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Unraveling trajectories of diffusive particles on networks
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The analysis of single-particle trajectories plays an important role in elucidating dynamics within complex
environments such as those found in living cells. However, the characterization of intracellular particle motion
is often confounded by confinement of the particles within nontrivial subcellular geometries. Here we focus
specifically on the case of particles undergoing Brownian motion within a network of narrow tubules, as found
in some cellular organelles. A computational unraveling algorithm is developed to uncouple particle motion
from the confining network structure, allowing for an accurate extraction of the underlying one-dimensional
diffusion coefficient, as well as differentiating between Brownian and fractional Langevin motion. We validate
the algorithm with simulated trajectories and then highlight its application to an example system: analyzing the
motion of membrane proteins confined in the tubules of the peripheral endoplasmic reticulum in mammalian
cells. We show that these proteins undergo diffusive motion and provide a quantitative estimate of their diffusion
coefficient. Our algorithm provides a generally applicable approach for disentangling geometric morphology and
particle dynamics in networked architectures.
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I. INTRODUCTION

Particle tracking experiments have a long history in the
field of soft matter physics, where they are used to analyze the
material properties of complex fluids and the dynamic behav-
ior of active media (reviewed in Refs. [1,2]). In recent years,
tracking of particles inside living cells has been extensively
employed to elucidate the dynamics of cellular components
ranging from single molecules [3–5] to vesicular organelles
[6–9]. Quantification of in vivo particle trajectories can be
used to identify state transitions and organelle interactions
[9–11], to explore the rheology of intracellular fluids [7,12],
and to establish the underlying physical forces that drive par-
ticle motion [6,13,14].

A classic analysis approach computes the mean-squared
displacement (MSD) of particle trajectories. In a purely ther-
mal homogeneous system, an MSD that scales linearly with
time indicates diffusive motion through a viscous fluid, with
the prefactor establishing the particle diffusivity. An MSD
that scales subdiffusively (∼tα , α < 1) can instead indicate
a viscoelastic medium with characteristic power-law scal-
ing α [15], as well as other possible mechanisms [16,17].
This analysis has been employed in a number of cellular
systems, establishing diffusive behavior in the case of some
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protein-sized particles [18–20], and subdiffusive dynamics for
vesicles and similar-sized exogenous probes in the cytoplasm
[12,15,21,22]. An alternate recent approach focuses instead
on the velocity autocorrelation function, with negative cor-
relations that decay as a power law in time taken to be a
sign of viscoelastic rheology [16,23,24]. Still other studies
analyze the distribution of individual step sizes over short time
intervals [7,25,26].

All of these approaches are confounded by a number of
complications in the intracellular environment [27]. First and
foremost, the prevalence of active forces with many dif-
ferent correlation timescales implies that individual particle
trajectories cannot be directly related to the rheology of the
medium [6]. Furthermore, heterogeneity in the intracellular
medium indicates the existence of spatially varying diffusiv-
ities [19,28] and is thought to be responsible for the broad
non-Gaussian distribution of step sizes observed for many
particles [25,26,29]. Nevertheless, extracting the effectively
diffusive or subdiffusive behavior of intracellular particles,
albeit over a finite range of timescales, can give insight into
functionally important consequences such as particle search
times, kinetics, or interaction frequencies.

In certain cases it is possible to disentangle the under-
lying particle dynamics and the effects of forces, flows, or
confinement from the measured particle trajectories. For ex-
ample, when particles are driven by slowly varying fluid flows
overlaid on top of diffusive behavior, the raw MSD appears su-
perdiffusive. However, the diffusive behavior can be extracted
by subtracting out a smoothed trajectory and analyzing the re-
sulting MSD curves with an appropriate rescaling [8]. In other
cases, separate measurement of the confounding factors is
necessary. For instance, active microrheology measurements
of cytoplasmic material properties enable “passive” particle
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trajectories to then be used for extraction of the spectrum of
forces driving particle motion [6]. Mapping out the underlying
surface on which a particle is confined and measuring dis-
tances along that surface has been shown to enable accurate
characterization of diffusing particle dynamics [30].

Confinement effects are a common source of complication
in analyzing the trajectories of intracellular particles. Con-
finement in a finite region can result in subdiffusive MSD
curves on timescales up to an order of magnitude shorter
than the typical time to traverse the confining region [31].
Similarly, velocity autocorrelation functions for particles in
confinement exhibit negative peaks that increase when the
velocity is measured across longer time intervals [16]. In this
paper, we focus on how to decouple confinement from the
underlying particle dynamics in the case of particles moving
along tubular networks.

Eukaryotic cells contain a number of structures that re-
sult in confinement of particles at different length scales.
The extent of the cell itself provides an upper limit for con-
finement. Furthermore, many particles are embedded in the
membrane or interior of organelles that offer confinement
on a subcellular scale. One example of interest is the retic-
ulated mitochondrial network formed in many cell types.
These networks exhibit varying connectivity that can be tuned
by genetic perturbation of the proteins responsible for mito-
chondrial fusion and fission [32]. Another organelle with a
networked morphology is the endoplasmic reticulum (ER),
whose functional roles include lipid distribution, calcium
buffering, and protein processing, sorting, and quality control
[33,34]. The ER forms an interconnected system of tubules
and stacked sheets, with a continuous lumen and membrane,
that spans throughout the cell [35,36]. Away from the cell nu-
cleus, the ER can be approximated as a tubular network with
largely three-way junctions, through which proteins destined
for secretion must move in order to encounter the pointlike ER
exit sites [37–39].

Mathematical models of transport within the ER and mi-
tochondrial networks indicate that the network morphology
has the potential to alter search rates and kinetics for proteins
to find each other and specific targets within the network
[32,40,41]. However, examining the interplay between net-
work architecture and kinetics requires an assumed physical
model for particle motion (e.g., diffusive [32,40], subdiffusive
[42], or locally persistent [5,43]) and an accurate parametriza-
tion of that model. Thus, precise empirical quantification of
particle dynamics within reticulated networks is of growing
interest for elucidating the structure-function relationship of
these critical cellular organelles.

Most prior studies on the movement of ER membrane
and luminal proteins have focused on bulk measurements
of protein spread, including FRAP analysis [44–46] and the
spatiotemporal quantification of spreading from a locally pho-
toactivated region [5,47]. However, it has recently become
possible to track the movement of individual proteins through
the ER tubules, enabling new observations of dynamics within
the ER. For example, single particle trajectories of ER luminal
proteins have been found to exhibit unexpectedly fast motion
along individual tubes, followed by trapping at junctions—
an effect that has been attributed to putative luminal flows
over short timescales [5]. Endoplasmic reticulum membrane

protein trajectories, however, do not appear subject to these
rapid motions. Nevertheless, the analysis of such trajectories
is complicated by their confinement within the peripheral ER
network structure.

In this work we present a novel method for analysis of
diffusive particle trajectories that are confined within a spatial
network, consisting of tubules connected by narrow junctions.
Namely, we describe how such trajectories can be “unraveled”
to establish a properly sampled underlying trajectory that
describes the motion of an identical particle on an infinite
line. This unraveling process allows the accurate extraction
of a diffusion coefficient for the particle motion by removing
the confounding effects of the network structure itself. The
procedure is generally applicable to analysis of any locally
one-dimensional trajectories where the confining network ar-
chitecture can be separately imaged. Thus, for example, it can
be applied to particles moving along a single finite-length tube
or along a spine-studded morphology such as that found in
neuronal dendrites [48,49].

We validate the method using simulations of particles dif-
fusing on a network and demonstrate that the technique can
differentiate between particles undergoing Brownian versus
fractional Langevin motion (a common model for subdiffu-
sion due to viscoelastic rheology [27,50]). The technique is
then applied to the analysis of membrane protein trajectories
in the ER, showing that these trajectories are indeed consis-
tent with diffusive motion and providing an estimate of their
diffusion coefficient.

Overall, the work presented here enables quantitative anal-
ysis of particle trajectories confined on network structures,
allowing for mathematically accurate decoupling of confine-
ment effects from the underlying particle dynamics.

II. RESULTS

A. Simulating diffusive particles on a network

We begin by simulating the behavior of diffusive particles
on a tubular network. Individual narrow tubules are treated
as effectively one-dimensional segments, joined together at
pointlike junctions. The network structure is thus idealized as
a set of nodes connected by edges with well-defined length:
�m for the mth edge. The edges are not necessarily straight,
so that �m can be longer than the spatial distance between two
adjacent nodes.

Several algorithms are possible to simulate the trajectory
of a diffusive particle on such a network. In recent work,
we demonstrated an exact kinetic Monte Carlo algorithm that
employs analytical propagator functions obtained by solving
the diffusion equation in the neighborhood of each node [41].
By sampling transition times from these functions, the particle
can be propagated between adjacent nodes as a continuous-
time random walk, with no discretization artifacts. Here we
take an alternate approach, which starts from a diffusive
particle trajectory z(t ) on an infinite line and maps it proba-
bilistically onto a corresponding trajectory (m(t ), x(t )) on the
network (where m is a network edge index and x is the position
along the edge). In a subsequent section, we demonstrate
how this mapping can be reversed to extract the underlying
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FIG. 1. Simulation of diffusive particle trajectories on a network. (a) Schematic of diffusion simulation and unraveling algorithm. Top:
Example single-step trajectories starting at z0 on an infinite line. Bottom: Sample corresponding trajectories along the network. Trajectories
that pass the node can land on either the same or a different edge. (b) Simulations of particle trajectories using the discrete time propagation
algorithm (dots) reproduce exact analytic distributions (lines) on a triskelion network. Densities are shown for a particle starting at the center
node, propagating for a total time t = 0.8�2/D. (c) Diffusive particle mean-squared displacement depends on the structure of the confining
network. Dimensionless MSD is shown for particles on a triskelion geometry (blue), a honeycomb network of diameter 15� (yellow), a
honeycomb with 30% of its edges removed (purple), and a section of a peripheral ER network extracted from a COS7 cell (green). Dashed
black line shows linear scaling. Length units are scaled by the average network edge length (�) and time units by �2/D.

diffusive dynamics of a particle whose motion is observed on
a network of known structure.

Consider a discretized trajectory {zi} of a free Brown-
ian particle with diffusivity D, evaluated at discrete times
ti = i�t . The increments of such a trajectory are distributed
according to a normal distribution: �z ∼ N (0,

√
2D�t ). To

map this trajectory onto an equivalent particle diffusing over
the network structure, we use these increments �z for prop-
agation on the network. In particular, we assume that each
time the diffusing particle passes a network node, it selects
uniformly at random the next edge from the ones attached to
that node. Thus, a reversal in the trajectory zi on an infinite
line will always correspond to a reversal on the network, but
additional reversals at a network node may also occur that are
not apparent on the infinite line [e.g., green path, Fig. 1(a)].

Our approach assumes that the discrete time step is short
enough that on any single step the particle can pass only the
network node that is closest to its starting position (in terms of
distance along the edge). Specifically, we assume that |�z| <

�m/2 for the current edge m on which the particle is located.
To map an unconstrained trajectory step �z onto the net-

work [Fig. 1(a)], consider a particle starting at position x0

along edge m and assume that x0 < �m/2, so that the particle
is closer to the first node of the edge. We want to find the
next position x1 for the particle, given its sampled trajectory
on the infinite line. If �z < −x0, then the particle trajectory
must have passed the node during this time step. We then place
the particle at position x1 = |x0 + �z| on an edge selected
uniformly at random from among all the edges attached to
that node (including the original edge). If �z > −x0, then the
particle may also have passed the node during that time step.
The probability that it has done so can be computed as

ppass = exp

[
− (x0 + �z)x0

D�t

]
, (1)

[see Eq. (A1) for derivation]. If it passed the node, then it can
end the time step on any of the adjacent edges with equal
probability; if it did not pass the node, then it must still be
on its original edge. The subsequent position of the particle is
then given by |x0 + �z| with probability 1 − ppass + ppass/d
of landing on its original edge and probability ppass/d of
landing on each of the other adjacent edges, where d is the
degree of the node. The propagation of the particle is then
repeated from its new position. If the particle originates close
to the other end of the edge (x0 > �m/2), then an analogous
calculation is performed by considering the nearby node on
the far end of edge m.

It should be noted that this algorithm also handles reflec-
tions off of a dead-end node. Increments that would lead an
unconstrained particle to pass such a node simply result in the
particle being placed back upon the single edge leading to the
dead-end. Such explicit reflections are typically implemented
in Brownian and fractional Brownian dynamics simulations
with hard-wall boundaries [51].

The proposed algorithm accurately represents the behavior
of a continuously diffusing particle over the time step �t
so long as we can neglect any trajectories that pass a node
other than the most nearby one over the course of a single
time step. Therefore, unlike the exact algorithm described in
previous work [41] it requires the constraint

√
2D�t � �m.

In Fig. 1(b), we demonstrate that for small �t the agent-based
simulations described here accurately reproduce analytically
computed particle distributions in a simple triskelion network
[see Eq. (A2)].

B. Network confinement modulates particle MSD

A traditional metric for analyzing particle trajectories is to
look at the mean-squared displacement, defined by

MSD(t ) = 〈|�r(t ) − �r(0)|2〉, (2)
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where �r(t ) gives the spatial position of the particle at time t ,
and the average is taken both over time and over an ensemble
of many particles. Particles that diffuse unimpeded on an
infinite linear domain exhibit the relationship MSD = 2Dt .
Identical behavior is observed for particles diffusing on a
network comprising an infinite lattice of tubules. The effect of
confinement in a finite domain is a well-known complication
of MSD analysis [31], with the MSD beginning to flatten on
timescales comparable to

√
R2/2D for a domain of radius R

[Fig. 1(c)].
When the connectivity of the network structure is reduced

below that of the well-connected lattice, the time dependence
of the mean-squared displacement flattens still further. In
Fig. 1(c) (purple curve), we show the MSD of particles on
a diluted honeycomb network with 30% of its edges removed
in such a way as to maintain a single connected component.
The MSD shows a subdiffusive (sublinear) scaling with time,
as missing connectivity and an abundance of dead ends forces
particles to take much longer paths to get from one part of the
network to another.

Cellular organelle networks, such as the peripheral endo-
plasmic reticulum and mitochondrial network structures, also
show reduced connectivity, with dead-end nodes and hetero-
geneous pore sizes between connected edges. In Fig. 1(c)
(inset) we show a section of network extracted from an im-
age of the peripheral ER in a mammalian cell. Simulating
diffusive particle trajectories on the extracted section of an
ER network indicates that the MSD is also expected to scale
sublinearly with time [Fig. 1(c), green curve].

We note that the dead-end nodes along the boundary of
the extracted ER network arise from a combination of the
cell boundary and the finite field of view captured via high-
resolution imaging. In supplementary material Sec. S1 [52],
we demonstrate that the results shown here are unaltered if
simulated trajectories are truncated whenever they touch the
dead-ends at the edge of the imaging area, analogously to the
termination of experimental trajectories whenever a particle
leaves the field of view.

These simulations highlight the inherent difficulty of quan-
tifying particle diffusivity on a network by analyzing the
mean-squared displacement of observed trajectories. Namely,
the MSD convolves together two separate effects: the underly-
ing dynamics of the moving particles and the morphology of
the network within which they are confined. We thus proceed
to develop a method for separating out these two effects and
extracting particle diffusivity from their behavior on a known
network structure.

C. Unraveling diffusive trajectories on networks

To unravel the particle dynamics from the network archi-
tecture, we proceed by inverting the algorithm used to map
the discrete trajectory of an unconfined particle ({zi}) onto a
trajectory over the network [Fig. 1(a)]. Given a set of dis-
crete two-dimensional or three-dimensional observations of
the network-confined particle ({�ri}), we seek to find the tra-
jectory that particle would have taken if allowed to move over
an infinite line. To begin, we re-express the spatial trajectory
in terms of network coordinates {mi, xi} that list the edge mi

and position along that edge xi ∈ (0, �i ) of the particle at time

point ti. We then consider the start and end positions of the
particle at each time step, assuming that there is an underlying
free one-dimensional trajectory such that zi, zi+1 were mapped
to network positions (mi, xi ), (mi+1, xi+1) using the algorithm
described in the previous section.

For sufficiently small time steps, we can again assume that
the particle could only have passed over the node closest to
xi. Without loss of generality, we take this node to be the one
located at position 0 on edge mi. For simplicity of notation,
we shift the unconstrained trajectory such that zi = xi. The
next observed position of the unconstrained particle must then
be zi+1 = ±xi+1. Bayes’s rule [53] allows calculation of the
probability associated with each choice, conditional on the
observed particle positions. The probability that the uncon-
strained trajectory ended at zi+1 = xi+1 after the time step,
given that the particle ended at (mi+1, xi+1) on the network
is as follows:

p+ = P (zi+1 = xi+1|mi+1, xi+1)

= P (mi+1, xi+1|zi+1 = xi+1)P (zi+1 = xi+1)

P (mi+1, xi+1)
.

(3)

The free particle increments are sampled from a normal dis-
tribution, so that

P (zi+1 = ±xi+1) = 1√
4πD�t

e− (xi∓xi+1 )2

4D�t . (4)

If the particle moved on to a different edge (mi+1 
= mi),
then the unconstrained trajectory must have passed zero and
the conditional probabilities of the observed end-point on the
network are as follows:

P (mi+1, xi+1|zi+1 = xi+1) = 1

d
e− xixi+1

D�t , (5)

P (mi+1, xi+1|zi+1 = −xi+1) = 1

d
. (6)

The first line gives the probability that the unconstrained
trajectory passed 0 [as in Eq. (1)] before returning to the
positive side. The second line simply indicates that if the
unconstrained trajectory ends on the negative side, then it
must have passed zero and is thus equally likely to be mapped
to any of the adjacent edges.

For a particle that ends on the same edge as its starting
point (mi+1 = mi), the conditional probability given zi+1 =
xi+1 is altered to

P (mi+1, xi+1|zi+1 = xi+1) = 1 +
(

1

d
− 1

)
e− xixi+1

D�t , (7)

which includes an additional term for unconstrained particles
that never pass the origin.

Plugging into Bayes’s rule [Eq. (3)] results in the following
probabilities for the end-point of the unconstrained trajectory:

p+ =
{ 1

2 , mi+1 
= mi
1

2−d+d exp(xixi+1/D�t ) , mi+1 = mi
. (8)

The conditional probability p− that zi+1 = −xi+1 given the
observed values of mi+1, xi+1 can be computed as p− = 1 −
p+.

For the network trajectory {mi, xi}, we obtain an “unrav-
eled” trajectory {zi}, by sampling the next position at each
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FIG. 2. Unraveling simulated trajectories to estimate diffusivity. (a) Dimensionless MSD of particle trajectories on a triskelion (blue), a
decimated honeycomb network (purple), and a segment of peripheral ER (green). All simulations were run with D = 1. Original MSD [from
Fig. 1(c)] is shown with dashed lines, MSD after unraveling (with D = 1) shown with solid lines. (b) MSD of trajectories on decimated
honeycomb network, unraveled using different values of the diffusion coefficient D (thick lines), compared to the expected 2Dt (thin lines).
Dashed black line indicates values for the correct diffusion coefficient. All units are nondimensionalized by the edge length and the simulated
diffusivity. (c) Residual function G(D) plotted for the different diffusion coefficient values used in unraveling. Dashed line shows the correct
D = 1 used in the simulation, which matches well to the minimum of the residual function.

step according to Eq. (8), considering only the node clos-
est to xi for potential passage by the unconstrained particle.
The mean-squared displacement and velocity autocorrelation
function for the unraveled trajectory can then be analyzed
in the usual manner. As shown in Fig. 2(a), the unraveled
trajectory mean-squared displacement (MSDur) for simulated
particles diffusing on a network regains its linear time scaling,
with the correct prefactor: MSDur = 2Dt .

Computing the unraveled trajectories requires knowledge
of the particle diffusion coefficient D in order to correctly
sample the step direction from Eq. (8). Since one of the pri-
mary goals of the unraveling procedure is to gain an estimate
of particle diffusion coefficient, D cannot be assumed a priori.
Instead, the unraveling process is performed with a range of
different diffusivities to find a self-consistent value. Values
of D that are too large or too small result in an unraveled
MSD that deviates from the expected behavior [Fig. 2(b)].
We estimate the underlying particle diffusion coefficient by
finding the value of D that minimizes the difference between
the computed MSDur(t ; D) and 2Dt .

We assess the goodness of fit on a log-log scale, as plotted
in Fig. 2(b). Specifically, we perform a logarithmic transform
of both axes and compute G = 1 − R2, where R2 is the co-
efficient of determination used to assess the accuracy of the
linear model [54]. This metric is computed for each value of
diffusivity D as:

G(D) =
∑

i log2 [MSDur(ti|D)/(2Dti )]∑
i log2 [MSDur(ti|D)/〈MSDur〉t (D)]

, (9)

where the residuals are evaluated at logarithmically spaced
time points ti and 〈MSDur〉t refers to the average value over
all time points. The final diffusion coefficient estimate is the
value of D that minimizes G(D) [Fig. 2(c)]. Obtaining an
accurate estimate of the diffusion coefficient via this method
requires a sufficient number and length of trajectories input
into the time and ensemble average when calculating the

unravelled MSD curves. The effect of trajectory length and
ensemble size on the estimated diffusivity is shown in Fig. S2
in the supplementary material [52].

Figure 3 shows how the estimated diffusion coefficient
varies with the time step of the trajectory. Our approach is
valid only if the time step is small enough that individual
consecutive snapshots are very unlikely to involve the parti-
cle trajectory passing any network node other than the one
nearest to the particle. During the analysis, any steps that
involve the particle jumping onto a nonadjacent edge result in

FIG. 3. Diffusion coefficient estimates for different time steps.
Simulated trajectories on a diluted honeycomb network (purple) and
a triskelion network (blue) are unraveled to obtain an estimated D
value. Each analysis involves 100 independent trajectories of 100
time steps each. Error bars give standard deviation from 20 replicate
analyses. All values are nondimensionalized by the edge length � and
the simulated diffusivity D.
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FIG. 4. Distinguishing Brownian motion versus fLM from unraveled particle trajectories on a diluted honeycomb network. (a) MSD of
fLM trajectories unraveled with different trial values of D (thick lines). Thin lines show 2Dt for each trial value of D. Inset shows residual
function G(D), showing how no trial D gives a good correspondence with the expected diffusive scaling. Simulations used scaling exponent
α = 0.6, with prefactor set such that individual step sizes are comparable to the Brownian simulations in Fig. 2, with 2Dα�tα = (0.1�)2.
Length and time units are nondimensionalized by � and τ = (�2/Dα )1/α , respectively. (b) Normalized velocity autocorrelations for unraveled
trajectories of simulated particles undergoing Brownian motion (dashed lines) and fLM with α = 0.6 (solid lines). Red box indicates first
negative peak, used to extract estimated scaling exponent αest. (c) Estimated scaling exponent for simulated fLM particles with different true
values of α. Estimations are shown based on the velocity autocorrelation of either raw 2D trajectories (solid) or unraveled 1D trajectories
(dashed). Simulations were carried out with two different root mean-squared step sizes: 10% (blue) and 20% (purple) of the network edge
length. All simulations included 100 particles tracked for 100 time steps. Error bars are standard deviations from 50 independent replicates.
Cyan region indicates the range of αest that should be taken to imply purely diffusive motion, obtained as average ± standard deviation for
Brownian particle simulations. Right: Zoomed-in section shows that network confinement makes Brownian particles (α = 1) appear to have a
lowered estimated scaling (αest < 1), whereas unraveled trajectories show the correct Brownian exponent αest = 1.

breaking the trajectory up into separate segments. For larger
step sizes (roughly, �t � 0.1�2/D), such large steps become
increasingly common. Breaking the trajectory then results in
a systematic underestimate of the diffusion coefficient since
large steps are removed from the analysis. Thus, in order to
accurately assess particle dynamics on a network, the particle
positions must be visualized rapidly enough that the particle
passes no more than one node on each step.

D. Fractional Langevin motion and velocity autocorrelations

An important application of MSD analysis for single-
particle trajectories is to elucidate the relevant dynamic model
that best describes their behavior [7]. In particular, particles
that exhibit an MSD scaling linearly with time are generally
assumed to be moving in an effectively diffusive manner.
By contrast, subdiffusive scaling (MSD ∼ tα for 0 < α < 1)
can be explained by a number of underlying physical mod-
els, including continuous time random walks, confinement,
and fractional Langevin motion (fLM) [16,17]. Fractional
Langevin motion is expected for particles subject to thermal
fluctuations in a viscoelastic medium, driven by fractional
Brownian forces with a power-law correlation over time that
scales as t−α [51,55]. The fLM model, with sublinear scaling
exponent α < 1, has been shown to be relevant for a variety
of cytoplasmic and intranuclear particles [23,24,26,56]. For
particles moving on a network, it can be difficult to distinguish
microscopic subdiffusion arising from fLM dynamics versus
subdiffusion on longer scales due to the network confinement.
We here consider whether our analysis method can help accu-
rately determine whether one or the other of these common
dynamic models is a better descriptor of the microscopic
dynamics of observed network-confined particles.

To simulate the dynamics of a particle undergoing fLM
on a network, we first generate fractional Brownian forces in
two dimensions (2D) using previously established methods
[50,57]. Particle step increments in 2D are then computed
by convolving the past history of steps with the appropriate
power-law memory kernel, followed by zeroing out of the step
component perpendicular to the current edge axis [details in
Eq. (A 4)]. The overall approach is analogous to that used
for simulating the fractional Langevin equation in a confined
geometry [51], in the limit of no inertia and narrow edge
confinement.

As expected, the simulated trajectories exhibit an MSD that
scales as a power law with time, MSD ∼ tα (supplementary
material, Fig. S3 [52]). These subdiffusive trajectories can
be unraveled as described in the previous section, to remove
the effect of network confinement. The unraveling procedure
assumes diffusive transport when computing node passage
probabilities, and attempts to unravel with different values of
the trial diffusivity D until a self-consistent value is found.
Because the underlying motion is in fact not diffusive in this
example, the resulting unraveled MSD curves are notably
deformed [Fig. 4(a)]. Consequently, the residual metric (com-
paring to a linear, diffusive scaling) is substantially higher
for these trajectories, serving as an indicator of nondiffusive
transport [Fig. 4(a), inset].

An alternative approach for distinguishing fLM from diffu-
sive trajectories on a network involves analysis of the velocity
autocorrelation function for the unraveled trajectories. For
velocities computed over time interval δ, the autocorrelation
function is defined by [58]

C(δ)
v (t ) = 1

δ2
〈[x(t + δ) − x(t )] · [x(δ) − x(0)]〉, (10)
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where the average is taken over both time and the particle
ensemble. This function exhibits a negative peak at t = δ,
rising back toward zero in a polynomial fashion for t > δ. The
normalized negative peak C(δ)

v (δ)/C(δ)
v (0) becomes deeper

for more subdiffusive motion (lower α) and, for fractional
Langevin motion, is independent of the choice of window size
δ in defining the velocity [16,23,24]. The scaling exponent
α can be extracted directly from this value according to the
expression [58]: ∣∣∣∣C(δ)

v (δ)

C(δ)
v (0)

∣∣∣∣ = 1 − 2α−1. (11)

We plot the normalized velocity autocorrelation for un-
raveled trajectories of Brownian particles and particles
undergoing fLM in Figs. 4(a) and 4(b). For Brownian parti-
cles, the velocity correlations are flat for t > δ, emphasizing
that the unraveling procedure removes the effect of confine-
ment and dead-ends in the network, which would be expected
to yield negative peaks [16]. For particles undergoing fLM,
the unraveling decreases the magnitude of the negative peaks
at larger step sizes, consistent with the turning upward of the
MSD curves for these trajectories. However, the form of the
velocity autocorrelation function is still clearly nondiffusive,
demonstrating that this metric can be used to diagnose fLM
versus Brownian motion on a network.

To generate an estimate of the fLM scaling exponent, we
use Eq. (11) at δ = �t (a single trajectory step). As shown in
Fig. 4(c), unraveled trajectories of simulated Brownian parti-
cles on a network give an accurate estimate of αest ≈ 1.01 ±
0.01 (mean ± standard deviation) based on the first negative
peak in the velocity autocorrelation functions. When the same
analysis is applied to simulated fLM trajectories with α = 0.6,
the unraveling procedure gives a biased estimate of the scaling
exponent (αest = 0.54 ± 0.025), but still clearly differentiates
between fLM and Brownian motion. Simulations of fLM with
a range of different scaling exponents [Fig. 4(c)] indicate that
accurate estimates of the scaling exponent can be obtained
for α � 0.75, when individual step sizes are set to 10% of
the network edge length. For larger step sizes, this approach
overestimates α, due to the bias toward diffusive motion
introduced in the unraveling process whenever the particle
passes a node. However, particles undergoing fLM still yield
an estimated αest that is significantly less than 1, allowing the
trajectories to be distinguished from those of Brownian par-
ticles. By contrast, if the velocity autocorrelation is analyzed
for raw trajectories confined on a network, then even Brow-
nian particles (α = 1) are likely to yield an estimated scaling
value αest that is below the expected range [shaded region in
Fig. 4(c)]. Thus, network confinement can make Brownian
motion appear as fLM, and the unraveling procedure removes
this confounding effect. Notably, more rapid high-resolution
imaging that can yield even smaller observed step sizes would
allow for a more accurate estimate of the scaling exponent for
particles undergoing fLM.

E. Application to membrane proteins on ER tubules

As a direct application of this methodology to experimen-
tal data, we consider single-particle trajectories of a model

ER transmembrane protein (a HaloTag fused to the minimal
targeting domain of Sec61b, Halo-TA), moving along the
peripheral ER tubules of COS7 cells.

The peripheral ER of COS7 cells provides a convenient
example system consisting of a pseudoplanar network of nar-
row tubules. The diameter of ER tubules has previously been
measured at approximately 100 nm in this cell type [59–61].
The average edge length between three-way junction nodes
in our extracted network structures is 1.2 ± 0.76 μm (see
supplementary material, Sec. S4 [52]), comparable to previ-
ous measures of ER edge length in COS7 cells [41]. While
the diameter of COS7 cells in culture can be above 50 μm
(e.g., Refs. [60,61]), we focus on smaller ∼15-μm regions,
where the peripheral network morphology is well resolved
[Fig. 5(a)].

The effective diffusivity of the Halo-TA proteins is the
target quantity we aim to extract through the unraveling
algorithm. Prior bulk measurements of the spreading of a pho-
toactivated membrane marker in the peripheral ER network
indicate an approximate value of D ≈ 1.8 μm2/s [47].

Widefield images of the ER network as well as individ-
ual fluorescently labeled Halo-TA proteins were collected
simultaneously with rapid time resolution (∼100 Hz). Be-
cause ER networks are dynamic, rearranging over tens of
seconds [62–65], peripheral network structures were extracted
at one-second intervals to serve as the underlying domain
geometry for the particle trajectories. Details on imaging,
image analysis, and particle tracking methods are provided in
the Appendix.

For each network structure, trajectory segments collected
within ±1 s of the corresponding image time were mapped
onto the network by projecting to the nearest point along the
edges [Fig. 5(a)]. All projected trajectories imaged within
a given cell (corresponding to approximately 1 min total
imaging time) were then collected together for analysis. As
seen in Fig. 2(b), both the raw and projected trajectories
exhibited a long-range subdiffusive MSD scaling with time,
as expected for simulated diffusive particles on a sample ER
network [Fig. 1(c)]. The close correspondence between raw
and projected trajectories indicates that the proteins were in
fact largely confined to the visible ER tubules, with most
of their motion occuring along the tubule axis. In Fig. S6
in the supplementary material [52] we explore further the
effect of particles moving along the circumference of the ER
tubules rather than directly along the axis. We show, using
simulations, that the narrow 50-nm radius of ER tubules [59]
implies that these perpendicular particle displacements will
not significantly affect the analysis.

Projected trajectories were unraveled as described in
Sec. II C to extract the underlying free-particle dynamics. The
mean-squared displacement MSDur of the unraveled trajec-
tory closely matched the expected 2Destt behavior [Fig. 5(b)]
with a diffusion coefficient of Dest = 1.54 ± 0.1 μm2/s,
where the standard deviation in the estimate is obtained by
bootstrapping over individual particle trajectories. The veloc-
ity autocorrelation function of the unraveled trajectories is
consistent with the expected behavior for diffusive particles,
showing very little correlation for t > δ [Fig. 5(c)]. Estimating
the scaling exponent α from these velocity autocorrelations
(as described for simulated trajectories above) yields a value
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FIG. 5. Unraveling of membrane protein (Halo-TA) trajectories in the peripheral ER networks of an example COS7 cell. (a) Extracted
network structure (green) superimposed on a confocal image with fluorescently labeled ER marker. Trajectories within 1 s of this snapshot
are shown as colored circles. Inset shows single trajectory, projected onto network edges (magenta). (b) Ensemble-averaged MSD for raw
trajectories (green), projected trajectories (blue), and unraveled trajectories (purple). Dashed magenta line indicates long-range subdiffusion
for particle trajectories due to confinement in network structure. Dashed black line shows linear scaling with the estimated diffusion coefficient.
Inset: Residual function for unraveling with different diffusivity values, with self-consistent estimate marked in red. (c) Normalized velocity
autocorrelation for unraveled trajectories, with estimated scaling exponent αest is obtained from the first negative peak. Errors for Dest and αest

are standard deviations obtained from bootstrapping over individual unraveled trajectories.

of αest = 1.02 ± 0.01, with standard deviation again obtained
by bootstrapping.

The analysis was repeated for particle trajectories and
network structures obtained from 11 different cells (Fig. 6),
with resulting diffusion coefficient estimates 〈D〉 = 1.45 ±
0.24 μm2/s (mean ± standard deviation). The extracted
diffusion coefficient is similar to values recently estimated
from bulk measurements of photoactivated protein spreading
in the ER [47]. The scaling estimates from the velocity au-
tocorrelation of unravelled trajectories in each cell yielded
〈α〉 = 1.00 ± 0.02 (standard deviation across cells), consis-

FIG. 6. Analysis of trajectories for Halo-TA ER membrane pro-
teins from multiple COS7 cells. (a) Estimated diffusion coefficient
Dest. (b) Estimated scaling exponent αest; N = 13 independent cells
were analyzed.

tent with diffusive motion of the Halo-TA ER membrane
protein.

We note that, given our diffusion coefficient estimate and
average ER edge length (supplementary material, Fig. S4
[52]), we would expect the unraveling procedure to be accu-
rate for step sizes �t � 0.07 s, a condition which is satisfied
by the 100-Hz imaging rate.

III. DISCUSSION

Traditional approaches to quantifying single-particle tra-
jectories involve using the mean-squared displacement or
velocity autocorrelation function to characterize the diffusive
or subdiffusive motion of the particles. However, for particles
trapped inside the complex spatial geometry of intracellular
structures, these approaches are confounded by the effects
of confinement. Such effects can make diffusive motion ap-
pear subdiffusive and lead to underestimation of the particle
motility. In this study, we demonstrate a methodology for
decoupling the underlying microscopic diffusion of particles
from the effect of spatial confinement using direct observation
of the structure, in the specific case of particles confined
within a tubular network.

Our approach involves unraveling a particle trajectory on a
network by sampling the hypothetical path of that particle if
it were to undergo unconstrained diffusion on an infinite line.
In classic simulations of a Brownian particle, each step of the
particle represents an ensemble of possible paths leading from
the starting position to the next one. When all likely paths stay
within a single edge of the network, such a classically sampled
step remains accurate. However, if there is a nontrivial chance
of passing a network junction during that time step, then it
becomes necessary to consider the excursions of the particle
to different edges surrounding that junction. We develop an
algorithm that makes use of the statistical weighting of these
excursions to “fold” one-dimensional diffusive paths onto the
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edges around a network junction. This serves as a mathemat-
ically accurate method for discrete-time Brownian dynamics
simulations of particles along a network of tubules.

We then take a Bayesian approach to inverting this al-
gorithm. Namely, starting with an observed trajectory of
discrete steps on a network, we sample the unconfined one-
dimensional trajectory that would lead to the observed particle
positions. The resulting “unraveled” trajectories of simulated
Brownian particles exhibit all the features of classic Brownian
motion and can be analyzed using the usual quantification
of MSD and velocity autocorrelations. This approach makes
it possible to extract the underlying diffusion coefficient of
the particle, as well as to differentiate between diffusive and
subdiffusive microscopic motion.

Simulations of particles undergoing fractional Langevin
motion on network structures indicate that applying our un-
raveling algorithm can accurately differentiate such dynamics
from Brownian diffusion. For sufficiently small step sizes,
analysis of the velocity autocorrelation function for unraveled
trajectories yields an approximate estimate of the fractional
scaling exponent α. Furthermore, although raw Brownian
trajectories may be subdiffusive at large scales due to confine-
ment within the network, unraveling the trajectories allows for
accurate identification of Brownian scaling behavior (α = 1)
from the velocity autocorrelation function. Hence, the unrav-
eling technique can be used to distinguish subdiffusion arising
from microscopic causes (as in fLM) from the long-range
subdiffusion caused by network confinement.

Our proposed approach for uncoupling diffusive transport
from network confinement is subject to certain inherent lim-
itations. It is applicable specifically to particles moving on
a network of narrow tubules, so that motion along individ-
ual edges can be approximated as one dimensional. It also
requires sufficiently frequent observations of the particle po-
sition so that each particle can be assumed to pass at most
one node junction during each time step. This is equivalent to
requiring that the particle steps be shorter than the typical edge
length. Expanding the proposed algorithm to find the correct
statistical weighting for paths that pass multiple nodes over
the course of a time step serves as a promising avenue for
future work.

As an example application of the unraveling algorithm,
we analyze the trajectories of membrane-bound proteins in
the ER. The peripheral ER in many cell types forms a tubu-
lar network structure, which hosts a variety of proteins that
diffuse within its lumen and membrane. Among its many
biologically crucial functions, it is thought to serve as an
intracellular network for the sorting and delivery of ions,
lipids, and secreted proteins. Currently, the mechanism and
spatial dynamics of these phenomena are challenging to ob-
serve, since the complex structure masks the interpretation
of dynamic data collected within the organelle. Quantify-
ing particle motion in the ER is crucial to elucidating the
impact of its reticulated structure on the kinetics of biochem-
ical pathways embedded within this organelle. Such studies
constitute a first step toward generating a mechanistic un-
derstanding of ER-localized biological processes and their
regulation.

Trajectories of single transmembrane proteins on mam-
malian ER networks were collected at a sampling rate of
approximately 100 Hz, sufficiently rapid to ensure multiple
steps of each protein between junction passage events. Tradi-
tional analysis of the MSD for raw particle trajectories was
confounded by confinement within the network, as indicated
by a subdiffusive scaling estimate. However, application of
the unraveling algorithm demonstrated that the dynamics of
these particles is consistent with classic Brownian motion,
with a diffusion coefficient of D ≈ 1.5 μm2/s. This estimate
is compatible with bulk measurements of protein diffusivity
in the ER membrane [47].

Our analysis demonstrates that the specific ER mem-
brane protein studied here does not show signs of fractional
Langevin motion on a microscopic scale. Although no pro-
teins exhibiting such dynamics in the ER are known to date,
the method described here will make it possible to accurately
classify the underlying dynamics as Brownian versus fLM as
new data on protein motion in the ER becomes available. Fur-
thermore, we emphasize that the measurements here were lim-
ited to a protein embedded in the ER membrane. Past studies
have indicated that aqueous proteins in the ER lumen may ex-
hibit nondiffusive motion dominated by rapid processive runs
along the tubules [5]. Unraveling the dynamics underlying
luminal protein trajectories is left as a topic for future work.

The algorithm proposed here is not specific to protein
motion in the ER, but rather is a general mathematical tool
for analyzing ensembles of diffusive trajectories on networks
embedded in physical space. Such spatial networks have been
analyzed in the context of roads, power grids, and venation
patterns as well as intracellular structures [66]. In cell biology,
mitochondrial networks [32] and the dendritic trees of neurons
[49] provide additional examples of network structures where
diffusion can play an important role in protein transport. Our
focus here is specifically on diffusive dynamics over the net-
work, but the unraveling method also provides a potential
tool for diagnosing when particle motion is nondiffusive at
the microscopic scale. We show that the method can accu-
rately distinguish whether particle motion is more consistent
with fLM or Brownian motion. Future work will pursue the
possibility of distinguishing other dynamic behaviors, such as
directed flow along edges [5,43], or continuous-time random
walks associated with sporadic binding [67], as well as ex-
ploring combinations of these dynamic processes.

Because the unraveling approach provides a quantitative
estimate of particle diffusion coefficient, it has potential ap-
plications in distinguishing the effect of external perturbations
on either network structure or the dynamics of the particles
themselves. For example, mutations in ER morphogen pro-
teins can alter the radius of ER tubules [47], or the density
of tubule junctions [68]. However, the consequences of these
morphological changes on protein diffusivity in the ER remain
unclear, and could be approached by unraveling membrane
and luminal protein trajectories according to the methods
proposed here. Overall, the ability to quantify trajectories by
removing the complicating effects of confinement is critical
to understanding the behavior of particles trapped in complex
reticulated geometries, in cell biology and beyond.
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APPENDIX: METHODS

All code used in this work was written in MATLAB [69].
A software package for carrying out simulations on networks
and for analyzing particle trajectories is available [70].

1. Algorithm for Brownian motion simulations on networks

We develop an algorithm for discrete time-step simulations
of Brownian particles on a network of one-dimensional edges
connected by pointlike junctions, as discussed in Sec. II A.

At each step, for each individual particle, we consider
the particle’s position along its current edge. Without loss of
generality, we can assume that the nearest boundary (node) of
that edge is at position 0 and the particle itself is at position
x0 along the edge. We sample the net displacement of an
unconstrained Brownian particle over time interval �t from
the Gaussian propagator function of such particles [namely
�z ∼ N (0,

√
2D�t )]. We note that this normally distributed

displacement over the time interval incorporates an infinite
number of particle paths, as in the classic path-integral formu-
lation of Brownian motion [71]. We consider, of all possible
paths that start at x0 and end at x0 + �z, what is the probability
that the particle’s path crossed 0 during that time step. This
probability ppass is derived as follows.

We start with the Green’s function for unconstrained diffu-
sion:

G(x|x0,�t ) = 1√
4πD�t

e−(x−x0 )2/4D�t , (A1)

which gives the spatial probability density of a particle ending
its path at position x after time �t , given that it started at
position x0 at time 0. The distribution of first passage times
for a particle starting at x0 to hit 0 for the first time at time t is
given by

J (t ; x0) = D
∂

∂x
G(x|x0; t )

∣∣∣∣
x=0

. (A2)

Because diffusion is Markovian (memoryless), if the parti-
cle first hits 0 at time t , then we know the probability density
of ending up at position x is simply given by G(x|0,�t − t ).
From there, we can calculate the conditional probability that
a particle hit 0 at some point in the path, given that it ended at

x, by a simple application of Bayes’s rule:

ppass =
∫ �t

0 J (t ; x0)G(x|0,�t − t )dt

G(x|x0,�t )
. (A3)

Here the numerator is the joint probability density of hitting
0 at some point during the time step and then ending the path
at x and the denominator is the overall probability density of
ending at x. Plugging in Eqs. (A1) and (A2) gives the formula
for ppass stated in the main text [Eq. (1)].

Every path of an unconstrained particle can be mapped
to a set of “folded” paths for the equivalent particle on the
network. Each passage of the node at 0 involves selecting
which of the adjacent network edges will serve as the axis
along which the network-bound particle continues to move.
For a memoryless Brownian particle that hits the node, each of
the edges (including the one from whence it came) are equally
likely to be selected. We know the unconstrained particle
ends its time step at distance |x0 + �z| from 0. Hence, the
network-confined particle is placed at this distance from the
node along the randomly selected edge, completing its time
step.

2. Distribution of diffusing particles on a triskelion

We compute explicitly the solution to the diffusion equa-
tion on a triskelion structure [Fig. 1(b)] with reflecting
boundaries at the tips and continuity of the concentrations at
the degree-3 node. The initial condition is assumed to be a δ

function at the junction. The approach taken is analogous to
the equivalent problem with absorbing boundaries, described
in more detail in Ref. [41]. Specifically, after a Laplace trans-
form in time (t → s), the concentration profile ĉk (x, s) on
edge k is given by

ĉk (x, s) = 1

Dα

cosh αx

cosh α�k

[
3∑

j=1

tanh α� j

]−1

, (A4)

where D is the particle diffusion coefficient, α = √
s/D, and

� j is the length of the jth edge.
The Laplace transform is then inverted using a Bromwich

integral evaluated with the Cauchy residue theorem, yielding
the time-dependent concentration profile

c(x, t ) =
∑

p

rpe−Du2
pt , (A5)

where the poles sp = −Du2
p can be found by taking the roots

of the following equation:

cos �kup

[∑
j

tan � jup

]
= 0, (A6)

and rp are the residues of Eq. (A4) at those poles.
The resulting expressions are plotted in Fig. 1(b) and com-

pared to the distribution of 107 simulated particles at time
t = 0.8�2/D (after starting at the threefold junction) where �

is the length of the shortest edge.
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3. Parameters for simulations and analysis

a. Brownian motion on networks

The simulations are tested on synthetic networks, as well
as network structures extracted from images of the ER. For
comparing particle distributions on the triskelion network
[Fig. 1(b)], 107 particles were simulated with time steps of
�tD/�2 = 0.01, for 80 steps. All particles were started on the
central node.

The synthetic honeycomb network in Fig. 1(c) was created
by cropping a standard honeycomb lattice with N = 15 cells
in each dimension to a circle of radius 1. All reported length
units for simulations on synthetic networks are normalized by
the single edge length � in the network. The diluted honey-
comb structure was obtained by removing 30% of all network
edges, randomly selected in such a way that the network
maintains a single connected component. While all the ex-
ample networks used in this study are two-dimensional, the
simulations and unraveling code also applies to 3D networks.

Brownian simulations for the MSD comparison were
run with 100 particles, using dimensionless time steps of
�tD/�2 = 0.01, for up to Nt = 3 × 104 time steps. The MSD
is computed as MSD = 〈|�x(t ) − �x(0)|2〉, where the average is
done over nonoverlapping time windows of a single trajectory
and over all particle trajectories.

b. Trajectory unraveling analysis

The algorithm for unraveling observed trajectories on a
network to sample the corresponding trajectories on an infinite
line is described in Sec. II C. We perform the unraveling
procedure with 20 values of diffusion coefficient in the range
0.2–2 (compared to the simulated value of D = 1). Residuals
are calculated by interpolating each unravelled MSD curve
onto 100 logarithmically spaced time points and then applying
Eq. (9). The self-consistent diffusion coefficient is then found
by estimating the value of D that yields a local minimum in the
normalized residuals curve [e.g., Fig. 2(c)] via a cubic spline
interpolation.

4. Simulation of fractional Langevin motion on networks

The long-tailed memory kernel of fractional Langevin mo-
tion implies that individual steps of such particles are not
Markovian, necessitating an alternate approach to the sim-
ulation. We take the approach of assuming that individual
particles are undergoing fLM in two dimensions, but that rapid
reflections from the walls of a narrow tubule prevent their
perpendicular motion and force them to always land on the
tubule axis. Our overall approach is analogous to that de-
scribed previously [51] for simulating the fractional Langevin
equation under confinement, in the limit of no inertia (as ap-
propriate for highly viscous intracellular fluids). The particles
maintain a memory of their past displacements in the 2D
imaging plane as they move throughout the network.

Specifically, we consider the power-law memory kernel
[58]

K (t − t ′) = (2 − α)(1 − α)

|t − t ′|α (A7)

and generate 2D stochastic forces F (B)
x , F (B)

y as fractional
Gaussian noise [57] with time correlations in accordance with

the fluctuation dissipation theorem:〈
F (B)

i (t )F (B)
j (t ′)

〉 = γ kbT K (t − t ′)δi j,

where γ is the friction coefficient and kbT the thermal energy
of the particles. We note that this approach is also applicable
in 3D, although we have focused on planar networks here to
match the two-dimensional trajectories extracted from exper-
imental data.

The particle motion obeys the overdamped Langevin equa-
tion:

0 = −γ

∫ t

0
K (t − t ′)�v(t ′)dt ′ + �F (b)(t ), (A8)

where �v(t ′) is the instantaneous particle velocity. In the ab-
sence of confinement, the MSD for such particles is described
by the following power law [58]:

〈x2〉 = 2Dαtα,

Dα = kbT/γ

(2 − α)(1 − α)
(α + 1)
(1 − α)
.

(A9)

To propagate forward the particles via discrete time steps,
we take the approach described in Ref. [50]. Namely, we
discretize the integral in Eq. (A8) and solve for the next trial
spatial step �̂�xn+1 based on all prior steps ��xn+1 and the
fractional Brownian force �F (B)

n+1.

The trial step �̂�x is then projected along the direction of the
current edge containing the particle (removing the perpendic-
ular component). If the remaining step takes the particle past
a degree-1 node (dead end), then it is reflected off the node,
back along the same edge. If it steps past a degree-3 node, then
it is placed randomly on one of the adjacent edges (including
the one it came from). For our simulated networks, edges are
evenly distributed around each such junction, so that multiple
reflections in the tight junctional space are expected to be
equally likely to bounce the particle to any edge. Application
of this algorithm to more complex structures, including bent
degree-2 nodes and degree-3 nodes with uneven edge distri-
bution would require further refinement of this algorithm (left
to future work) to account for biased probabilities of entering
subsequent edges.

The final saved step ��x is then computed as the two-
dimensional difference between the final particle position and
its prior position at the start of the step. This saved step is
used in the computation of all future particle displacements,
allowing the particle to maintain a memory of its prior speed
and direction of motion.

We note that this simulation approach gives the expected
mean-squared displacement of 2Dαtα when particles are
placed along a single long edge or along a fully connected
honeycomb lattice (supplementary material, Fig. S3 [52]).

5. Experimental methods

a. Cell culture, plating, and transfection

COS7 cells were purchased from ATCC and maintained
in phenol red-free Dulbecco’s modified Eagle medium sup-
plemented with 10% (v/v) FBS, 2 mM L-glutamine, 100
U/ml penicillin and 100 μg/ml streptomycin at 37◦C and 5%
CO2. All experiments were performed within 40 passages of
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the initial thaw, and passaging was performed using phenol
red-free trypsin (Corning).

High tolerance, 25-mm Number 1.5 coverslips were pur-
chased from Warner scientific and precleaned with a modified
version of a previously described protocol [72]. Briefly,
the coverslips were sonicated for 12 h in 0.1% Hellmenex
(Sigma), followed by five washes in 300 ml of distilled water,
followed by an additional 12-h sonication in distilled water
and an additional round of five washes. Coverslips were then
ethanol sterilized in 200 proof ethanol and allowed to air dry
in a clean tissue culture hood. After cleaning, coverslips were
stored in an airtight container until ready for use.

Coverslips were precoated with 500 μg/ml phenol red-free
matrigel (Corning). Cells were seeded to achieve 60% con-
fluency at the time of imaging. Transfections were performed
after letting the cells adhere to the coated glass for at least
12 h, using Fugene6 (Promega) according to the manufac-
turer’s protocol. Each coverslip was transfected with 750 ng
of PrSS-mEmerald-KDEL to label the ER structure in the
488-nm channel and with 250 ng of HaloTag-Sec61b-TA for
tracking on the second camera. PrSS-mEmerald-KDEL uses
the signal sequence of bovine prolactin to target the fluores-
cent protein mEmerald to the ER lumen, where it is retained
through the use of a KDEL retention signal at the C-terminus,
as performed in Ref. [73]. The HaloTag construct is a minimal
targeting domain from Sec61b fused with a flexible linker and
the HaloTag [74,75], as this construct has been shown to be
biochemically inert within the ER [76].

b. Labeling conditions

Immediately before imaging, each sample was labeled with
10 nM PA-JF646 [77] in OptiMEM (ThermoFisher) for 1 min.
PA-JF646 is a diazoketone-caged version of the azetidine-
containing Si-rhodamine JF-646, which shows high signal to
noise and low background at the single molecule level when
uncaged with 405-nm light [77]. Following staining, cells
were immediately washed at least 5 times with 10 ml of PBS
under continuous aspiration, taking care not to let the cells
contact the air. This was followed by an additional wash in 10
ml of prewarmed, complete medium. Samples were then left
10 min in an incubator to let the cells recover before moving
immediately to the microscope.

c. Microscope and imaging conditions

Dual-color imaging was performed using a customized
inverted Nikon Ti-E microscope outfitted with a live imag-
ing stage to maintain temperature, CO2 level, and relative
humidity during imaging (Tokai Hit). The sample was illumi-
nated with two fiber-coupled 488- and 642-nm lasers (Agilent
Technologies) introduced into the system with a conventional
rear-mount TIRF illuminator. Imaging was performed with
the angle of incidence of excitation light manually adjusted
beneath the critical angle as needed to produce the most
even illumination possible in the ER. If necessary, a small
amount of 405-nm light was introduced to increase the rate
of photoconversion in sparsely labeled cells, but in practice
this was rarely needed. The 488 illumination power was kept
beneath 100 μW total in the back aperture, in order to avoid
undesirable activation of the photoconvertible dye.

Fluorescence emission light was collected with 100× α-
Plan-Apochromat 1.49 NA oil objective (Nikon Instruments).
Emission light was split into dual paths using a 565LP or
585LP dichroic mirror in a MultiCam optical splitter (Cairn
Research), and the two channels were cleaned up by pass-
ing the light through 525/50 and 647LP filters (Chroma)
placed before the camera. Final signal was focused back
onto synchronized dual iXon3 electron mutliplying charged
coupled device cameras (EM-CCD, DU-897; Andor Tech-
nology). In this set up, the raw image has pixels of 160 ×
160 nm, and the depth of focus has a full width half maximum
of approximately 700 nm. Total image size was limited to
128×128 pixels (20.48 × 20.48 μm) in order to keep camera
readout time from becoming rate limiting. Imaging was per-
formed with 5 ms exposure times for 60–90 s at a time, and
the timing of each frame was monitored using an oscilloscope
directly coupled into the system (mean frame rate ≈95 Hz).

6. Image analysis for experimental data

a. Image preparation and preprocessing

The ER is relatively stable at the level of diffraction-limited
imaging over the timescale of a second [62]. Thus, we per-
formed 10 frame (110 ms) median filter on the channel for
the ER structure to increase the signal to noise and mini-
mize the necessary 488 radiation. Filtering was performed for
every frame, but for segmentation and downstream analysis,
the structure was analyzed approximately every second (100
frames).

b. Segmentation

Segmentation and analysis of the tubular ER structure was
performed using a two-step process. First, the intensity in the
filtered image was made uniform through time with a simple
ratio bleach correction. The location of the ER within the
image was identified using an interactive pixel classification
workflow in Ilastik [78]. Once the predictions for the ER label
were judged to be of sufficiently good quality, the image was
made binary using a simple threshold on the label probability
exported from ilastik.

c. Extracting network structure

For each binary segmented image of the ER structure,
we skeletonize using the bwmorph subroutine in MATLAB,
which also identifies junction pixels. Neighboring junction
pixels are grouped into a single node located at their cen-
ter of mass. We then use the bwtraceboundary subroutine
to trace out the skeletonized edges starting from each node,
until a neighboring node is reached. This is repeated until
the full skeleton has been categorized into nodes and edges
connecting specific node pairs. The path of the edge between
each pair of connected node is smoothed using cubic splines.
Network construction and manipulations are carried out using
custom-made MATLAB code [79].

d. Particle trajectories

Single molecule localization and tracking was performed
using the TrackMate plugin in Fiji [80,81]. Single molecules
visible in each frame are quality filtered such that the mean
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localization precision of retained molecules is in the range
of 25 nm, as estimated using the Cramér-Rao lower bound
of an MLE fit [82]. Linking parameters were experimentally
selected for each data set to minimize visible linkage artifacts
as determined by eye. Datasets were then projected onto the
simultaneously collected structure of the ER and manually
curated to remove trajectory linkages that were close in 2D
but far from one another in the underlying organelle.

In Fig. S6 in the supplementary material [52], we show
(using simulated trajectories) that localization errors below
∼50 nm are not expected to significantly alter our estimates
of the diffusion coefficient.

For each network structure, obtained at ≈1.08 s (100
frame) intervals, we identify particle trajectory segments that
fall within ±100 frames of the time point corresponding to
that structure. Those trajectories are then projected onto the
network structure by finding the nearest point along the edge
paths to each particle position. Because the time intervals
surrounding each network structure overlap with each other,
each trajectory segment enters the analysis twice by projection
onto the structure before and after its time point.

Whenever the original particle position is more than 2 pix-
els (∼0.3 μm) away from the nearest network edge, the
projected point is removed and the trajectory is broken into

separate segments. The trajectories are also broken whenever
a particle appears to step onto a nonadjacent edge (bypassing
more than one node) within a single time step. Furthermore,
trajectories are truncated when a particle disappears in a given
frame, including instances where the particle steps outside of
the field of view.

The projection step allows us to re-express a particle tra-
jectory in terms of the edge index and position along the edge
contour at each time step. Projected trajectories of length at
least 10 time steps were kept for analysis and unravelled using
the same algorithm as for simulated data. An average of 380
projected trajectories per cell, with average length 48 time
steps (0.51 s) were analyzed.

We note that the structure of ER tubule junctions is not
well established, and it is possible that the tubule inter-
sections are substantially larger than the pointlike junctions
considered in our model, or that particles could be pref-
erentially trapped at junctions. However, by examining the
distribution of projected particle trajectories (supplementary
material, Fig. S5 [52]), we see no evidence of junction
trapping or unusually large junction regions for the HaloTag-
Sec61b-TA proteins tracked in our study, both of which
would result in preferential localization near the network
nodes.
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