eq. (A48)
must be generalized to become projections of the hyperplane’s
normal vector.

To obtain the radius of the bounding sphere, consider the
SVD decomposition of the data-matrix:

z = L�RT , (A54)

where L and R are P × P and N × N orthogonal rotation
matrices, and � is a P × N rectangular diagonal matrix
whose only nonzero entries are given by

�aa = λa � 0, a = 1 . . .P . (A55)

Note that λ1, · · · , λP are called the singular values of z. We
can now define rotated coordinates:

η′ = LT η, and w′ = RT w, (A56)

so that

η′ = LT L�RT w = �w′ ⇒ η′
a = λaw

′
a ∀ a = 1 . . .P .

(A57)

15In particular, for an orthogonal Z matrix, the two inner product
structures defined via êm · ên = δmn and �εμ · �εν = δμν are equivalent,
but this is not the case when Z is nonorthogonal. Although one
would conventionally adopt the first inner product structure, both the
derivation and interpretation of the conservative y-critical formula is
easier in terms of the latter inner product structure, which makes all
of the response pattern directions orthonormal by definition.
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Note that η and η′ are P vectors in the current notation. We
also note that since w′ is just a rotation of the original synaptic
coordinates, the biological bound does not change as we go
from w to w′ coordinates:∑

a

w′2
a =

∑
m

w2
m � W 2. (A58)

This makes it possible to find an inequality in terms of the η′
coordinates:

W 2 �
N∑

a=1

w′2
a =

P∑
a=1

η′2
a

λ2
a

+
N∑

a=P+1

w′2
a

� 1

λ2
max

P∑
a=1

η′2
a +

N∑
a=P+1

w′2
a

= 1

λ2
max

P∑
μ=1

η2
μ +

N∑
a=P+1

w′2
a , (A59)

where in the last step we have used the fact that the orthogonal
matrix L does not change the L2-norm as one goes from η′ to
η coordinates, and λmax is defined as the maximal singular
value. To obtain spherical symmetry, we thus define uncon-
strained coordinates via

ημ = λmaxw
′
μ, ∀ μ > P, (A60)

such that

W ′2 ≡ λ2
maxW

2 �
N∑

μ=1

η2
μ. (A61)

We now realize that the problem of finding y-critical using
this conservative bound can be recast into the problem of
the orthogonal case: As we just described, the η coordinates
satisfy the conservative spherical bound. Our goal can then
be to find the minimum value of y for which the hyperplane
satisfying, wm = 0, does not intersect the solution space. Now,
if we define Z to be, as in the orthogonal case, a full rank
extension16 of z:

Zμm =
{

zμm, ∀ μ � P,

λmaxRT
μm, ∀ μ > P,

(A63)

so that for all value of μ,

ημ =
N∑

m=1

Zμmwm, (A64)

16One can equivalently obtain Z as

Z = L̃�̃R, (A62)

where �̃ is now an N × N diagonal matrix with same entries as
� and �̃μμ = 1/λmax for μ > P , and L̃ is the an N -dimensional
extension of the rotation matrix L where the (N − P )-dimensional
block is an identity and there is no mixing between the unconstrained
and the activity-constrained coordinates.

then the hyperplane equation can be rewritten as

wm =
N∑

μ=1

Z−1
mμημ = 0. (A65)

From Eq. (A65) it is clear that

�nm =
N∑

μ=1

Z−1
mμ�εμ (A66)

is perpendicular to the wm = 0 hyperplane, where we remind
the readers that �εμ’s were defined by Eq. (A9). n̂m thus
plays the role of êm whose orientation with respect to the
constrained, semiconstrained and unconstrained dimensions
determines the certainty condition. Specifically,

ycr = W ′
√

n2
s∗ + n2

u

n2
y + n2

s∗ + n2
u

= W λmax

√
n2

s∗ + n2
u

n2
y + n2

s∗ + n2
u

, (A67)

where the various projections of n̂m are given by

ny ≡
∑C

μ=1 yμZ−1
mμ√∑C

μ=1 y2
μ

√∑N
μ=1

(
Z−1

mμ

)2
,

ns∗ ≡
√∑

μ∈A−

(
Z−1

mμ

)2√∑N
μ=1

(
Z−1

mμ

)2
,

and nu ≡
√∑N

μ=P+1

(
Z−1

mμ

)2√∑N
μ=1

(
Z−1

mμ

)2
. (A68)

We remind the readers that in the orthogonal case the set
A− contained each semiconstrained μ index along which the
component of êm had the same sign as ey. Similarly, here
A−, contains those semiconstrained μ indices along which the
component of �nm have the same sign as ny. To summarize,
the above analysis suggests that both Z and Z−1 will play
an important role in generalizing the certainty condition to
nonorthogonal patterns, and especially the relative orientation
of n̂m (defined by Z−1) with respect to the η directions.

APPENDIX B: ESTIMATING THE PROBABILITY
THAT A SYNAPSE IS CERTAIN IN LARGE

FEEDFORWARD NETWORKS

For given values of N (= I ), C,P in a feedforward setting
we will here try to assess how likely it is that noiseless or-
thonormal neuronal responses require a given synapse to be
nonzero. As we have seen in Eq. (49), whether a synapse is
certain to exist depends on six parameters, θ, φ, γ , α,W, and
y. The first four quantities depend on how ê is oriented with
respect to various directions in the weight space. Since ê is a
unit vector, typically we expect its component along any given
direction to be ∼O(1/

√
N ). Thus, we typically expect

e2
y = cos2 θ cos2 α ∼ 1

N ; e2
s = sin2 θ cos2 φ ∼ S

N ;

e2
u = sin2 θ sin2 φ ∼ U

N and e2
s∗ = cos2 γ e2

s ∼ S
2N .

(B1)
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Hence, we approximate the typical ycr as

ycr = W

√
S/(2N ) + U/N

1/N + S/(2N ) + U/N = W

√
S + 2U

2 + S + 2U .

(B2)
Let us now suppose that all the dimensions scale with the
network size, such that

S = σN and U = υN . (B3)

Then, we find that as the network size increases ycr behaves
as

ycr
W

≈ 1 −
(

1

σ + 2υ

)
1

N , (B4)

and ycr is essentially pushed up toward W .
However, the typical scale of y behaves similarly as the

dimensions increase. To see this concretely, let us define
�ycons ≡ {yμ|μ = 1 . . . C} as a C-dimensional vector, and as-
sume that every possible �ycons is equally likely within a sphere
of radius W (larger activity levels of the target neuron admit no
solutions). Then the average and median values of y = |�ycons|
are given by

〈y〉 =
∫W

0 dyyC∫W
0 dyyC−1

= W

( C
C + 1

)
⇒ 〈y〉

W
= 1

1 + 1/(ηN )
≈ 1 − 1

ηN , where η ≡ C
N ,

and

∫ yM

0 dyyC−1∫W
0 dyyC−1

= 1

2
⇒ yM

W
=
(

1

2

) 1
C

⇒ yM

W
≈ 1 − ln 2

ηN , (B5)

respectively. Since y and ycr scale similarity as one increases
the network size, the probability of a synapse being cer-
tain should not change as the network size increases. In
Fig. 8(c), we show that if we choose, y = 1 − ln 2/C, as
the approximate median value in simulations with random
input-output configurations (see Appendix F for details), then
the number of certain synapses does indeed increase linearly
with N .

To quantitatively estimate the probability of finding a cer-
tain synapse, we can compute the fraction of volume of �ycons’s
for which the synapse is certain for the typical projections
(B2), as compared to the volume of �ycons’s for which solutions
to the steady-state equations exist. We know that �ycons has
to lie within a C-dimensional sphere of radius W in order
for there to be any solutions to the problem.17 However, for
the synapse sign to be certain, we need W � |�ycons| = y >

ycr, where ycr is given by Eq. (B2). So, we need to com-
pare the spherical shell volume, VW �y>ycr , with the volume
of the C-dimensional sphere, Vy�W . To find VW �y>ycr , we
have to subtract the C-dimensional spherical volume with
radius ycr from the spherical volume with radius W . Since

17The allowed �ycons must also lie in the all positive orthant, but as
we will compute the ratio of two spherical volumes the reduction
factor will cancel out.

n-dimensional spherical volumes scale as the nth power of
the radius, the probability, P, of ascertaining the sign of the
synapse is approximately given by

P ≈ VW �y>ycr

Vy�W
= W C − yCcr

W C = 1 −
(

ycr
W

)C
. (B6)

Now, when S,U � 1 we can approximately evaluate the RHS
as follows:(ycr

W

)C
=
( S + 2U

2 + S + 2U

)C/2

=
(

1 + 2

S + 2U

)−C/2

⇒ ln

[(
ycr
W

)C]
= −C

2
ln

(
1 + 2

S + 2U

)
= −C

S + 2U

[
1 + O

(
1

S + 2U

)]
. (B7)

Thus, we get

P ≈ 1 − e− C
S+2U . (B8)

The most prominent feature of Eq. (B8) is that the probability
only depends on the ratios of the various dimensions. Hence,
it does not change as we increase the size of the network as
long as the ratios are kept constant.

For the purpose of illustration and numerically testing this
feature we assessed how certainty predictions changed when
the network size is increased while holding the ratios between
C, S , and U fixed. In Fig. 8(c) we have plotted the number of
certain synapses in simulations generated from random data
as we scale up N maintaining the ratios between C,S , and U
(see Appendix F for more details). We illustrate two cases. In
the first example, no unconstrained directions were present,
and S = 3C. Then P = 1 − e−1/3 ≈ 0.28, so one has a 28%
chance of being able to determine the sign of the connections.
This answer incidentally is the same as an example with
C = S = U . As another example, Fig. 8(c) considered the
case when U = 2C = 2S . According to Eq. (B8), then P =
1 − e−1/5 ≈ 0.18, so the chance of determining the sign drops
to about 18%. We only expect these numbers to be approx-
imate. For example, our arguments relied on the assumption
that all target responses admitting solutions are equally likely,
an assumption that definitely needs to be revisited for realistic
networks. However, the scaling behavior should hold for other
probabilistic distributions as long as the scale of �ycons behaves
similar to Eq. (B5) with increasing N .

APPENDIX C: NONZERO-ERROR
CERTAINTY CONDITIONS

There are various reasons why we may want to not only
consider weights that exactly reproduce the specified neu-
ronal responses, but also weights that do so approximately.
For instance, we are always limited by the accuracy of the
measurement apparatus. More importantly, there are various
sources of biological noise that typically lead to uncertainties
in observed values of neuronal responses. For the purpose
of this paper we will consider any set of weights to be part
of the ε-error solution space if it is able to reproduce the
specified neuronal responses with an error E � ε [see Eq. (63)
for definition of E]. We will neglect uncertainties in the input
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responses to the target neuron, but we will comment on their
possible effects toward the end of this Appendix.

1. Errors in feedforward networks

Let us first focus on feedforward networks. Allowing for
error increases the value of ycr by expanding the solution
space. One way to think about this is to realize that we have to
now make sure that Eq. (51) is satisfied for any nonnegative
�̃y = �y + �δ, where �y and �δ are vectors in the P-dimensional
activity-constrained subspace, the former representing the ob-
served responses, and the latter coming from noise. We will
initially assume that all the observed responses are nonneg-
ative, so a zero-error solution is possible and the noise is
bounded by |�δ| � ε. Our strategy will be to first seek the
minimum y needed to have a certain synapse for a given �δ. We
then find the maximum among these y-critical values as we let
�δ vary within the ε-ball. Since this procedure will guarantee
that the w = 0 hyperplane does not intersect the entire solu-
tion space with E � ε, this means that the synapse must exist
for the network to generate the specified responses patterns.
The synapse’s sign will match the zero-error analysis. We
will first estimate y-critical when the error is small enough to
not induce topological transitions in the error surface. In the
subsequent sections, we will include the effects of topological
transitions, as well as explain how to deal with situations
where some of the observed responses are negative, which is
possible due to noise.

a. When all observed responses are nonnegative
and no topological transitions occur

To understand how errors affect the certainty conditions, let
us consider the case where the observed responses are nonneg-
ative and the allowed error satisfies 0 < ε < min{yμ}μ=1,...,C ,
so that no topological transitions can occur. If some responses
that were zero in �y are now nonzero in �̃y, then both ey and
es∗ can change due to the noise. Without loss of generality,
let us assume that �δ only has nonzero components along
μ = C + 1, . . . ,Q semiconstrained dimensions,18 as well as
along some (or all) of the constrained dimensions. Then ey

changes to

ẽy = ê · (�y + �δ)

|�y + �δ| . (C1)

Furthermore, if some previously semiconstrained components
that contributed to ŝ∗ have now become constrained,19 then ŝ∗
no longer has those components. This means that we have to
subtract these components from es∗:

̂̃s∗ = ŝ∗ −
Q∑

μ=C+1

Aμeμ�εμ ⇒ ẽ2
s∗ = e2

s∗ −
Q∑

μ=C+1

Aμe2
μ, (C2)

where Aμ is 1 if (̂y · ĉ) and eμ have the same sign and 0
otherwise. This follows from the definition of the boundary

18The components of �δ along these semiconstrained directions are
all positive since �y must be nonnegative.

19This will happen if a component of �y that was zero now has a
nonzero component.

projection vector (A33) and es∗ (A49). Thus, for a given �δ the
certainty condition (A48) yields

|�̃y|2 = |�y + �δ|2 > W 2

(
ẽ2

s∗ + e2
u

ẽ2
y + ẽ2

s∗ + e2
u

)

⇒ |�y + �δ|2
(

ẽ2
y

ẽ2
s∗ + e2

u

+ 1

)
> W 2

⇒ |̂e · (�y + �δ)|2
ẽ2

s∗ + e2
u

+ |�y + �δ|2 > W 2. (C3)

As before, one can interpret the above inequality as equiva-
lently specifying either y-critical or W -critical. For a fixed �y,
one can obtain a minimum value of the left-hand side (LHS)
of the latter inequality by varying �δ within the ε ball. The
square root of this is W -critical. Then as long as W is less
than W -critical, we will have a certain synapse. Inverting the
relation, one finds y-critical as the minimum y needed to make
the synapse sign certain for all �δ and given ŷ and W . More
explicitly, equating the two sides of the inequality for any
given ŷ, �δ, and W , we get a minimal y that depends on �δ. To
find y-critical, we have to take the maximum of the minimal y
as we vary over all possible �δ in the ε-ball.

Let us first obtain a lower bound on y-critical. By inspec-
tion of the LHS of the above inequality, it is clear that the more
the �δ-dependent terms can cancel the �y-dependent terms, the
harder it is to satisfy the certainty condition. We observe that
in Eq. (C3), the second term is minimized when �δ = −ε̂y.20

Accordingly, one can obtain a lower bound on y-critical by
substituting δ = −ε̂y in Eq. (C3):

(̂e · ŷ)2(y − ε)2 + (
e2

s∗ + e2
u

)
(y − ε)2 > W 2

(
e2

s∗ + e2
u

)
, or,

y > ycr,min,0 ≡ W

√
e2

s∗ + e2
u

e2
y + e2

s∗ + e2
u

+ ε, (C4)

where we have used ey = ê · ŷ and ẽ2
s∗ = e2

s∗, since �δ has no
components along the semiconstrained directions. We will
see later that this simple lower bound can approximate the
actual y-critical very well in many situations. Notice that
we used a subscript “0” to denote this lower bound. This is
because, as we will soon see, when noise allows for topo-
logical transitions, one may be able to obtain stricter lower
bounds by allowing some constrained dimensions to behave
as semiconstrained. This “0” emphasized that no constrained
indices behave as semiconstrained. Next, we can find an upper
bound for y-critical by noting

|̂e · (�y + �δ)|2
ẽ2

s∗ + e2
u

+ |�y + �δ|2

� |̂e · (�y + �δ)|2
e2

s∗ + e2
u

+ |�y + �δ|2

� (̂e · �y)2 + 2(̂e · �y)(̂e · �δ)

e2
s∗ + e2

u

+ y2
0 + 2 �y · �δ, (C5)

20This assumes that y > ε. Smaller values of y permit �y = �0 and all
weights can be set to zero.
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where the first inequality is true because ẽ2
s∗ � e2

s∗, and the
second inequality because we have dropped positive O(δ2)
terms. Then we can obtain an upper bound on y-critical by
finding a y such that even the last expression on the RHS is
greater than W 2. Specifically,

(̂e · �y)2 + 2(̂e · �y)(̂e · �δ) + (
e2

s∗ + e2
u

)(
y2

0 + 2 �y · �δ)
> W 2

(
e2

s∗ + e2
u

)
. (C6)

So, let us try to find the �δ that minimizes the LHS:

LHS = y2e2
y + 2yey

(̂
e · �δ)+ (

e2
s∗ + e2

u

)(
y2 + 2y ŷ · �δ)

= y2(e2
y + e2

s∗ + e2
u

)+ 2y
(
eŷe + (e2

s∗ + e2
u )̂y
) · �δ

= y2
(
e2

y + e2
s∗ + e2

u

)+ 2y �ξ · �δ, (C7)

where �ξ ≡ ey
∑P

μ=1 eμ�εμ + (e2
s∗ + e2

u )̂y, and we have noted

that û · �δ = 0 because �δ must be in the activity-constrained
subspace. It is now clear that LHS is minimized if �δ anti-aligns
with �ξ . Then Eq. (C6) yields

y2
(
e2

y + e2
s∗ + e2

u

)− 2y|�ξ |ε > W 2
(
e2

s∗ + e2
u

)
. (C8)

Equating the two sides of Eq. (C8) and solving for y,21 we
now get an upper bound for y-critical:

ycr,max,0 ≡
√√√√W 2

(
e2

s∗ + e2
u

e2
y + e2

s∗ + e2
u

)
+ ε2ξ 2(

e2
y + e2

s∗ + e2
u

)2

+ εξ

e2
s∗ + e2

u + e2
y

, (C9)

where ξ is the norm of �ξ and can be simplified as

ξ 2 =
P∑

μ=1

[
eyeμ + (

e2
s∗ + e2

u

)̂
yμ

]2

= e2
y

P∑
μ=1

e2
μ + (

e2
s∗ + e2

u

)2
C∑

μ=1

ŷ2
μ + 2

(
e2

s∗ + e2
u

)
ey

C∑
μ=1

ŷμeμ

= e2
ye2

p + (
e2

s∗ + e2
u

)2 + 2
(
e2

s∗ + e2
u

)
e2

y

= (
e2

y + e2
s∗ + e2

u

)2 + e2
y

(
e2

p − e2
y

)
. (C10)

Thus, we have

ycr,max,0

≡
√√√√W 2

(
e2

s∗ + e2
u

e2
y + e2

s∗ + e2
u

)
+ ε2

(
1 + e2

y

(
e2

p − e2
y

)(
e2

y + e2
s∗ + e2

u

)2

)

+ ε

√√√√1 + e2
y

(
e2

p − e2
y

)(
e2

y + e2
s∗ + e2

u

)2 . (C11)

21This quadratic equation obviously has two solutions. The correct
one can easily be identified, for instance, by taking the ε → 0 limit.

As with lower bound, we will see that to obtain the correct
upper bound in presence of topological transitions, one has
to maximize over several upper bounds. Hence, we refer the
above upper bound that does not include any effects from
topological transitions with an index “0.”

Finally, we would like to point out that for small errors one
can also obtain an approximate correction to y-critical that lies
in between ycr,min,0 and ycr,max,0. To obtain this estimate, let
us first write down the bound on y that one would obtain from
Eq. (C3) as δ → 0:

y > W

√
ẽ2

s∗ + e2
u

ẽ2
y + ẽ2

s∗ + e2
u

. (C12)

If �δ has components along any semiconstrained direction that
contributes toward the original ês∗ vector, then ẽ2

s∗ < e2
s∗, and

comparing Eqs. (A48) and (C12) we see that, as δ → 0, the
bound on y will be less than the zero-error ycr. In other
words, for sufficiently small errors, if �δ explores directions
that contribute to es∗, then the corresponding bound on y is
going to be smaller than even the zero-error ycr. Thus, for
these small errors the leading order corrections to Eq. (A48)
is obtained only if �δ do not have any components along these
semiconstrained directions. This means ẽ2

s∗ = e2
s∗, and we can

reorder the indices such that the semiconstrained directions
along which excursions of �δ will be considered range from
C + 1, . . . ,Q; i.e., Sgn(̂s ′

μ) is negative for these, and only
these, semiconstrained indices. To obtain the certainty con-
dition, one can then follow steps (C5)22 through (C9) except
that �δ is restricted to only have nonzero components along
constrained directions and those semiconstrained directions
that do not contribute to ês∗, i.e., for μ = 1 . . .Q. In other
words, it can at the most anti-align with a truncated �ξ ,

�ξtrunc ≡
Q∑

μ=1

ξμ�εμ =
Q∑

μ=1

[
eyeμ + (

e2
s∗ + e2

u

)̂
yμ

]
�εμ, and

(�ξ · �δ)min = −εξtrunc, (C13)

where ξtrunc is the norm of �ξtrunc and can be simplified as

ξ 2
trunc =

Q∑
μ=1

[
eyeμ + (

e2
s∗ + e2

u

)̂
yμ

]2

= e2
y

Q∑
μ=1

e2
μ + (

e2
s∗ + e2

u

)2
C∑

μ=1

ŷ2
μ

+ 2
(
e2

s∗ + e2
u

)
ey

C∑
μ=1

ŷμeμ

= e2
y

(
e2

p − e2
s∗
)+ (

e2
s∗ + e2

u

)2 + 2
(
e2

s∗ + e2
u

)
e2

y

= (
e2

y + e2
s∗ + e2

u

)2 + e2
y

(
e2

p − e2
s∗ − e2

y

)
. (C14)

22Since we are only interested in the leading order correction, we
could also drop the O(δ2 ) terms needed to arrive at an expression
such as the RHS of Eq. (C5).
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(a) (b)

FIG. 10. Dependence of y-critical on various parameters for nonzero errors. (a) The red, blue, and purple curves track y-critical as a
function of ey/ep for ep = 0.5, 0.7, and 0.9, respectively. The dotted, dashed and bold curves represent the lower bound, leading-order and

upper bound y-critical curves for a fixed error, ε = 0.1W . The darker shade correspond to the most nonlinear case when es∗/
√

e2
p − e2

y = 1,

while the lighter shade correspond to es∗ = 0. These latter curves are also the ones that one obtains in a linear theory. Clearly, the difference
between the linear and nonlinear theory increases as ep increases. In all these cases y-critical decreases with increase of ep, and for a given
ep, as ey/ep increases. Also, as es∗ increases and the semiconstrained dimensions become more important, it becomes harder to constrain the
synapse sign, and therefore y-critical increases. (b) The green, brown, and orange curves again track y-critical, but this time as a function of ε,
for networks with N = 3, 9, and 27 input neurons, respectively. The dotted, dashed and bold curves plot the lower bound, leading-order and
upper bound on y-critical for typical values of ep, ey, and es∗ that one expects in these networks (B1). We see that these curves come closer
together as the network size increases. The dot-dashed curves correspond to the linear theory (es∗ = 0), which remains clearly separated from
the nonlinear curves. In each of these networks, P/N = 2/3 and C/P = 1/2.

Substituting ξ = ξtrunc into the counterpart of Eq. (C9), and
keeping only the linear terms in ε, we thus get the leading
order correction to Eq. (A48):

ycr,appr,0 ≈ W

√
e2

s∗ + e2
u

e2
y + e2

s∗ + e2
u

+ εξtrunc

e2
y + e2

s∗ + e2
u

= W

√
e2

s∗ + e2
u

e2
y + e2

s∗ + e2
u

+ ε

√√√√1 + e2
y

(
e2

p − e2
s∗ − e2

y

)(
e2

y + e2
s∗ + e2

u

)2 .

(C15)

We will see later how ycr,appr,0 can be generalized to provide
an approximation, ycr,appr, to y-critical that accounts for topo-
logical transitions.

Reassuringly, we see that at ε = 0, ycr,appr,0, ycr,max,0,
and ycr,min,0, all reduce to the zero-error ycr Eq. (A48).
Also it is obvious that the coefficient of ε in ycr,appr,0 is
greater than that of ycr,min,0 but less than that of ycr,max,0.
Finally, note that ycr,appr,0 coincides with ycr,min in the max-
imally nonlinear case where e2

s∗ = e2
p − e2

y . In Fig. 10(a),
we have plotted how these different quantities depend on
ep, ey and es∗. In particular we note that as the network
size increases, these curves typically come closer together
[Fig. 10(b)], so that they provide a good approximation for
y-critical. Finally, for future reference we point out that for
a given set of input patterns, zμm, the various y-criticals
that we have computed above depend on the orientation of
the target response vector, or ŷ, and the total noise bud-
get, ε. In other words, ycr,min,0 = ycr,min,0 (̂y, ε), ycr,max,0 =
ycr,max,0 (̂y, ε), and ycr,appr,0 = ycr,appr.0 (̂y, ε).

b. Comparing predictions from linear and nonlinear models

To assess the effects of nonlinearity it is useful to com-
pare the predictions for certain-synapses between the linear
and nonlinear theory. In a linear theory, there are no semi-
constrained directions, and therefore, a lower bound, leading
order and upper bound on y-critical can be obtained from
Eqs. (C4), (C15), and (C11), respectively, by setting es∗ = 0:

ycr,min,lin = W

√
e2

u

e2
y + e2

u

+ ε, (C16)

ycr,appr,lin = W

√
e2

u

e2
y + e2

u

+ ε

√√√√1 + e2
y

(
e2

p − e2
y

)(
e2

y + e2
u

)2 , (C17)

ycr,max,lin =
√√√√W 2

(
e2

u

e2
y + e2

u

)
+ ε2

(
1 + e2

y

(
e2

p − e2
y

)(
e2

y + e2
u

)2

)

+ ε

√√√√1 + e2
y

(
e2

p − e2
y

)(
e2

y + e2
u

)2 . (C18)

We note that since all these quantities are increasing function
of es∗, the linear values are always less than or equal to the
nonlinear counterparts. Since no topological transitions are
possible in a linear theory, these expressions do not need
a qualifying “0” index. In Fig. 10, we show a comparison
between the upper bound on y-critical obtained in the linear
and the nonlinear theories.
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c. ycr,max, when one and only one nonzero response
is smaller than noise

In the previous section we have considered responses
which are either zero, or positive and greater than the noise
bound, ε. In this section, we consider a situation where one
and only one of the observed responses is smaller than the
noise, |y1| < ε.

Note that once we admit noise, it is possible for the small
observed response to be negative. In this case, there is no zero-
error solution as �(η1) cannot be negative, and therefore we
need a minimum noise, and incur a minimum error:

δ1 = −y1 ⇒ Emin = y2
1. (C19)

In fact, since the noise for this observation has to be positive,
we must have

�(η1) = y1 + δ1 ≡ δ′
1 � 0. (C20)

Then using

δ2
1 = δ′2

1 + y2
1 − 2y1δ

′
1, (C21)

we obtain a modified bound on the noise:
P∑

μ=1

δ2
μ =

P∑
μ=2

δ2
μ + δ′2

1 + y2
1 − 2y1δ

′
1 � ε2

⇒ δ′2
1 +

P∑
μ=2

δ2
μ � ε2 − y2

1 + 2y1δ
′
1 � ε2 − y2

1,

(C22)

since y1δ
′
1 < 0. Or,

δ′2
1 +

P∑
μ=1

δ2
μ � ε′2 ≡ ε2 − y2

1. (C23)

Let us now introduce a new reduced response vector whose
response to the first pattern is set to zero:

�y ′ ≡
C∑

μ=2

yμ�εμ. (C24)

We can then identify δ′
1 to be the noise associated with the

μ = 1 response in this new feedforward problem, while the
other δμ’s can continue to represent the noise associated with
all the other responses. Thus, a sufficient condition for a given
synapse to be certain is

|�y ′ | > ycr,max,0 (̂y′, ε′). (C25)

A very similar condition arises if y1 is positive but small
enough to admit a topological transition. To see how, let us
first remember that in order for a synapse to be certain, the
solution space should not intersect with the w = 0 hyperplane.
Now, let us look at the solution space coming from denoised
�̃y’s that have ỹ1 > 0. Since, the solution space correspond-
ing to these �̃y ’s do not have any additional semiconstrained
dimension as compared to the observed response, �y, the con-
dition for no intersection with this part of the solution space is
simply given by

|�y| > ycr,max,0 (̂y, ε), (C26)

a condition that guarantees a certain synapse when no topo-
logical transitions are considered. Next consider the solution
space for denoised �̃y ’s with ỹ1 = 0. The solution space for
these �̃y ’s have an additional semiconstrained dimension corre-
sponding to the first pattern. We can therefore use the reduced
response vector, �y ′

(C24), so that the solution space corre-
sponding this new response vector with the error bound, ε′
(C23), along with the solution space with ỹ1 > 0 accounts for
the full solution space of �y with error ε. Note, that the noise
budget is again reduced according to Eq. (C23) since we are
committed to making at least an error of y1 to convert the first
response to a semiconstrained dimension. To ensure that there
is no intersection of the w = 0 hyperplane with the �y ′

solution
space we must therefore also satisfy Eq. (C25). We note that
to calculate the right-hand side using Eq. (C11), the various
projections have to be recalculated according to

ey′ =
∑C

μ=2 yμeμ√∑C
μ=2 y2

μ

and

es′∗ =
√∑

μ∈A−

e2
μ + �(Sgn(ey′ )e1)e2

1. (C27)

The condition (C25) on |�y ′ | translates to a condition on |�y|:

|�y| >

√
y2
cr,max,0 (̂y′, ε′) + y2

1 ⇒ |�y| >
ycr,max,0 (̂y′, ε′)√

1 − ŷ2
1

,

(C28)

where we have defined ŷμ’s to be the μth component of ŷ.
We note that this is a nonlinear inequality as the right-hand

side depends on |�y| through its implicit dependence on ε′.
When we have a negative y1, only Eq. (C28) needs to be
satisfied to guarantee a certain synapse, but if y1 is positive,
both Eqs. (C26) and (C28) have to be satisfied. It is not hard to
see how this process should be continued if one has more than
one topological transition within the allowed error. Since we
know the precise sequence of topological transitions, all the
sequential certainty-conditions can in principle be obtained. A
synapse is certain if all of its certainty-conditions are satisfied.

So far, we have obtained a way to check whether a synapse
is certain given the response data, �y. We also have an upper
bound of y-critical, ycr,max,0, ignoring effects from topological
transitions when all the observed responses are nonnega-
tive. We will now investigate how topological transitions can
change this upper bound. We will start by quantifying effects
from a single topological transition by finding potentially
a new upper bound for y-critical, ycr,max, such that we can
say that if |�y| > ycr,max, then the synapse is certain. Suppose
we start out with a data vector whose norm is so large that
there are no topological transitions. Then as we decrease the
norm, but keep its orientation, ŷ, fixed, eventually a semicon-
strained dimension will open up in the solution space, in our
example, the first direction. If we keep decreasing further,
then at some point another response dimension will become
semiconstrained due to the presence of noise. Let us however
consider the situation where ycr,max (that is yet to be com-
puted) is going to turn out to be larger than the norm when
the second transition occurs. In this case, we do not have to
consider this possibility (and any other transitions) because
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then if |�y| > ycr,max the second transition cannot occur. We
will later find a condition that guarantees this. Since we are
trying to find the smallest value of ycr,max that we can find,
what all this means is that at �ycr,max = ycr,maxŷ, one of the two
inequalities, (C26) or (C25), becomes an equality. While the
first equality is trivial to solve as the right-hand side does not
depend on ycr,max, the second equation is highly nonlinear23:

ycr,max,1 = ycr,max,0 (̂y′, ε′)√
1 − ŷ2

1

, (C29)

where

ε′ =
√

ε2 − y2
cr,max,1ŷ2

1. (C30)

In particular, we notice that there are two competing effects
that ultimately determine ycr,max,1. The numerator depends on
ε′, which decreases as ycr,max,1 increases and therefore has an
overall effect of decreasing ycr,max,1. However, the presence
of ŷ1 in the denominator within the square root tends to
increase ycr,max,1. To determine the correct upper bound for
y-critical one has to compare the ycr,max,1 (̂y′, ŷ1, ε

′) obtained
from Eq. (C29) with ycr,max,0 (̂y, ε), and then choose the max-
imum because then both the inequalities (C26) and (C25) will
be satisfied. For the negative response case, we simply need
to solve Eq. (C29) to obtain ycr,max,1.

Now, determining ycr,max,1 from Eq. (C28) involves solving
a quartic equation leading to expressions that are not particu-
larly insightful. However, we can obtain a relatively simple
conservative estimate bypassing the nonlinearity if we have
a lower bound on y-critical, ycr,min because we can use this
bound to overestimate ε′:

ycr,max ≡ max

⎧⎨⎩ycr,max,0 (̂y′, ε′′)√
1 − ŷ2

1

, ycr,max,0 (̂y, ε)

⎫⎬⎭ where

ε′′ ≡
√

ε2 − y2
cr,minŷ2

1 � ε′. (C31)

Before we describe how we can obtain ycr,min, let us note that
if

ycr,minŷμ > ε, ∀ μ > 1, (C32)

then the second transition occurs at a magnitude that is lower
than ycr,max,1, and therefore does not need to be incorporated
in the ycr,max,1 calculation. Indeed, Eq. (C32) is a sufficient
condition but not a necessary one.

d. ycr,min, when one and only one nonzero response
is smaller than noise

When we have a small response, |y1| < ε, we have seen
that we have to consider solution space around a reduced
response vector, �y ′

(C24), with a smaller error budget, ε′
(C23). Accordingly, we can obtain an equation for a lower

23Here the “1” in the subscript indicates that this possibility for
y-critical is computed by only considering the first topological tran-
sition.

bound on y-critical using Eq. (C4),24

ycr,min,1 = ycr (̂y′) + ε′, (C33)

where μ = 1 along with μ = C + 1 . . .P are all treated as
semiconstrained. As before, since the norms along �y and �y ′

are related via

|�y|
√

1 − ŷ1 = |�y ′ |, (C34)

we get an equation for ycr,min,1 very similar to Eq. (C29) for
ycr,max,1:

ycr,min,1 = ycr (̂y′) + ε′′√
1 − ŷ2

1

, where ε′′ =
√

ε2 − y2
cr,min,1ŷ2

1.

(C35)

Although nonlinear, the above equation reduces to a quadratic
equation for ycr,min,1,

y2
cr,min,1 − 2ycr,min,1ycr

√
1 − ŷ2

1 + y2
cr − ε2 = 0, (C36)

solving which we get25

ycr,min,1 = ycr (̂y′)
√

1 − ŷ2
1 +

√
ε2 − y2

cr (̂y′ )̂y2
1. (C37)

For positive y1 the above expression provides another lower
bound along with the one obtained without the transition (C4).
To ensure we have the tightest possible lower bound we thus
maximize:

ycr,min ≡ max{ycr,min,0, ycr,min,1}. (C38)

e. When more than one nonzero responses are smaller
than allowed error

It is not difficult to see how the arguments above generalize
if we have more than one small (< ε) observed response.
We have to consider cases where all the negative observed
responses, and different possible combinations of the positive
responses, are set to zero. Let us denote T to be one such
possible set of μ indices. As before, we define a reduced
response vector, which is now indexed by T :

�yT ≡
∑
μ �∈T

yμ�εμ, (C39)

so yT,μ = 0 for all μ ∈ T . Then, essentially following the
same algebraic manipulations as above we obtain a lower
bound according to

ycr,min,T = ycr (̂yT )
√

1 −
∑
μ∈T

ŷ2
μ +

√
ε2 − y2

cr (̂yT )
∑
μ∈T

ŷ2
μ.

(C40)

To reiterate, whenever an observed response is negative,
which is inconsistent with a threshold linear transfer function,

24To remind the readers, the expression for ycr,min,0 was obtained
by computing ycr for �̃y = (1 − ε)�y, a denoised point that is allowed
because of the noise. In this case, the corresponding point is �̃y =
(1 − ε′)�y ′

.
25The second root gives a negative result, and accordingly does not

reduce to the correct ε → 0 limit.
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FIG. 11. Testing bounds on y-critical for solutions with error. We show the same 102 random configurations of input-output activity as
Fig. 8(b). The bold black, green, and gray curves represent the upper bound ycr,max, approximate ycr,appr, and lower bound y-critical ycr,min,
values, respectively. The black dots correspond to the maximum value of y in our simulations that resulted in mixed signs for the synaptic
weights under consideration.

this means that some of the noise budget has to be used up to
bring this response up to zero, and the same noise reduction
occurs if one wants to consider topological transitions. Each
ycr,min,T evaluated this way provides us with a lower bound,
and hence we have to take a maximum over all these to find the
tightest lower bound, ycr,min. To make things explicit, let us
also enumerate the new expressions for the various projections
of ê that one needs to calculate ycr (̂yT ):

ey,T =
(∑

μ �∈T

yμeμ

)/√∑
μ �∈T

y2
μ and

es∗,T =
√∑

μ∈T

�(eμey,T )e2
μ. (C41)

Once we have a lower bound, we can obtain conservative
upper bounds analogous to Eq. (C31) for each T :

ycr,max,T ≡ ycr,max,0 (̂yT , εT )√
1 −∑

μ∈T ŷ2
μ

, where

εT ≡
√

ε2 − y2
cr,min

∑
μ∈T

ŷ2
μ. (C42)

As before, for a consistent upper bound for y-critical, we need
to take the maximum over all ycr,max,T ’s.

Finally, we note that we do not need to consider all possible
transitions. While going through the sequence of transitions,
as soon as we find a T such that ycr,min,T ŷμ > ε for all μ �∈ T
we can stop as this means that by the time |�y| is small enough

that any additional yμ’s can be set to zero, the synapse is
already uncertain.

f. Numerical simulation

To illustrate the behavior of the various y-critical functions
and check their utility, in Fig. 11 we have plotted ycr,min
(light gray curve) and ycr,max (black curve) for the same 102
configurations as the ones depicted in Fig. 8(b) involving
a feedforward simulation with N = 6, P = 5, C = 2, and
E < ε = 0.1. We also defined, ycr,appr, as a maximum over
different approximations, ycr,appr,T’s, that incorporate topo-
logical transitions and are defined as natural generalizations
of Eq. (C15):

ycr,appr,T = W

√
e2

s∗,T + e2
u

e2
y,T + e2

s∗,T + e2
u

+ εT

√√√√1 + e2
y,T

(
e2

p − e2
s∗,T − e2

y,T

)(
e2

y,T + e2
s∗,T + e2

u

)2 . (C43)

We have plotted ycr,appr, the approximation of y-critical, in
green in Fig. 11. As in Fig. 8(b), the black dots here denote
the maximum value of y in our simulations that still admitted
mixed signs for the synapse under consideration, for details on
the simulations, please see Appendix F. As one can see, most
of the black dots seem to closely track the ycr,min curve, but
some of the dots lie between the ycr,appr and ycr,min curves.
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2. New sources of corrections in recurrent neural networks

It is clear that recurrent neural networks inherit error
corrections to y-critical that were already present in the
feedforward case. There are two additional sources of error
that one could consider as one moves from feedforward to
recurrent networks. However, our numerical simulations of
recurrent networks suggest that these are sometimes small
effects, and we leave their systematic study for the future.

First, we could account for the fact that the �εμ directions
themselves can change. This is because the inputs driving
any given driven neuron can no longer be assumed to be
fixed at zμm if the other driven neurons suffer from noise.
However, these activity patterns define the �εμ directions and
ημ coordinates. Allowing noise in input neurons would lead
to similar corrections.

Second, the total error in Eq. (63) may be unevenly dis-
tributed across the driven neurons. If the total squared error
summed over all responses and neurons is ε2

tot, then on av-
erage, the root-mean-square error associated with each driven
neuron is εtot/

√
D. We can thus hope that a substitution of

ε = εtot/
√
D in the various y-critical formulas will provide

a good approximation. However, it is also possible that a few
neurons will incur most of the error (up to εtot), potentially
leading to violation of the certainty conditions computed from
the root-mean-square error over neurons.

APPENDIX D: BEYOND THRESHOLD-LINEAR
TRANSFER FUNCTIONS

So far, we have always modeled the firing rate as a
threshold-linear function applied to the input drive. Here we
will explain how our analyses of y-critical with noise also
provide a formalism to analyze a much more general class of
nonlinear transfer functions.

1. Bounded deviations from the threshold-linear function

Let us start by considering transfer functions with bounded
differences from the threshold-linear function:

�(x) = �(x) + �(x), with |�(x)| < �0 ∀ x. (D1)

In this case, the fixed-point equations become

yμ = �

( N∑
m=1

zμmwm

)
= �

( N∑
m=1

zμmwm

)
+ δμ, where

δμ ≡ �

( N∑
m=1

zμmwm

)
. (D2)

Since |�(x)| is bounded by �0, we have a bound on the
squared norm of �δ:

|�δ|2 < P�2
0. (D3)

It is therefore clear that we can estimate y-critical for the
� nonlinearity with exactly the same formalism that we
used to estimate y-critical for the threshold nonlinearity in
the presence of noise. In particular, all the y-critical esti-
mates [(64), (65), (C15)] are valid with the substitution, ε =√
P�0. Moreover, one can account for other sources of noise

(bounded by ε0) by instead substituting

ε =
√

ε2
0 + P�2

0 (D4)

to obtain estimates and bounds on y-critical.

2. Bounded departures from any threshold-monotonic
nonlinearity

Let us now consider transfer functions, �(x), that are close
to a function, �(x), that monotonically increases above a
threshold, xT :

�(x) = 0 , if x � xT ,

�(x) > �(y) > 0, if x > y > xT , and

�(x) = �(x) + �(x), with |�(x)| < �0 ∀ x. (D5)

Accordingly, we find

yμ = �

( N∑
m=1

zμmwm

)
= �(ημ) + �(ημ) ⇒ �(ημ)

= yμ − �(ημ). (D6)

Since the monotonicity condition ensures that �−1 is well
defined above threshold, and |�(ημ)| < �0, we then have the
upper bound,

0 � �(ημ) < yμ + �0 ⇒ ημ < �−1(yμ + �0). (D7)

Additionally, if yμ > �0, then we also have a lower bound:

0 < yμ − �0 < �(ημ) ⇒ ημ > �−1(yμ − �0). (D8)

Thus, combining the upper and lower bounds, we find

�−1(yμ + �0) > ημ > �−1(yμ − �0) > 0 (D9)

However, if yμ � �0, then there is no lower bound, and any
ημ satisfying the upper bound (D7) is allowed. Now, we can
introduce effective responses, representing the midpoint of
possible superthreshold input drives,

ȳμ ≡
{

1
2 [�−1(yμ + �0) + �−1(yμ − �0)], if yμ > �0,

1
2�−1(yμ + �0), if yμ � �0,

(D10)

and effective noise limits,

ε̄μ ≡
{

1
2 [�−1(yμ + �0) − �−1(yμ − �0)], if yμ > �0,

1
2�−1(yμ + �0), if yμ � �0,

(D11)

which allow ημ to span the full allowed range. By inspection,
we now see that the solution space is equivalent to the solution
space of a threshold-linear problem:

�(ημ) = ȳμ + δ̄μ, with |δ̄μ| � ε̄μ. (D12)

Thus, again all the y-critical estimates [(64), (65), (C15)] will
be valid with the substitution yμ → ȳμ and a conservative
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(a) (b)

(c) (d)

(e)

FIG. 12. Comparing simulation and theoretical results in N = 3 recurrent network. (a) A simple N = 3 recurrent neural network with one
driven and two input neurons. Note that the y1 neuron shown here maps onto the y3 neuron in Fig. 6(a) by interpreting the x1 and x2 neurons
shown here as the x3 and y2 neurons shown in Fig. 6(a). (b) Bar graphs depicting the fraction of positive (red) and negative (blue) weights from
the network depicted in panel (a). (c) Another N = 3 recurrent neural network, this time with two driven and one input neuron. (d) Bar graphs
depicting the fraction of positive (red) and negative (blue) weights from the network depicted in panel (c). (e) The black bars depict y − ycr for
the corresponding synapses.

error bound

ε2 =
P∑

μ=1

ε̄2
μ. (D13)

APPENDIX E: CERTAIN SYNAPSES IN
LOW-DIMENSIONAL RECURRENT NETWORKS

WITH SELF-CONNECTIONS

As discussed in Appendix A, when one moves from
feedforward to recurrent neural networks with self-synapses,
the input patterns can no longer be considered independent
from the target neuron responses. How then does one assess
synapse certainty for driven neurons with self-synapses, such
as y3 in Fig. 6(a), y in Fig. 12(a), y1 in Fig. 12(c), and y2 in
Fig. 12(c)?

We begin by concretely analyzing neuron y in Fig. 12(a),
because this is the conceptually simplest example, and funda-
mentally the mathematical analyses are the same for the other
examples. In particular, to test our formalism and analytical

results using this neuron, we performed low-dimensional sim-
ulations where the N × N extended input pattern matrix was

x1 x2 y

Z =

⎛⎜⎝− sin ψ cos χ cos ψ cos χ sin χ

cos ψ sin ψ 0

sin ψ sin χ − cos ψ sin χ cos χ

⎞⎟⎠, (E1)

which is the same as X in Eq. (60), except that the role of
x3 is now played by y itself.26 The third column of Eq. (E1)
corresponds to the responses of the driven neuron, but it also
provides a self-input. The two input neuron responses are
given by the first two columns. Equation (E1) is meant to
correspond to the case where P = 2 and C = 1, such that
μ = 1, 2, 3 correspond to the constrained, semiconstrained,

26In the context of Fig. 6(a), y, x1, and x2 can be identified with y3,
y2, and x2, respectively.
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and unconstrained response patterns, respectively. For the
purpose of numerical testing, we assumed that χ ∈ (0◦, 90◦)
and ψ ∈ (−90◦, 0◦), as this range of angles ensures that
driven neuron responses were nonnegative.27 We set W = 1.
See Appendix F for numerical simulation details.

This example problem has one self-coupling, w, and two
feedforward couplings, u1 and u2. For this response structure,
one can use Eq. (51) to calculate ycr for each of these three
couplings. We find

ycr,w = W cos χ,

ycr,u1 = W
√

cos2 ψ + cos2 χ sin2 ψ,

ycr,u2 = W sin χ. (E2)

We assess synapse certainty by checking whether these for-
mulas for ycr are smaller than the magnitude of �y,

y = sin χ. (E3)

Since W = 1, we see that the self-coupling becomes certain
only if

sin χ > cos χ, or, 0◦ < θ ≡ π/2 − χ < 45◦ (E4)

[Fig. 12(b), left], where θ has been defined to be the angle
between êyy and ĉ = ŷ,28 consistent with the conventions of
Eq. (37). Next, basic trigonometric manipulations tell us that
the certainty condition can never be satisfied for u1 [Fig. 12(b),
middle]. Finally, we see that the condition for certainty is
always just not satisfied for u2. Here this implies that all
solutions have u2 � 0 [Fig. 12(b), right]. This is because it is a
very special case where cos γ = es∗ = 0 and ŷ⊥ in Eq. (A51)
is aligned with û, so that both the inequalities in Eq. (A53)
turn into equalities. In each panel of Fig. 12(b), we tracked
the fraction of positive and negative synapse signs across the
simulations, as we varied θ . In particular, we see that w had
a unique sign as long as θ < 45◦, u1 always had mixed signs,
and u2 was nonnegative.29

The same exact response matrix (E1) can also be used to
consider neurons y3 in Fig. 6(a) and y2 in Fig. 12(c). The only
difference is that the three columns respectively encode the
responses of the second driven neuron, second input neuron,
and third driven neuron in Fig. 6(a) and the responses of the
single input neuron and two driven neurons, y1 and y2, in
Fig. 12(c). This correspondence can be seen by comparing
the numerical results in Figs. 12(b) and 12(d). We use this
correspondence to avoid having to simulate the full network
in Fig. 6(a), and the numerical results in Fig. 6(c) are the same
as those in Fig. 12(b).

27This range also allowed us to ensure nonnegativity for the other
example recurrent circuits in Figs. 6(a) and 12(c).

28Note that

êyy = sin χ�ε1 + cos χ�ε3 = cos θ�ε1 + sin θ�ε3, (E5)

where we have identified ĉ and û with �ε1 and �ε3, respectively.
29As we explained before, ycr,u2 = y for all values of θ . Hence, the

certainty condition is not satisfied because u2 may be zero. The fact
that u2 can vanish is not discernible from our simulations because
the weight magnitudes were generated randomly, and weights where
u2 = 0 comprise a zero measure set.

APPENDIX F: NUMERICAL METHODS

1. Low-dimensional numerical methods

Here we detail the numerical methods relevant for Figs. 6
and 12.

a. Feedforward analysis

To test the analytic dependence in Fig. 6(b), we wanted to
simulate solutions without biasing ourselves by the particular
search algorithm used to find solutions. Accordingly, to find
solutions to the fixed point equations (A2) with very small
error (E < ε = 0.01) we performed a random screen where
each weight was chosen randomly from a uniform distribu-
tion between −1 and +1. For feedforward circuits, given the
synaptic weights, one can obtain the fixed point responses of
the target neuron by direct substitution of the known input
responses in Eq. (A2) and then comparing these simulated
target responses with the known target responses. We varied
ψ, χ in the response data (E1) systematically in steps of 6◦.30

For the light and dark green curves, ψ was fixed at 45◦, and
χ was varied between (0◦, 90◦) and (90◦, 180◦), respectively,
while for the pink and purple curves χ was fixed at 45◦, 135◦,
respectively, and ψ was varied between (0◦, 90◦). Finally, for
a given choice of ψ, χ , we systematically varied y between 0
and 1, in intervals of �y = 0.01. For each value of ψ, χ , and
y, we obtained ∼O(102–104) solutions31 satisfying the error
and the biological bound (A11) from five to ten million differ-
ent trial weight vectors. We then identified the maximal value
of y for which the solutions had both positive and negative
w1’s. This simulation point should lie beneath the theoretical
ycr if no error is allowed. However, since the error is small but
nonzero, occasionally the y-criticals determined from simu-
lations did slightly exceed the theoretical value. Also, since
we vary y by small amounts �y = 0.01, we expected the
simulated y-criticals to be discrete but close to the theoretical
predictions, which is exactly what we found in Fig. 6(b).

b. Recurrent analysis

Because the recurrent network solution space separates
into several feedforward solution spaces at zero error, we
numerically treated the driven neurons one at a time. To find
solutions for the recurrent neurons in Figs. 6(a), 12(a), and
12(c), we fixed χ,ψ and then performed screens with ran-
dom weights, selected in the same manner as the feedforward
simulations discussed earlier. For each set of weights, and for
each μ = 1, 2, we obtained the late time values of y by solving
the time evolution equation [Eq. (6) with τi = 20 ms] using
Euler’s method starting with initial conditions yi(0) = yμi,
for μ = 1, 2. We used a time step of �t = 0.2 ms. The ỹμ’s
obtained from the simulation at late times, t ∼ 600 ms, were

30Since here we were primarily interested in the zero-error result,
we restricted ourselves to a range of ψ, χ where no topological
transitions can occur due to the small but finite error we had to allow
for numerical simulations.

31The number of solutions varied between 200 and 40 000 depend-
ing primarily on the value of y, the higher the value, typically the
more difficult it was to find solutions.
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then compared with yμ to obtain E . If the weights satisfied,
E < 0.05

√
D and the biological bound (A11), then we con-

sidered the weights as solutions and checked the sign of the
synaptic weights. For every value of ψ, χ , we found at least
50 solutions32 to test the certainty predictions.

2. High-dimensional numerical methods

Here we detail the numerical methods relevant for Figs. 8
and 11.

a. Generating random orthogonal matrices

In several simulations we had to generate orthogonal
response matrices. This meant that we had to obtain P or-
thonormal N -dimensional vectors. This was done by first
generating an N × N matrix, G, where each of its entries
was randomly selected from a uniform distribution between
−1 and +1. We then antisymmetrized the matrix, G → (G −
GT )/2, and a random orthogonal response matrix was then
obtained via matrix exponentiation, Z = eG, where the matrix
exponential is defined by substituting the matrix G into the
power series expansion of the exponential function and is
distinct from the simple exponentiation of individual matrix
elements. The first P rows of Z could then correspond to the P
orthogonal patterns, and Z can be interpreted as the orthogonal
extension of z as discussed before.

b. Generating random orthogonal matrices
with nonnegativity constraints

In recurrent networks, all driven neurons must have non-
negative responses for all patterns. Accordingly, when the
input response pattern includes responses of driven neurons,
we follow a different procedure for generating the response
matrix, which works as long as I � P − 1. We started by
choosing a (P × N )-dimensional matrix, z, containing the
responses of D driven neurons and I � P − 1 input neurons.
The first columns of z corresponded to driven neuron re-
sponses, and the last columns to input neuron responses, such
that z = (y x). We made sure that the responses of the driven
neurons were all nonnegative, as the threshold nonlinearity
dictates, by choosing them to lie randomly between 0 and 1.
To mimic a sparse response pattern, we set driven responses
to 0 with 50% probability. The feedforward inputs, however,
were randomly selected between −1 and 1. We then orthog-
onalized the input responses to the target neuron as follows.
We start by normalizing the ν = 1 pattern:

z1m → z1m√∑N
n=1 z2

1n

. (F1)

32The number of solutions varied between 104 and 105 for the D =
1 simulation in Fig. 12(b) and between 56 and 110 for the D = 2
simulation in Fig. 12(d). Note that for the D = 2 simulation we have
a six-dimensional weight space, which makes it a lot harder to find
solutions through random scanning. Also, for this latter case we only
checked that the biological constraint is satisfied by the incoming
weights to y1.

Then, for each row, ν = 2 . . .P , in a sequential order we
performed the following operations:

(1) We started by defining a (ν − 1)-dimensional square
matrix, x′:

x′
μm ≡ xμm for μ, m = 1 . . . (ν − 1). (F2)

(2) We next changed the first m = 1 . . . ν − 1 elements of
the νth row of x

xνm ≡ −
ν−1∑
μ=1

x′−1
mμ

( D∑
i=1

yμiyνi +
I∑

n=ν

xμnxνn

)
, (F3)

and thus z. The other elements of the νth row of z were left
unchanged. In particular, none of the driven neuron responses
changed during this step.

(3) Finally, we rescaled all the elements of the νth row of
z for normalization:

zνm → zνm√∑N
n=1 z2

νn

. (F4)

This algorithm essentially uses the responses of the input
neurons to the νth stimulus to ensure that the full νth response
pattern involving both the driven and input neurons is orthog-
onal to all μ � ν − 1 patterns.

c. Generating target responses and response directions

To generate P target responses with S null responses, we
simply randomly selected numbers between 0 and 1 for the
C = P − S nonzero responses.

In some simulations, we wanted to consider situations
where one has to account for a single topological transition
to compute y-critical. Accordingly, we tailored the responses
as follows. First, we set one nonzero response of the target
neuron to a small value, 0.1ε. ŷ was then obtained by dividing
the response vector by its norm. We then only considered
those ŷ’s whose other entries were large enough to prevent ad-
ditional topological transitions from affecting y-critical. This
was done by: evaluating ycr,min, the theoretical lower bound
for y-critical that includes the first topological transition (Ap-
pendix C); constructing �y = ycr,minŷ, which approximates the
activity vector right below y-critical; and ensuring that all the
other entries of �y were greater than the allowed error, which
guarantees that no other constrained dimensions can become
semiconstrained in between ycr,min and the true y-critical. This
way, typically one and only one constrained direction became
semiconstrained when we allowed solutions with errors �ε.

d. Finding solutions using gradient descent learning
in feedforward networks

In all the high-dimensional simulations, we had to find
solutions to the fixed point equations (A2). Since scanning a
high-dimensional synaptic weight space randomly is not nu-
merically efficient, we applied gradient descent learning33 to
obtain solutions. For feedforward networks, this meant using

33Typically with learning rate ∼0.01.
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the loss function

E2 =
P∑

μ=1

(̃yμ − yμ)2, where ỹμ = �

( N∑
m=1

zμmwm

)
. (F5)

We performed gradient descent optimization until we reached
the desired error bound, E < ε. The initial weights were first
chosen randomly from a uniform distribution between −1 and
1. The initial weight vector was then rescaled to have a norm
between 0 and W = 1, chosen uniformly.

e. Finding solutions using gradient descent learning
in recurrent networks

To find solutions for recurrent neural networks, we used the
modified loss function,

Ē2 ≡
D∑

i=1

P∑
μ=1

(̃yμi − yμi )
2 ≡

D∑
i=1

Ē2
i , where

ỹμi = �

( N∑
m=1

zμmwim

)
, (F6)

to perform gradient descent, instead of Eq. (63). Since the re-
sponses of the driven neurons can vary for nonzero errors, the
two loss functions, E and Ē , differ. However, it is numerically
a lot quicker to obtain solutions via gradient descent with Ē as
compared to using back-propagation through time to consider
the entire time evolution of the network. Thus, the strategy
we adopted to find solutions with E � ε was to first find
weights satisfying Ē � ε̄ = ε/10. Also, the gradient descent
was done in two stages. In the first stage we minimized the
error associated with each individual driven neuron, Ēi treating

it as a feedforward problem. Once each of these errors were
less than ε̄, we performed a second stage of gradient descent to
minimize Ē down to ε̄. Next, we obtained the late time values
of yi’s by solving the time evolution equations (6) with τi =
20 ms using Euler’s method with step time �t = 0.2 ms for
the weights obtained via gradient descent and starting with
initial conditions yi(0) = yμi, ∀μ, i. The ỹμi’s obtained at late
times, t ∼ 600 ms, this way were compared with yμi to obtain
E . Finally, we checked that the weights satisfied the biological
bound34 (A11).

f. Other minor simulation details

In Fig. 8(b), we show results from a simulation with
N = 6, P = 5, C = 2, and E < ε = 0.1. The solutions were
obtained using a gradient descent learning rate of 0.02.
We varied the norm of the target response vector, �y = ŷy,
systematically by �y = 0.01 in a manner similar to the low-
dimensional simulations.

In Fig. 8(c), we considered a single input-output configu-
ration for a given value of N and P , and we found a single
solution with E < 0.001

√
P using a gradient descent learning

rate of 0.005.
In Figs. 8(d)–8(e), we show results of a simulation for a

N = 10,D = 4, I = 7,P = 8, and C = 3 network where the
norm of �y was fixed to 0.79, which approximates the median
value of y for the given values of N ,P , and C [Eq. (B5)].
Our solutions were obtained using a gradient descent learning
rate of 0.004 and the overall error satisfied 0.017

√
D � E �

0.25
√
D.

34We only checked that the target weights satisfied the weight
bound, as that is what matters for the certainty conditions. Since we
initialized weights amongst the nontarget neurons to be between −7
and 7, it is likely that other components of the weight matrix were
large.

[1] J. D. Watson and F. H. C. Crick, Molecular structure of nucleic
acids, Nature (London) 171, 737 (1953).

[2] R. Milo et al., Network motifs: Simple building blocks of com-
plex networks, Science 298, 824 (2002).

[3] P. Hunter and P. Nielsen, A strategy for integrative computa-
tional physiology, Physiology 20, 316 (2005).

[4] H. S. Seung, Reading the book of memory: Sparse sampling
versus dense mapping of connectomes, Neuron 62, 17 (2009).

[5] C. I. Bargmann and E. Marder, From the connectome to brain
function, Nat. Methods 10, 483 (2013).

[6] D. D. Bock et al., Network anatomy and in vivo physiology of
visual cortical neurons, Nature (London) 471, 177 (2011).

[7] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B.
Chklovskii, Structural properties of the Caenhabditis elegans
neuronal network, PLoS Comput. Biol. 7, e1001066 (2011).

[8] M. B. Ahrens et al., Brain-wide neuronal dynamics dur-
ing motor adaptation in zebrafish, Nature (London) 485, 471
(2012).

[9] T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and
A. Vaziri, Brain-wide 3D imaging of neuronal activity in
Caenorhabditis elegans with sculpted light, Nat. Methods 10,
1013 (2013).

[10] T. Ohyama et al., A multilevel multimodal circuit enhances
action selection in Drosophila, Nature (London) 520, 633
(2015).

[11] W. C. Lemon et al., Whole-central nervous system func-
tional imaging in larval Drosophila, Nat. Commun. 6, 7924
(2015).

[12] E. A. Naumann et al., From whole-brain data to functional
circuit models: The zebrafish optomotor response, Cell 167, 947
(2016).

[13] D. G. C. Hildebrand et al., Whole-brain serial-section elec-
tron microscopy in larval zebrafish, Nature (London) 545, 345
(2017).

[14] L. K. Scheffer et al., A connectome and analysis of the adult
Drosophila central brain, eLife 9, e57443 (2020).

023255-37

https://doi.org/10.1038/171737a0
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1152/physiol.00022.2005
https://doi.org/10.1016/j.neuron.2009.03.020
https://doi.org/10.1038/nmeth.2451
https://doi.org/10.1038/nature09802
https://doi.org/10.1371/journal.pcbi.1001066
https://doi.org/10.1038/nature11057
https://doi.org/10.1038/nmeth.2637
https://doi.org/10.1038/nature14297
https://doi.org/10.1038/ncomms8924
https://doi.org/10.1016/j.cell.2016.10.019
https://doi.org/10.1038/nature22356
https://doi.org/10.7554/eLife.57443


TIRTHABIR BISWAS AND JAMES E. FITZGERALD PHYSICAL REVIEW RESEARCH 4, 023255 (2022)

[15] T. Biswas, W. E. Bishop, and J. E. Fitzgerald, Theoreti-
cal principles for illuminating sensorimotor processing with
brain-wide neuronal recordings, Curr. Opin. Neurobiol. 65, 138
(2020).

[16] R. Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky, Theory of
orientation tuning in visual cortex, Proc. Natl. Acad. Sci. USA
92, 3844 (1995).

[17] W. E. Skaggs, J. J. Knierem, H. S. Kudrimoti, and B. L.
McNaughton, A model of the neural basis of the rat’s sense of
direction, Adv. Neural Inf. Process. Syst. 7, 173 (1995).

[18] S. S. Kim, H. Rouault, S. Druckmann, and V. Jayaraman, Ring
attractor dynamics in the Drosophila central brain, Science 356,
849 (2017).

[19] D. B. Turner-Evans et al., The neuroanatomical ultrastructure
and function of a biological ring attractor, Neuron 108, 145
(2020).

[20] J. S. Kim et al., Space-time wiring specificity supports di-
rection selectivity in the retina, Nature (London) 509, 331
(2014).

[21] J. Kornfeld et al., EM connectomics reveals axonal driven
variation in a sequence-generating network, eLife 6, e24364
(2017).

[22] A. A. Wanner and R. W. Friedrich, Whitening of odor rep-
resentations by the wiring diagram of the olfactory bulb,
Nat. Neurosci. 23, 433 (2020).

[23] A. Vishwanathan et al., Predicting modular functions and neural
coding of behavior from a synaptic wiring diagram, 10.1101/
2020.10.28.359620 (2020).

[24] E. Marder and A. L. Taylor, Multiple models to capture the
variability in biological neurons and networks, Nat. Neurosci.
14, 133 (2011).

[25] K. Friston, L. Harrison, and W. Penny, Dynamic causal model-
ing, NeuroImage 19, 1273 (2003).

[26] E. Schneidman II, M. J. Berry, R. Segev, and W. Bialek,
Weak pairwise correlations imply strongly correlated network
states in a neural population, Nature (London) 440, 1007
(2006).

[27] J. W. Pillow et al., Spatio-temporal correlations and visual
signalling in a complete neuronal population, Nature (London)
454, 995 (2008).

[28] H. Huang and M. Ding, Linking functional connectivity and
structural connectivity quantitatively: A comparison of meth-
ods, Brain Connect. 6, 99 (2016).

[29] F. D. Tschopp, M. B. Reiser, and S. C. Turaga, A connectome
based hexagonal lattice convolutional network model of the
Drosophila visual system, arXiv:1806.04793.

[30] A. A. Zarin, B. Mark, A. Cardona, A. Litwin-Kumar, and C. Q.
Doe, A multilayer circuit architecture for the generation of
distinct locomotor behaviors in Drosophila, eLife 8, e51781
(2019).

[31] A. Litwin-Kumar and S. C. Turaga, Constraining computational
models using electron microscopy wiring diagrams, Curr. Opin.
Neurobiol. 58, 94 (2019).

[32] A. A. Prinz, D. Bucher, and E. Marder, Similar network ac-
tivity from disparate circuit parameters, Nat. Neurosci. 7, 1345
(2004).

[33] D. Fisher, I. Olasagasti, D. W. Tank, E. R. Aksay, and M. S.
Goldman, A modeling framework for deriving the structural and
functional architecture of a short-term memory microcircuit,
Neuron 79, 987 (2013).

[34] J. M. Goaillard, A. L. Taylor, D. J. Schulz, and E. Marder,
Functional consequences of animal-to-animal variation in cir-
cuit parameters, Nat. Neurosci. 12, 1424 (2009).

[35] P. Baldi and K. Hornik, Neural networks and principal compo-
nent analysis: Learning from examples without local minima,
Neural Networks 2, 53 (1989).

[36] Y. N. Dauphin et al., Identifying and attacking the saddle point
problem in high-dimensional optimization, in Advances in Neu-
ral Information Processing Systems (MIT Press, Cambridge,
MA, 2014).

[37] K. Kawaguchi, Deep learning without poor local minima, in Ad-
vances in Neural Information Processing Systems (MIT Press,
Cambridge, MA, 2016).

[38] B. B. Machta, R. Chachra, M. K. Transtrum, and J. P. Sethna,
Parameter space compression underlies emergent theories and
predictive models, Science 342, 604 (2013).

[39] M. K. Transtrum et al., Perspective: Sloppiness and emergent
theories in physics, biology, and beyond, J. Chem. Phys. 143,
010901 (2015).

[40] T. O’Leary, A. C. Sutton and E. Marder, Computational models
in the age of large datasets, Curr. Opin. Neurobiol. 32, 87
(2015).

[41] L. F. Abbott and W. G. Regehr, Synaptic computation,
Nature (London) 431, 796 (2004).

[42] N. Spruston, Pyramidal neurons: dendritic structure and synap-
tic integration, Nat. Rev. Neurosci. 9, 206 (2008).

[43] H. Zeng and J. R. Sanes, Neuronal cell-type classification: chal-
lenges, opportunities and the path forward, Nat. Rev. Neurosci.
18, 530 (2017).

[44] S. G. N. Grant, Synapse molecular complexity and the plasticity
behaviour problem, Brain Neurosci. Adv. 2, 239821281881068
(2018).

[45] C. Curto and K. Morrison, Relating network connectivity to
dynamics: Opportunities and challenges for theoretical neuro-
science, Curr. Opin. Neurobiol. 58, 11 (2019).

[46] Y. N. Billeh et al., Systematic integration of structural and
functional data into multiscale models of mouse primary visual
cortex, Neuron 106, 388 (2020).

[47] M. Almog and A. Korngreen, Is realistic neuronal modeling
realistic? J. Neurophysiol. 116, 2180 (2016).

[48] S. R. Bittner et al., Interrogating theoretical models of neu-
ral computation with emergent property inference, eLife 10,
e56265 (2021).

[49] P. J. Gonçalves et al., Training deep neural density estimators
to identify mechanistic models of neural dynamics, eLife 9,
e56261 (2020).

[50] A. Treves and E. T. Rolls, What determines the capacity of
autoassociative memories in the brain? Netw. Comput. Neural
Syst. 2, 371 (1991).

[51] E. Salinas and L. F. Abbott, A model of multiplicative neural
responses in parietal cortex, Proc. Natl. Acad. Sci. USA 93,
11956 (1996).

[52] R. L. T. Hahnloser, On the piecewise analysis of networks of
linear threshold neurons, Neural Netw. 11, 691 (1998).

[53] R. H. Hahnloser, H. S. Seung, and J. J. Slotine, Permitted
and forbidden sets in symmetric threshold-linear networks,
Neural Comput. 15, 621 (2003).

[54] K. Morrison, A. Degeratu, V. Itskov, and C. Curto, Diversity of
emergent dynamics in competitive threshold-linear networks: a
preliminary report, arXiv:1605.04463.

023255-38

https://doi.org/10.1016/j.conb.2020.10.021
https://doi.org/10.1073/pnas.92.9.3844
https://doi.org/10.1126/science.aal4835
https://doi.org/10.1016/j.neuron.2020.08.006
https://doi.org/10.1038/nature13240
https://doi.org/10.7554/eLife.24364
https://doi.org/10.1038/s41593-019-0576-z
https://doi.org/10.1101/2020.10.28.359620
https://doi.org/10.1038/nn.2735
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1038/nature04701
https://doi.org/10.1038/nature07140
https://doi.org/10.1089/brain.2015.0382
http://arxiv.org/abs/arXiv:1806.04793
https://doi.org/10.7554/eLife.51781
https://doi.org/10.1016/j.conb.2019.07.007
https://doi.org/10.1038/nn1352
https://doi.org/10.1016/j.neuron.2013.06.041
https://doi.org/10.1038/nn.2404
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1126/science.1238723
https://doi.org/10.1063/1.4923066
https://doi.org/10.1016/j.conb.2015.01.006
https://doi.org/10.1038/nature03010
https://doi.org/10.1038/nrn2286
https://doi.org/10.1038/nrn.2017.85
https://doi.org/10.1177/2398212818810685
https://doi.org/10.1016/j.conb.2019.06.003
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1152/jn.00360.2016
https://doi.org/10.7554/eLife.56265
https://doi.org/10.7554/eLife.56261
https://doi.org/10.1088/0954-898X_2_4_004
https://doi.org/10.1073/pnas.93.21.11956
https://doi.org/10.1016/S0893-6080(98)00012-4
https://doi.org/10.1162/089976603321192103
http://arxiv.org/abs/arXiv:1605.04463


GEOMETRIC FRAMEWORK TO PREDICT STRUCTURE … PHYSICAL REVIEW RESEARCH 4, 023255 (2022)

[55] C. Curto, J. Geneson, and K. Morrison, Fixed points of compet-
itive threshold-linear networks, Neural Comput. 31, 94 (2019).

[56] E. Marder, Neuromodulation of neuronal circuits: back to the
future, Neuron 76, 1 (2012).

[57] Y. Mu et al., Glia accumulate evidence that actins are futile and
suppress unseccessful behavior, Cell 178, 27 (2019).

[58] Aitchison et al., Model-based Bayesian inference of neural
activity and connectivity from all-optical interrogation of a
neural circuit, in Proceedings of the 31st Conference on Neural
Information Processing Systems (NIPS’17), Long Beach, CA
(2017).

[59] C. Grienberger and A. Konnerth, Imaging calcium in neurons,
Neuron 73, 862 (2012).

[60] B. A. Wilt, J. E. Fitzgerald, and M. J. Schnitzer, Photon shot
noise limits on optical detection of neuronal spikes and estima-
tion of spike timing, Biophys. J. 104, 51 (2013).

[61] L. Theis et al., Benchmarking spike rate inference in population
calcium imaging, Neuron 90, 471 (2016).

[62] N. K. Logothetis and J. Pfeuffer, On the nature of the BOLD
fMRI contrast mechanism, Magn. Reson. Imaging 22, 1517
(2004).

[63] M. J. Bartolo et al., Stimulus-induced dissociation of neuronal
firing rates and local field potential gamma power and its rela-
tionship to the resonance blood oxygen level-dependent signal
in macaque primary visual cortex, Eur. J. Neurosci. 34, 1857
(2011).

[64] J. Heinzle, P. J. Koopmans, H. E. M. den Ouden, S. Raman, and
K. E. Stephan, A hemodynamic model for layer BOLD signals,
NeuroImage 125, 556 (2016).

[65] M. Advani, S. Lahiri, and S. Ganguli, Statistical mechanics
of complex neural systems and high dimensional data, J. Stat.
Mech. (2013) P03014.

[66] V. Nair and G. E. Hinton, Rectified linear units improve
restricted Boltzmann machines, in Proceedings of the Interna-
tional Conference on Machine Learning (ICML) (ACM Press,
New York, NY, 2010).

[67] A. Krizhevsky, Convolutional deep belief networks on
CIFAR-10 (2010), https://www.cs.toronto.edu/∼kriz/conv-
cifar10-aug2010.pdf.

[68] B. Xu, N. Wang, T. Chen, and M. Li, Empirical evaluation of
rectified activations in convolutional network, in Deep Learning
Workshop (ICML, 2015).

[69] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
representations by back-propagating errors, Nature (London)
323, 533 (1986).

[70] J. Frankle and M. Carbin, The lottery ticket hypothesis: Finding
sparse, trainable neural networks, arXiv:1803.03635.

[71] H. Zhou, J. Lan, R. Liu, and J. Yosinski, Deconstructing lot-
tery tickets: Zeros, signs, and the supermask, in Advances in
Neural Information Processing Systems, edited by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett (Curran Associates, 2019), Vol. 32.

[72] T. M. Cover, Geometrical and statistical properties of systems
of linear inequalities with applications in pattern recognition,
IEEE Trans. Electr. Comput. 14, 326 (1965).

[73] E. Gardner, The space of interactions in neural network models,
J. Phys. A: Math. Gen. 21, 257 (1988).

[74] D. Marr, A theory of cerebellar cortex, J. Physiol. 202, 437
(1969).

[75] B. A. Olshausen and D. J. Field, Sparse coding with an over-
complete basis set: A strategy employed by V1? Vision Res.
37, 3311 (1997).

[76] X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier
neural networks, in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS) (ACM
Press, New York, NY, 2011).

[77] F. Kubo et al., Functional architecture of an optic flow-
responsive area that drives horizontal eye movements in
zebrafish, Neuron 81, 1344 (2014).

[78] J. T. Trachtenberg et al., Long-term in vivo imaging
of experience-dependent synaptic plasticity in adult cortex,
Nature (London) 420, 788 (2002).

[79] Y. Ziv et al., Long-term dynamics of CA hippocampal place
codes, Nat. Neurosci. 16, 264 (2013).

[80] A. Attardo, J. E. Fitzgerald, and M. J. Schnitzer, Imperma-
nence of dendritic spines in live adult CA1 hippocampus,
Nature (London) 523, 592 (2015).

[81] L. N. Driscoll, N. L. Pettit, M. Minderer, S. N. Chettih, and
C. D. Harvey, Dynamic reorganization of neuronal activity pat-
terns in parietal cortex, Cell 170, 986 (2017).

[82] M. E. Rule, T. O’Leary, and C. D. Harvey, Causes and con-
sequences of representational drift, Curr. Opin. Neurobiol. 58,
141 (2019).

[83] C. E. Schoonover, S. N. Ohashi, R. Axel, and A. J. P. Fink, Rep-
resentational drift in primary olfactory cortex, Nature (London)
594, 541 (2021).

[84] T. D. Marks and M. J. Goard, Stimulus-dependent representa-
tional drift in primary visual cortex, Nat. Commun. 12, 5169
(2021).

[85] D. Deitch, A. Rubin, and Y. Ziv, Representational drift in the
mouse visual cortex, Curr. Biol. 31, 4327 (2021).

[86] D. Kappel, R. Legenstein, S. Habenschuss, M. Hsieh, and
W. Maass, A dynamic connectome supports the emergence of
stable computational function of neural circuits through reward-
based learning, eNeuro 5, ENEURO.0301-17.2018 (2018).

[87] G. Burnstock, Cotransmission, Curr. Opin. Pharmacol. 4, 47
(2004).

[88] B. L. Chen, D. H. Hall, and D. B. Chklovskii, Wiring opti-
mization can relate neuronal structure and function, Proc. Natl.
Acad. Sci. USA 103, 4723 (2006).

[89] N. Brunel, V. Hakim, P. Isope, J. Nadal, and B. Barbour,
Optimal information storage and the distribution of synap-
tic weights: Perceptron versus Purkinje cell, Neuron 43, 745
(2004).

023255-39

https://doi.org/10.1162/necoa01151
https://doi.org/10.1016/j.neuron.2012.09.010
https://doi.org/10.1016/j.cell.2019.05.050
https://doi.org/10.1016/j.neuron.2012.02.011
https://doi.org/10.1016/j.bpj.2012.07.058
https://doi.org/10.1016/j.neuron.2016.04.014
https://doi.org/10.1016/j.mri.2004.10.018
https://doi.org/10.1111/j.1460-9568.2011.07877.x
https://doi.org/10.1016/j.neuroimage.2015.10.025
https://doi.org/10.1088/1742-5468/2013/03/P03014
https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf
https://doi.org/10.1038/323533a0
http://arxiv.org/abs/arXiv:1803.03635
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1088/0305-4470/21/1/030
https://doi.org/10.1113/jphysiol.1969.sp008820
https://doi.org/10.1016/S0042-6989(97)00169-7
https://doi.org/10.1016/j.neuron.2014.02.043
https://doi.org/10.1038/nature01273
https://doi.org/10.1038/nn.3329
https://doi.org/10.1038/nature14467
https://doi.org/10.1016/j.cell.2017.07.021
https://doi.org/10.1016/j.conb.2019.08.005
https://doi.org/10.1038/s41586-021-03628-7
https://doi.org/10.1038/s41467-021-25436-3
https://doi.org/10.1016/j.cub.2021.07.062
https://doi.org/10.1523/ENEURO.0301-17.2018
https://doi.org/10.1016/j.coph.2003.08.001
https://doi.org/10.1073/pnas.0506806103
https://doi.org/10.1016/j.neuron.2004.08.023

