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Superglass formation in an atomic BEC with competing long-range interactions
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The complex dynamical phases of quantum systems are dictated by atomic interactions that usually evoke an
emergent periodic order. Here, we study a quantum many-body system with two competing and substantially
different long-range interaction potentials where the dynamical instability towards density order can give way
to a disordered amorphous solid, which exhibits local density modulations but no long-range periodic order.
We consider a two-dimensional Bose-Einstein condensate in the Rydberg-dressing regime coupled to an optical
standing wave resonator. The dynamic pattern formation in this system is governed by the competition between
the two involved interaction potentials: repulsive soft-core interactions arising due to Rydberg dressing and
infinite-range sign changing interactions induced by the cavity photons. The amorphous phase is found when
the two interaction potentials introduce incommensurate length scales. The dynamic formation of this peculiar
phase can be attributed to frustration induced by the two competing interaction energies and length scales.
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I. INTRODUCTION

The controllability of individual atomic systems increased
tremendously over the past decades [1-6]. This enables
efficient trapping and cooling of atomic gases or indi-
vidual atoms, controlling individual photons, and tailoring
interactions between atoms and photons. One particularly
challenging and active modern research direction in this
realm is systems with tailored long-range interactions [7].
Prominent examples are, among others, dipolar Bose-Einstein
condensates (BECs) [8—11], ultracold atomic gases in cavi-
ties [12-14], and individually trapped atoms with Rydberg
interactions [15-17]. These systems allow for the study of
artificial quantum matter in a well-controlled and tunable
environment.

Over the last decade the focus of research was on in-
vestigating long-range interacting systems with crystalline
properties, i.e.,periodic systems with long-range order. In this
realm first experimental observations of quantum phase tran-
sitions like the superfluid to Mott insulator transition [18],
the formation of supersolid phases of matter [19-26], or non-
trivial spin phases [15,27,28] were realized and understood
on a fundamental level. In recent years, the exploration of
systems generating more complex patterns and phases be-
came a leading research direction in many-body quantum
physics. Particular focus hereby lies on quantum glasses
[29-32], many-body localization [33,34], spin liquids [17,35]
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and quasicrystals [36-38]. Realizing such complex systems
establishes a path towards a deeper understanding of inter-
acting quantum many-body systems and provides insights on
how different long-range interactions play together. Many of
the effects mentioned above are related to frustration, i.e.,the
inability to satisfy all constraints imposed by the competing
long-range interactions. In this paper we introduce and study a
particularly clean and experimentally well-controlled system
which can give rise to frustration: a Rydberg-dressed BEC of
neutral atoms trapped in an optical standing wave resonator
[see Fig. 1(a)]. We elucidate some of the archetypal effects of
the contest among the cavity-induced infinite-range interac-
tions and long-range van der Waals (VdW) interactions among
Rydberg atoms and ultimately leading to glassy behavior. Pre-
vious work that combined Rydberg atoms and cavities focused
on either generating large optical nonlinearities for single pho-
tons [39—41] or spin models on a lattice where the motional
degrees of freedom are frozen [29,41,42]. Here, we focus on
the spatial dynamics and resulting density self-ordering of
the gas under competing long- and infinite-range interactions.
Both interaction potentials considered in this paper exhibit
a self-ordering phase transition due to roton mode softening
[43,44]. These soft roton modes are a direct result of the
respective long-range interactions. However, the two types
of interactions have substantially different properties. The
Rydberg dressing results in spherically symmetric long-range
soft-core interactions [see Fig. 1(b)] and the cavity photons in-
duce anisotropic infinite-range periodic interactions between
atoms [see Fig. 1(c)]. This distinguishes our paper from re-
lated studies focusing on a spherically symmetric interaction
potential imposing two different length scales [45-47]. In
fact, while these works use a synthetic theoretically motivated
long-range interaction potential, our paper is based on an
experimentally realistic configuration leading to the nontrivial
physics presented below.
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FIG. 1. (a) Considered setup. A Rydberg-dressed BEC is trapped
and confined to two dimensions in an optical resonator with lasers
impinging from the side. The BEC atoms form an effective V-
level structure. The transition |g) <> |e) is coupled to the cavity at
a strength G,. The transition |g) <> |r) is driven by an additional
laser in the Rydberg dressing regime, implying that the high-lying
Rydberg state |r) is only very weakly populated. (b) The Rydberg
dressing imposes a long-range soft-core interaction potential be-
tween the atoms. (c) In addition, the cavity photons induce nontrivial
infinite range interactions between atoms. The top curves in panels
(b) and (c) show cuts along the x axis at y = 0.01, for the two
interaction potentials.

As we will show in the following, the particular properties
of the light-matter coupled system, i.e.,the competition be-
tween the two nontrivial interactions at different length scales
and the nonlinear interaction between the cavity mode and the
BEC, lead to the dynamic formation of intriguing phases of
quantum matter. In particular, we show how this system can
be used to realize a stable glass phase, i.e.,an amorphous solid
with no long-range density order. The formation of this in-
triguing phase of quantum matter is attributed to geometrical
frustration induced by the two competing interaction length
scales and energies. In general the BEC also exhibits super-
fluidity and the resultant glassy phase is often also referred to
as a superglass [30,48-51]. The formation of this disordered
glassy state in our system is not triggered by an externally im-
posed disorder or an external lattice geometry which results in
frustration. It is the interplay and particular nature of the two
parts of the considered model (cavity photons in combination
with van der Waals interactions) which gives rise to the phases
presented below.

II. MODEL

We consider a pancake-shaped BEC of N atoms confined in
two dimensions and trapped inside an optical standing-wave
resonator [see Fig. 1(a)]. The BEC atoms’ ground state |g)
is coupled via the cavity to a low-lying excited state |e) and,

simultaneously, to a highly excited Rydberg s state |r), realiz-
ing the V configuration illustrated in Fig. 1(a). The BEC atoms
are pumped with a laser of frequency w, impinging from the
side, transverse to the cavity axis, which drives the transition
|g) <> |e) at a Rabi frequency €2,,. This transition couples to
a single cavity mode with a coupling strength G,. We con-
sider the dispersive regime implying that the detuning A, =
W, — Wy is large compared to the Rabi frequency 2, (wg. is
the transition frequency between |g) and |e)). The transition
|g) <> |r) is driven by an additional laser (with frequency wg)
at a Rabi frequency Q2 in the Rydberg dressing regime imply-
ing a large detuning A > Qp with Ag i= wg — wg (Wgr is
the transition frequency between |g) and |r)). This allows the
adiabatic elimination of the Rydberg state |r) resulting in an
effective long-range two-body interaction potential [52-56],
which is valid for sufficiently small atomic densities,

Cs

Urya(r, 1) = —
Rya(F, 1) R6 + |r — 1|6

ey

and arises due to the strong VAW interactions o Cg/|r|® (r €
R?) between Rydberg atoms. The parameters in Eq. (1) are
defined as Gy == (ZQTRR)“C@ and R, = (—th—gk)l/ﬁ. An exem-
plary plot of the functional dependence of this long-range
interaction potential is shown in Fig. 1(b). It was shown in
previous work that a mean-field treatment suffices to cap-
ture the main features of cavity self-ordering [12,13,57] and
Rydberg crystallization induced by the long-range interaction
potential given in Eq. (1) [43,54,58]. Therefore, we focus on
a mean-field treatment. Here, we present the most important
equations used throughout this paper. A more detailed discus-
sion of the model can be found in Appendix A. The dynamics
is governed by two coupled equations. The equation for the
BEC order parameter ¥ (r, t) is given as

2V2

oW (r, 1) = [ - + AU | (1)|? cos® (kex)

+ 2hnRela(t)] cos(k.x) cos(k.y)

2m

+ f At Ugga(r., r’>|w<r’,r>|2]w<r,r>, (2)
\%4

and the dynamics of the mean-field cavity mode amplitude
a(t) is governed by

i (t) = {—Ac + UpBly] —ixc}a(r) + n0[y].  (2b)

In Eq. (2b) we introduced the cavity bunching parameter
B[y] == [, dr|y(r, 1)[* cos*(k.x) and the cavity mode order
parameter 0[] == fv dr|y (r, t)|? cos(k.x) cos(k.y). The lat-
ter is the crucial quantity for understanding the self-ordering
phase transition since the cavity mode can only take nonzero
values if 8[y] # 0, whereas the former only accounts for a
cavity resonance frequency shift due to the BEC density. The
potential depth of the cavity potential generated by intercavity
photon scattering is defined as Uy := g}; /A p, and the effective
pump strength is 1 := Q,G,/A, in Eq. (2a). In addition, k. =
27 /A, denotes the cavity wave number where 1. is the cavity
resonance wavelength. We also introduced the detuning of the
pump laser frequency w,, with respect to the cavity resonance
frequency w. as A. = w, — w. and the cavity decay rate «.
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A particularly simple and insightful model can be obtained
in the low-energy regime by adiabatically eliminating the
cavity mode (for details, see Appendix A), which results in
a new effective equation for the BEC dynamics:

h2
maqu)=[—5;V?+/dﬁu@Anﬁ)
\%4

+ Urya(r, E)] |y (', t)|2]1//(r, n. 3

Note that eliminating the cavity mode dynamics is only justi-
fied if the mode evolves on a much faster time scale than the
center of mass motion of the atoms. In Eq. (3) we introduced
the cavity two-body interaction potential induced by the cavity
photons as

Ueav (v, ¥') = RZ cos(k.x) cos(k.x") cos(k.y) cos(k.y'), (4)

where Z := n*(A. — NUy/2)/[(A. — NUy/2)* + k2] is the
effective interaction strength. An exemplary plot of this
infinite-range interaction potential is shown in Fig. 1(d). It
is the competition between the two significantly different
types of long-range interaction potentials Uryq and U,y shown
in Figs. 1(b) and 1(c) which contributes to the nontrivial
emergent phases presented below. Note that the simplified
model given in Eq. (3) provides a good intuitive picture about
the fundamental interactions induced by the two model con-
stituents. However, this approximate model does not cover all
features arising from the nonlinear coupled dynamics of the
cavity mode and the BEC [see Eq. (2)], as discussed below.

III. ROTON INSTABILITIES

Roton-induced instabilities were first introduced and stud-
ied for superfluid helium-4 [59] but they are a common
feature of systems with long-range interactions. A dynami-
cal instability of a certain nonzero k mode in the collective
excitation spectrum usually results in a phase transition from
homogeneous to periodic order. The Bogoliubov excitation
spectrum for plane-wave excitations on top of a homogeneous
condensate for a system with two-body long-range interaction
potentials reads [60]

Jﬁw K2

ek)=,/— - { —— +2[Urya(k) + Ucav(k)]}a ®)
m | 2m

where Ugyg(K) and Ucy(K) denote the Fourier transforms
(FTs) of the respective interaction potentials Ugyq(r, r’) and
Ucay (r, 1'). The FT of the Rydberg interaction potential can-
not be expressed in a comprehensive analytical formula. The
FT of the cavity interaction potential (4), however, is given
as Ucav(k) =hZ Zi,je{O,l} Skx,(fl)"kc(sky,(fl)/'kc’ where (Squkz de-
notes the Kronecker delta. In Fig. 2 an exemplary excitation
spectrum is shown. The spherically symmetric Rydberg inter-
action potential induces roton softening along a circle with a
radius kgryq [indicated by the dashed orange line in Figs. 2(a)
and 2(b)]. The cavity interaction potential, however, results in
four §-shaped peaks/minima which are indicated by the white
circles in Figs. 2(a) and 2(b), and are more prominently visible
in panels Figs. 2(c) and 2(d). Hence, while the two interaction
potentials considered in this paper both result in dynamical
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FIG. 2. Real and imaginary part of the excitation spectrum given
in Eq. (5) for Cs = 2.2E,. and n = 1.17c, i.e.,both interaction
strengths above the threshold condition. The dashed orange circle
in panels (a) and (b) marks the roton minimum induced by the spher-
ically symmetric Rydberg interaction. The white circles indicate the
four §-like rotons generated by the cavity interaction potential. Panels
(c) and (d) show a cut along the diagonals for positive k, and k, values
[red and blue lines in panels (a) and (b)]. The other parameters are
R. =0.92x., A, = —10.00yec, &K = 5.00rec, and Uy = —1.0wrec.

instabilities induced by roton mode softening, the properties
of the related excitation spectra differ significantly. The cavity
roton positions are always fixed by the cavity wavelength and
are located at a value kgyy == «/Ekc while the value of kryq
can be tuned via the parameter R, in Eq. (1). Since each
unstable k£ mode can be associated with a characteristic length
scale via kryq = 27 /lryq and 27 /l.,y, the role of different
emergent length scales on the final steady or ground state
can be analyzed by changing R, correspondingly. This can
either be achieved by dressing to a different Rydberg state (Cs
scales like n'!, where 7 is the principal quantum number) or
by changing the detuning Ag.

The homogeneous solution gets unstable toward a
periodically ordered pattern if the excitation spectrum
acquires an imaginary part at a nonzero k value,
i.e.,min{Re[e(k)]| >0} = 0. This results in two critical
values C’gm (critical Rydberg interaction strength) and 7
(critical effective cavity pump strength). Since the FT of the
cavity interaction potential is solely given as the sum of four
Kronecker-delta functions it is possible to find an analytical
expression for the threshold for the pure cavity self-ordering
case. Setting Cy to zero and applying the threshold condition
for k = k.,y in Eq. (5) results in

(A, — NU/2)? + k2
Nerit = \/ o/ 2\/ Wrec, (6)

NUy —2A,

which is the known threshold for self-organization of a BEC
in a cavity in two dimensions [13].

These insights yield a first intuitive phase diagram shown
in Fig. 3. We expect the phase diagram to exhibit four dif-
ferent regions. In each region either none, one, or two of
the respective rotons are unstable (indicated by red circles
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FIG. 3. Sketch of the expected phase diagram based on the ex-
citation spectrum. We distinguish four regions: I, no roton softened,
i.e.,the homogeneous solution is stable; II, the cavity roton touches
zero (indicated by red circle), i.e.,acquires an imaginary part; III, the
Rydberg roton is unstable at k = kgyq; IV, both rotons are unstable.
The distance Ak between the two k values at which the rotons soften
can be tuned by tuning R, in Eq. (1).

in Fig. 3). In addition to the two interaction strengths tuned
in the phase diagram, the system features another relevant
free parameter—the Rydberg interaction range R.. In the fol-
lowing we will restrict ourselves to three cases: (i) krya =
keav Which is obtained by choosing R. = 0.51A, (ii) krya =
keav/~/2 = ke with R, = 0.72A,, and (iii) kryd = kcay/2 with
R, = 1.2X.. A sketch of the unstable roton length scales in
k space for all three cases is shown in Fig. 4. We restrict
ourselves to cases where kryq < kcay because only in this case
the additional Rydberg length scale competes with the length
scale set by the cavity potential (see also Appendix B). Note
that the first two cases (i) and (ii) are special cases because
the two wave numbers are either the same [case (i)] or kgyq is
commensurate with k., i.e.,the fundamental length scale along
the cavity axis [case (ii)]. Case (iii), however, corresponds to
one example of the most general incommensurate scenario.
We chose a factor 2 for the wave-number ratio in case (iii) but

case (ii) case (iii)

FIG. 4. The three cases considered in this paper. The red dots
mark the four K modes which are unstable due to the cavity inter-
action potential (see Fig. 2). The blue circle indicates all k values
which are unstable due to the Rydberg dressing potential: case (i),
Krya = Keay; case (i), krya = keay/~/2 = ke; case (iii), krya = Keav/2-
The cases (i) and (ii) represent special cases, whereas case (iii)
corresponds to one example for the most general scenario.

the same qualitative results as presented below were obtained
for a variety of different wave-number ratios.

IV. SELF-CONSISTENT GROUND STATE

One major element of the studied system is the interplay
between the dynamic cavity field and the BEC dynamics.
While the simplified model given in Eq. (3) provides a good
intuitive picture about the features and roles of the two differ-
ent interactions, it does not fully capture the competing time
scales in the system. Hence, we now analyze the full system
given in Eq. (2). We calculate the self-consistent ground state
for the set of Egs. (2) via a variational approach. To this end,
we employ a self-consistent iterative algorithm.

(1) Choose a random initial steady-state value oss.

(2) Plug this value into the Gross-Pitaevskii equa-
tion (GPE) (2a) and perform an imaginary time evolution
(t — —it) to find the lowest-energy state.

(3) Calculate a new steady state of Eq. (2b) by setting
d;a(t) = 0 and solving for «.

We iterate until we find a state where |asg| lies within
a convergence radius of 107°. All numerical simulations
for the remainder of this paper are performed for x,y €
[—10A., 10A.] with periodic boundary conditions. Note that
this self-consistent algorithm is not necessarily convex. In
general, the energy functional

2v72
SW]:/dr[— hzv + WU (1)]? cos® (kex)
\4

m

+ 2hnRela(t)] cos(k.x) cos(k.y)

+ / dv' Ugya(r, r/)W(r/)F}W(r)F, (7
1%

which results in the GPE (2a), can have multiple local minima
for a given value of o. Whether one finds the global minimum
or not depends on the initial condition for the imaginary time
evolution. Therefore, we perform this algorithm for various
different initial conditions and compare the obtained values
of || and the corresponding ground-state energies by eval-
uating the energy functional in Eq. (7). We focus on seven
particular initial conditions throughout this paper. They are
generated by superimposing localized Gaussian wave func-
tions ¢, (r) = Cexp[—|r|>/(20?)] with a certain width o to
generate a BEC wave function ¥ (r) = ), ¢, (r — R;) with a
certain spatial density distribution determined by the positions
R;. The seven initial conditions are a homogeneous density
(hom), a checkerboard lattice (CB), a period doubled CB
lattice (PD CB), a hexagonally closed packed lattice (hcp), a
square lattice (square), and staggered chains rotated at 7 /4
(RC 1) and 37 /4 (RC 2). Details on the individual initial
conditions can be found in Appendix B and the density distri-
butions of all nontrivial initial conditions are shown in Fig. 10.
Only if all initial conditions result in the same energy and
mode amplitude the energy minimization problem is convex.

A. Case (i): Equal length scales

We first consider the special case where kryq = keay
(see Fig. 4), which implies equal length scales Ilryq = lcay
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FIG. 5. (a) Self-consistent ground-state phase diagram for case
(1): krya = keay (R = 0.511.). The white dashed and dash-dotted
lines indicate the the critical values for independent Rydberg crys-
tallization (horizontal white dash-dotted) or cavity self-organization
(vertical white dashed). The blue curve is the critical value at which
the excitation spectrum in Eq. (5) touches zero for the given param-
eters. The red curve with diamond markers indicates the transition
line from homogeneous to periodic order. The yellow curve with x
markers is the transition line between the different phases, i.e.,the
line at which |«| exhibits a kink. (b) || values and ground-state
energies (shifted by the energy of the homogeneous solution Ejy)
for values along the black dash-dot-dotted line in panel (a) for all
seven initial conditions. (c) Exemplary density distribution for the
triangular (TRI) lattice phase with 1 = 0.2 and Cg = 0.6E..
(d) Exemplary density distribution for the checkerboard (CB) lattice
phase with n = 1.1n.4 and Cs = 0.6E,.. All other parameters as in
Fig. 2.

(R, = 0.51A,). In this case, the regions II and IV in the phe-
nomenological phase diagram in Fig. 3 are expected to merge.
This is verified by the numerical phase diagram shown in
Fig. 5(a). It exhibits three different phases: a homogeneous
phase (HOM), a triangular phase (TRI) [see Fig. 5(c)], and a
checkerboard lattice phase (CB) [see Fig. 5(d)]. We use two
different quantities to obtain the phase boundaries from the
numerically obtained data. First, we determine the line along
which the cavity mode amplitude || exhibits a kink, i.e.,an
abrupt change in the gradient. This is a clear indication of
a phase transition [yellow line with x markers in Fig. 5(a)].
Second, we obtain the transition line from homogeneous to
periodic order by calculating the ground-state energy obtained
from Eq. (7) and shifting it with respect to the energy of
the homogeneous state Epop, which is obtained by evaluating
Eq. (7) for « = 0.0 and a homogeneous BEC density. Energies
are given in units of the recoil energy E.. := Fzzkf_ /(2m) =
hiwye. throughout this paper. This quantity is zero if no pe-
riodic order emerges and nonzero elsewhere. This results in
the red line with diamond markers in Fig. 5. The TRI state
only forms for weak cavity pump strengths and for strong
Rydberg interaction strengths. For increasing cavity pump,
the system organizes in a checkerboard pattern, which is
the configuration realized in cavity self-organization without
Rydberg dressing [12,13]. Note, however, that the softening
of the Rydberg roton affects the threshold for cavity self-

ordering as it can already be seen by the blue line in Fig. 5(a),
which is obtained via the excitation spectrum in Eq. (5). This
implies that the effect of the Rydberg roton can be observed
already far below the critical Rydberg interaction strength
C¢mit. This is a remarkable result as the observation of density
modulation due to Rydberg dressing has proven elusive in
experiments [56] due to experimental complications such as
unfavorable scaling with the density and long time scales
required for experiments. Our results suggest a way to observe
effects of Rydberg dressing indirectly for much smaller Ry-
dberg fractions (i.e.,smaller Cy). It should be remarked that
there is a parameter regime (1/nci € [0.0, 0.5]) where the
phase boundaries for the HOM — TRI transition obtained via
Eq. (5) only coincide with the numerically obtained ground
state for /1t = 0.0. The deviations from the blue line for
larger values of 7 can be attributed to the additional nonlinear-
ity of the set of equations in Eq. (2), which is not covered by
the simplified model used to determine Eq. (5). In Fig. 5(b) we
show the obtained ground-state energy obtained from Eq. (7)
and the cavity mode amplitude for all seven employed initial
conditions. Again we shifted all energies with respect to the
homogeneous state energy Enom. We find that all curves for
all initial conditions lie on top of each other, implying that
this particular iterative energy minimization for case (i) is
convex in ¥ and «. Note that in general the self-ordering
phase transition HOM — CB is known to break a discrete Z,
symmetry [61]. This symmetry breaking can also be observed
in the study system; however, we restrict our discussion to one
symmetry broken phase throughout this paper.

B. Cases (ii) and (iii): Different length scales

The main property of the considered system is that two
interactions with different functional dependence and differ-
ent intrinsic length scale are combined. Here, we show that
this feature results in highly nontrivial physics which goes
beyond what is achievable with only a single model con-
stituent. Figure 6 exhibits the two obtained ground-state phase
diagrams together with the additional nontrivial density distri-
butions realized in these regimes. Since now two fundamental
length scales become unstable the phase diagram resembles
the intuitive picture from Fig. 3 and contains four different
phase regions. This results in additional phases—a square
lattice (SQ) [for case(ii)] and a rotated chain (RC) phase [for
case (iii)], respectively. The critical parameters for the phase
transitions between the CB phase and these newly formed
phases are indicated by the green line with circle markers in
Figs. 6(a) and 6(b). At this transition the cavity mode exhibits
a kink as it can be seen from Figs. 6(b) and 6(d). The other
phase boundaries in panels (a) and (b) of Fig. 6 are obtained
via the same method as it was outlined in the previous section.
We find that now the critical values obtained via Eq. (5) in
Sec. III, however, do not coincide with the numerical values
at all. This again shows that the simplified model discussed
in Sec. III for the adiabatically eliminated cavity dynamics
[see Eq. (3)] provides a good first intuition about the con-
tributing interactions and the expected phase diagram, but
fails for different competing length scales due to a breakdown
of the adiabatic solution. This is due to the influence of the
additional Rydberg length scale on the mode dynamics which
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FIG. 6. (a) Numerical phase diagram for case (ii): kryq = kcav/ V2 (R, = 0.72).). (b) Ground-state energy and cavity mode amplitude ||
along the vertical black dash-dot-dotted line in panel (a) for all seven initial conditions. (c) Numerical phase diagram for case (iii): kgya = kcay/2
(R, = 1.2A.). (d) Same as panel (b) but for case (iii). The different initial conditions no longer result in the same ground-state energies and
mode amplitudes. The iterative energy minimization is not convex. The yellow and red lines indicating the phase boundaries in panels (a) and
(c) are obtained as in Fig. 5(a). The green line indicates another phase transition between two ordered phases as it can also be seen from
panels (b) and (d). (e) Exemplary ground-state density distribution for the square (SQ) phase for case (ii). (f) Exemplary ground-state density
distribution for the rotated chain phase for case (iii). Note that the same density distribution rotated by 7 /2 is a ground state as well, as the
degeneracy between RC 1 and RC 2 in panel (d) indicates. All other parameters are the same as in Fig. 5(a).

is taken into account in the full numerics resulting in the phase
diagrams shown in Fig. 6. The instability in this system is
actually induced by the combined collective instability of the
BEC density and the cavity mode amplitude. The fluctuations
of the BEC couple to the fluctuations of the cavity mode and
vice versa. This results in actual thresholds for the transitions
TRI < SQ and CB < SQ in Fig. 6(a) and TRI <> RC and
CB < RCin Fig. 6(c) that are below the values anticipated by
the simplified excitation spectrum in Eq. (5). This again could
facilitate the experimental observation of effects induced due
to Rydberg induced roton mode softening at smaller Rydberg
interaction strengths Cs.

For case (ii) we find that, in addition to the TRI and CB
phases, a SQ lattice phase emerges [see Fig. 6(e)]. This phase
is a direct result of the nontrivial interplay between the two
different interactions at these particular length scales. All
seven initial conditions again result in the same ground-state
energies and mode amplitudes [see Fig. 6(b)]. This feature
changes in the incommensurate case (iii)—krya = kcay/2. We
identify an additional RC phase [see Figs. 6(c) and 6(f)],
where the iterative energy minimization in the self-consistent
algorithm is no longer convex. There are two possible real-
izations of the RC phase. In Fig. 6(f), we show one possible
realization. However, the given density pattern rotated by /2
is another ground state with the same energy. This can be
seen by the two degenerate lowest-energy curves in Fig. 6(d)
which correspond to the two possible realizations of the RC
phase. The two degenerate states maximize the population
of the cavity mode [see Fig. 6(d)] while fulfilling the length
scale restrictions imposed by the Rydberg interactions (see
Appendix B for details). Such degeneracy in combination

with nonconvex features is a prime indicator for geometrical
frustration ultimately leading to glassiness as we show in the
next section. Note that we restricted our analysis on three
cases for a concise presentation of the results. It should be
mentioned that cases (i) and (ii) are indeed two special cases,
which lead to a convex problem. Any other choice [case (iii)
is one possibility] of length scale ratios results in a nonconvex
energy landscape. The nonconvex nature of the energy land-
scape in case (iii) is the crucial feature which results in the
dynamic formation of the superglass phase presented below.

V. DYNAMICS

It is a priori unclear whether the self-consistent ground
state can be reached by dynamically evolving Eq. (2) in real
time. While this is usually the case for systems with a unique
lowest-energy state, ground-state degeneracy in combination
with higher-lying energy states may block the dynamical re-
alization of the RC phase in case (iii). In fact, we will show
below that the steady state for case (iii) is an amorphous solid
with no long-range density order.

In Fig. 7, the time evolution of the cavity mode amplitude
and the total energy together with the steady-state density
distribution at # = 500/wye. is shown for case (ii). The time
evolution is obtained by solving the full model given in Eq. (2)
with initial conditions defined as a homogeneous, i.e.,spatially
constant, BEC order parameter v (r,¢) with a tiny random
seed on top, and an empty cavity mode «(t = 0) = 0.0 for
the cavity mode. We find that the square lattice obtained in
the previous section can be reached dynamically and that it
renders a stable steady state. In contrast, the steady state
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FIG. 7. (a) Time evolution of the cavity mode amplitude for case
(i1). The inset shows the corresponding time evolution of the total
energy obtained via Eq. (7). (b) Steady state at t = 500/ @e.. Param-
eters: n = 1.1ng;, Cs = 1.0E,c, R, = 0.72,. All other parameters
as in Fig. 2.

for case (iii) is stable but not the rotated chain state as the
self-consistent phase diagram suggests. The steady state is an
inhomogeneous density pattern with local but no long-range
density order. In Fig. 8(a), we show three outcomes for three
independent runs of the time evolution for the same param-
eters. Every run results in a different density distribution.
This feature, in addition to the BEC’s superfluidity, qualifies
this phase as a so-called superglass [48—50]. Note that the
employed mean-field model assumes the gas to be superfluid
for all parameter choices. In general, superfluidity can be lost
for large cavity pump strength and/or Rydberg interaction.
For the parameters used here even large values of Cs and 7
still allow some tunneling between different density peaks
and, therefore, phase coherence between individual density
peaks is expected to be maintained. The glassy behavior can
be directly understood from the nonconvex properties and
the degeneracy of the energies found in the previous section
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FIG. 8. (a) Three different steady states for three runs for case
(iii). Each run generates a different density pattern with no long-
range order. This is a typical indication of an amorphous solid (or
a glass phase). All realized patterns, however, scatter exactly the
same amount of light into the cavity as it can be seen from panel
(b). Parameters: 1 = 119y, Cs = 1.5Ewc, R. = 1.2A.. All other
parameters as in Fig. 2.

[see Fig. 6(f)]. Each run results in a different mixture of
the degenerate ground states giving rise to the glassy steady
state. Remarkably, however, the resulting different density
distributions still have exactly the same steady-state cavity
mode amplitude. Hence, the different glassy states are not
distinguishable via the cavity fields. Note that the formation of
this superglass state is a direct consequence of the competition
between the two particularly chosen interaction potentials and
cannot be straightforwardly realized by combining any two
long-range interaction potentials.

VI. CONCLUSIONS AND OUTLOOK

We showed that combining the spherically symmetric long-
range interactions induced in a Rydberg-dressed BEC with
infinite-range cavity-induced interactions establishes a ver-
satile platform for studying the interplay between different
interaction types and landscapes on the phases of quantum
matter. Most strikingly, we point out a way towards realizing
an amorphous solid in a robust and well-controlled system.
The disorder in this phase is not imprinted from outside via
some external potential or lattice but it is solely driven by
quantum fluctuations and the interplay of the two interaction
potentials. This dynamical, fluctuation induced formation of
a superglass phase is closely related to the theoretically pre-
dicted phase transition from a liquid to a superglass after
a temperature quench in helium-4 [48]. Our findings hint
towards a realizable system to dynamically study phase transi-
tions from a homogeneous or solid (CB phase) to a superglass
by tuning the Rydberg interaction strength. The studied sys-
tem is highly nonlinear and the formation of the intriguing
phases presented in this paper involves the interplay between
the BEC wave function ¢ and the cavity mode «. This makes
easier the observation of Rydberg induced instabilities exper-
imentally because the nonlinear coupling of atomic density
fluctuations to the cavity mode facilitates the softening of the
Rydberg roton. The formation of a density ordered pattern,
i.e.,the dynamic minimization of the energy functional in
Eq. (7), ultimately resembles an optimization problem with
some given boundary conditions prescribed by the two inter-
action potentials. Hence, the fundamental physics presented
here could open a way towards solving particular optimization
problems by prescribing interaction potentials tailored to the
problem at hand.

Our paper lays the groundwork for a variety of further stud-
ies combining long-range interacting systems theoretically as
well as experimentally. Note that, in general, glasses have
peculiar dynamic properties (diverging viscosity, etc.) and our
findings open up a way to study the dynamics of a superglass
phase in more detail. The research avenue outlined here is
fostered by the new experimental and theoretical opportunities
opening up in recently established experimental setups all
over the world. Our proposed setup should be realizable in
state-of-the-art cavity QED setups. In particular, the realiza-
tion of the glassy phase where the parameters are favorable
for experiments could readily be realized. However, the setup
presented here is not the only system which is expected to ex-
hibit such intriguing properties. Other promising avenues are
combining other systems exhibiting light-induced instabilities
in free space [32,62—67] with Rydberg dressing or long-range
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dipole interactions. More control over a wide range of real-
izable density patterns is expected if one assumes even more
complex cavity-induced interaction potentials or Rydberg in-
teractions. This can be achieved by changing to more complex
cavity geometries such as multimode resonators [68—70] or
dressing to spherically asymmetric Rydberg p states [71,72].
From a quantum optical viewpoint the dynamic transverse
coupling of Rydberg atoms to a cavity could result in a highly
nonlinear mechanism to enhance the achievable nonlinearities
with state-of-the-art setups. The platform presented in this pa-
per could also be extended to include spin degrees of freedom
and serve as a viable tool to gain deeper understanding of spin
glasses or even spin liquids [17,73].

While this paper focused on highlighting the remarkable
features of this system and their intriguing consequences,
several directions remain open for further research. One open
and exciting question is the connection of the formation of
the glassy phase to Anderson localization or even many-
body localization. Also, the role of beyond mean-field effects
and temperature needs further investigation. In this regard,
also the role and potential breakdown of superfluidity in
certain parameter regimes should be elucidated. To answer
these questions, alternative theoretical techniques, which go
beyond the scope of the present paper, have to be devel-
oped and applied [74-77]. In any case, the results presented
in this paper open up exciting avenues in the growing re-
search field of hybrid quantum systems with long-range
interactions.
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APPENDIX A: DETAILED MODEL DERIVATION

In the following we provide a concise derivation of the
model presented in Sec. II. For a more detailed discussion
of the underlying physics we refer to Refs. [54,79]. The full
many-body Hamiltonian for the considered system can be
written as the sum of five Hamiltonians H = H, + H,_. +
H, + HX™ + HY with

int int

V2

H, = / dr\IfT(r)|:— 5 +hUpcosz(kcy)}lf(r), (Ala)
m

Hyo = f drW’ (r)[ Uy cos® (kex)a'a

+ hinp cos(kex) cos(key)(a + a') | (r), (Alb)

H.= —hA.d'a, (Alc)
iyt =2 / dr ¥ (e) T ()W) U(r), (Ald)
C
Ryd __ INTH F oo 6 ,
Hy~ = ff drder’ V' (r)¥'(r )—RE - r/|6\11(r Y(r).
(Ale)

Here, W (W) are annihilation (creation) operators of bosonic
ground-state atoms, i.e.,[¥(r), ¥T(r')] = 8(r — '), and a (a')
are annihilation (creation) operators of the photonic cavity
mode fulfilling [a,a’] = 1. U, == Q;/A, is the potential
depth of the lattice generated by the two interfering pump
beams and Uj = Qﬁ /A, is the depth of the optical poten-
tial generated by photon scattering from the atomic density
distribution inside the cavity. The effective cavity pump
strength is given as n := Q,G,/A, and k. = 27 /A. denotes
the wave number of the cavity mode. The Hamiltonian in
Eq. (Ald) takes into account local two-body interactions
between atoms and is omitted throughout this paper. This
is a reasonable assumption since this interaction strength
can be tuned to be small via, e.g.,a Feshbach resonance
such that cavity and Rydberg induced long-range interac-
tions dominate the dynamics [54,80]. The dynamics of the
hybrid atom-cavity system is governed by the Heisenberg-
Langevin equations i%id, \W(r, t) = [W(r, t), H] and i/id,a(t) =
[a(?), H] — ifika(t) where the decay of the cavity mode at
a rate « is included. Calculating these equations of motion
and performing a mean-field approximation via W(r,t) —
(W(r,t)) =¥ (r,t) and a(t) — {(a(t)) = a(t) results in the
two coupled c-number equations for the BEC order parameter
¥(r,t) and the cavity mode amplitude «(¢) given in Eq. (2)
of the main text.

To adiabatically eliminate the cavity mode we calculate the
equation of motion for the field operator a and solve for its
steady state (d;a = 0). This results in

n [ drWi(r, 1) cos(k.x) cos(key)¥(r, 1)
[Ac — Uy [drWi(r, 1) cos® (kex)W(r, 1)] + ik

ass = (A2)
Apart from the fundamental cavity parameters 1, A., and «
the steady-state value for the cavity mode is determined by
the two quantities

O[Y(r, )] := /dr\IlT(r,t)cos(kcx)cos(kcy)\ll(r,t), (A3)

B[¥(r,1)] = / drW(r, 1) cos? (k.x)W(r, t). (A4)
These two quantities obviously depend on the BEC state
which exhibits the nontrivial coupling between the cavity
mode and the BEC. While B only acts as an effective shift
of the cavity resonance frequency that comes into play as
soon as ass # 0, O is the crucial parameter when it comes to
understanding the cavity self-ordering phase transition. The
cavity mode is nonzero if ® # 0. Hence this parameter is cru-
cial for the instability described in the main text. To simplify
the model we replace I3 with its value for the homogeneous
condensate B = N/2 while keeping the full functional depen-
dence of ®. To eliminate the cavity field we plug the resultant
steady-state solution into the many-body Hamiltonian. Since
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FIG. 9. Exemplary total interaction potentials from Eq. (B1) for the three cases treated throughout this paper. (a) Case (i), n = 1.0 and
Cs = 0.1E,. (b) Case (ii), n = 1.0n¢; and Cs = 0.5E. (c) Case (iii), n = 1.0n¢; and Cs = 3.0E.. The red dashed lines indicate the length
scale imposed by the Rydberg roton. In panels (a) and (b) the red dots mark the first potential minima fulfilling the length scale restrictions
imposed via the soft-core interaction potential. In panel (c) the light green and blue circles mark additional configurations fulfilling this
restriction. This gives rise to a larger number of potential self-consistent ground states ultimately leading to the glassy behavior discussed in

the main text. The dashed red lines indicate the length scale imposed by the Rydberg interaction potential for the respective cases.

we are solely interested in a model capturing the dynamic
instability which is governed by terms o cos(k.x)cos(k.y)

J

int

where we used the symmetry of the cosine function in the sec-
ond line and introduced the cavity induced interaction strength
as

_ (A= NUy/2)
(Ac = NUo/2)* + 1>

The many-body Hamiltonian for the BEC then reduces to
H=—[drv'(m)EV w(r) + HE + HY. The mean-field
equation of motion given in Eq. (3) of the main text is found
by calculating the Heisenberg equation of motion for W(r, ¢)
and again performing the mean-field approximation.

Note that in both GPEs presented in the main text [Egs. (2a)
and (3)] we neglected the potential term o cos®(k.y), which
arises due to interference of the pump beams [see Eq. (Ala)].
This term is irrelevant for understanding the collective insta-
bilities and the main fundamental results presented in this
paper also hold if this term is included as we checked by
including it in the numerics. However, neglecting this term
facilitates the interpretation of the results and provides a
method to understand the fundamental physics from an in-
tuitive semianalytical standpoint as it is outlined in Sec. III
of the main text. In fact, the interference between the two
pump beams could even be suppressed in real experimental
setups. This can either be achieved by choosing a large enough
frequency difference between the two pump beams or by using
two counterpropagating beams with orthogonal polarization.
In this case, the model in Eq. (2) becomes exact.

z (A6)

APPENDIX B: VARIATIONAL ALGORITHM

To find the self-consistent ground state in Sec. IV we em-
ploy a variational algorithm. Here we discuss this algorithm

H®™ = hT / f drdy' U (r)W (r') cos(k.x) cos(kex') cos(key) cos(key YW (r )W (r)

(see argument above) we keep only these terms. This results
in the effective interaction Hamiltonian

(A5)

(

in more detail. In particular, we focus on our choice of initial
conditions and argue why the chosen initial conditions are
good guesses for the final ground states. In Fig. 9, exemplary
plots for the total interaction potential

Uit (1, 1) = Ucay (1, ¥') + Upya(r, 1), (B1)

defined as the sum of the two individual interaction poten-
tials given in Eqgs. (1) and (4), are shown. These potentials
provide a good intuition about the anticipated ground states.
Hence, we use these potentials as a guideline to define the
initial conditions for the imaginary time evolution. We see
that for the two special cases (i) (keay = krya) and (ii) (kcay =
kryd/ V2) the interaction potentials suggest a checkerboard
pattern and a square lattice as a ground state which is indeed
the self-consistent ground state in these particular cases [see
Figs. 5(d) and 6(e)]. In addition, to those cases we choose
the hep lattice as an additional initial condition for all cases
because this would be the ground state for a Rydberg-dressed
BEC without cavity interactions [43]. From Fig. 9 we see
that case (iii) is more complex than the previous two cases.
In this case, the ground state could be a checkerboard lattice
with larger period than in case (i) [see red dots in Fig. 9(c)]
or one of the two lattice configurations indicated by the
light green and blue circles in Fig. 9(c). Based on the above
arguments it also becomes clear that only the cases where
krya < kcay Tesult in modified results. If this condition is not
fulfilled the length scale imposed by the Rydberg interaction
potential is smaller than the cavity interaction potential which
only modifies the corresponding interaction potential locally
[see Fig. 9(a)].
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FIG. 10. The six nontrivial initial conditions (we refrain from showing the homogeneous state) based on the intuitive picture drawn in
Fig. 9: (a) checkerboard pattern (CB), (b) period-doubled checkerboard pattern (PD CB), (c) hexagonal closed pack (hcp), (d) square lattice,
(e) rotated chain version 1 (RC 1), and (f) rotated chain version 2 (RC 2).

Based on these intuitive arguments we generate the respec-
tive initial states ¥ (r) = >, ¢»(r —R;) by superimposing
Gaussian wave functions ¢, (r) = C exp[—|r|?/(20?)]. The
resultant nontrivial initial conditions (we refrain from show-
ing the homogeneous density) are shown in Fig. 10. We run

the variational algorithm discussed in Sec. IV for all these
initial conditions for all cases (i)—(iii). We then compare the
ground-state energies calculated via Eq. (7) and the resultant
cavity mode amplitude to estimate whether the respective
optimization problem is convex or not.
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