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While memory effects emerge from systems of wildly varying lengthscales and timescales, the reduction
of a complex system with many interacting elements into one simple enough to be understood without also
losing the complex behavior continues to be a challenge. Here, we investigate how bistable cylindrical origamis
provide such a reduction via tunably interactive memory behaviors. We base our investigation on folded sheets of
Kresling patterns that function as two-state memory units. By linking several units, each with a selected activation
energy, we construct a one-dimensional material that exhibits return-point memory. After a comprehensive
experimental analysis of the relation between the geometry of the pattern and the mechanical response for a single
bit, we study the memory of a bellows composed of four bits arranged in series. Since these bits are decoupled,
the system reduces to the Preisach model, and we can drive the bellows to any of its 16 allowable states
by following a prescribed sequence of compression and extension. We show how to reasonably discriminate
between states by measuring the system’s total height and stiffness near equilibrium. Furthermore, we establish
the existence of geometrically disallowed defective stable configurations that expand the configuration space to
64 states with a more complex transition pattern. Using empirical considerations of the mechanics, we analyze
the hierarchical structure of the corresponding diagram, which includes Garden of Eden states and subgraphs. We
highlight two irreversible transformations, namely shifting and erasure of defects, leading to memory behaviors
reminiscent of those observed with more complex glassy systems.

DOI: 10.1103/PhysRevResearch.4.013128

I. INTRODUCTION

Memory is the brain function that enables us both to
record past events and to remember them in the future. If
we extend this definition to broader considerations, it rep-
resents the capacity of any system—electrical, magnetic, or
mechanical—to store and recall information about past con-
figurations or events. Memorylike behaviors appear in many
forms all around us. We regularly experience materials that
wear or even break when put under repeated stress. In this
instance, the history of the system effectively modifies its
mechanical properties, a process called aging [1]. Previous
studies, recently reviewed by Keim et al. [2], have observed
that confined crumpled sheets [3] and rubbers [4] have a mem-
ory of the largest loading; and that folded polymeric sheets
[5–7] and frictional interfaces [8,9] have a protocol-dependent
dynamical response. These memory effects are a direct conse-
quence of time-dependent, out-of-equilibrium dynamics.
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These types of memory only retain a small amount of
information for a short time, with the system eventually relax-
ing back to an equilibrium state. This property is in conflict
with practical storage needs, for which a large amount of
data should remain for a long duration. A hard disk drive
(HDD) is an excellent storage tool for these exact reasons:
its binary data are encoded in a ferromagnetic thin film via
magnetic hysteresis [10,11]. An electromagnetic head pro-
duces a magnetic field able to change and read the disk’s local
magnetic orientation as a binary bit: up or down. Importantly,
the amount of storable data scales inversely with the localized
size of the magnetic bit and allows for modern high-capacity
information storage. In essence, the HDD uses the availability
of numerous modifiable and readable stable global configura-
tions to memorize a large amount of information. Following
these ideas, we are motivated to consider mechanical memory,
since mechanical systems can also present multiple stable
configurations. Because memory is profoundly linked to the
states of the system, its control on scalable systems is also
a promising way to design metamaterials, i.e., materials with
physical properties determined by their structures, with reli-
able reprogrammable properties [12].

Origami seems a likely candidate for designing this kind
of metamaterial. While its origins are in the art of folding
paper, origami’s definition in a scientific context has expanded
to represent all the structures obtained by folding thin sheets,
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and also to include the fastening of panels (discouraged by
artistic practitioners). The degrees of freedom granted by the
design of the creases’ pattern, the variety and scalability of
the resulting physical properties, and the ease of prototyping
make origami a powerful concept for metamaterial fabrica-
tion. Some patterns allow for the folding of large structures
into more compact space, generating deployable structures
[13–15]. Others exploit the mechanical interactions between
folds to generate a device with multiple stable equilibria
[16–18].

Importantly for their use in developing mechanical mem-
ory, previous studies have shown that cylindrical origamis
display mechanical bistability for specific folding patterns
[19–24]. Moreover, recent research showed that such origamis
have potential applications with dampingless impact mitiga-
tion [25], vibration isolation [26], crawling robots [27–29],
robotic bendable arms [30], mechanical metamaterials [31],
or even a property we can exploit: binary memory [32–35].
While the search for mechanical memory using cylindrical
origami is not novel, the previous investigations limit their
model and analysis to a simplified elastic system with truss el-
ements and forego a crucial component for effective memory,
namely the external nondestructive reading of the configura-
tion.

In this work, we explore the memory capacities of bistable
cylindrical origamis generated from Kresling creases’ pattern
[36], where the state, folded or deployed, of a barrel, a pair
of two mirrored unit cells, encodes for one bit of information.
In the first section of this paper, we detail the characteristics
of the pattern and remind the reader of previous geometrical
models establishing the existence of two flat-faced solutions
for the barrel [22]. Then, we concentrate on the mechanical
study of a single-barrel module produced from a thin mylar
sheet, focusing on the case of uniaxial loading for which the
rotation of the ends is suppressed. We observe a clear structure
in the relation between the angles of the folding pattern and
the threshold forces for the transition between configurations.
We also confirm that the experimental measurement for the
deployed origamis’ height is consistent with the geometri-
cal prediction. Next, we investigate the characteristics of a
stack of four modules connected in series. We describe how
the Preisach model defines a quasistatic transition diagram
of reachable configurations that we verify experimentally.
We use the study on single modules to highlight how the
stack’s state is readable from its height at equilibrium and
its local elastic response. Finally, we manually prepare states
that we expected to be forbidden, and we investigate these
hidden stable defective configurations allowed by the ma-
terial’s elasticity. We explain how these new configurations
modify the transition diagram into a more complex hierar-
chical graph, presenting properties analogous to amorphous
materials, and we establish a detailed framework for future
analysis.

II. THE KRESLING MODULE AS A MECHANICAL BIT

A. Origami bellows

The term “cylindrical origami,” which we will also call
“origami bellows,” represents a class of cylindrical structures

obtained by folding flat thin sheets while following precise
patterns of creases. For an abstract ideal origami, the creases
are straight and have no hinge bending energy, while the
faces are rigid without thickness. Given these constraints, the
whole surface of the folded origami can be divided into tri-
angles. Consequently, the origami bellows are constrained by
Connelly’s Bellows Theorem [37]: continuous deformations
under the rigid faces constraint must conserve its contained
volume. In other words, for a cylindrical origami to be able
to function as a bellows that changes volume under actua-
tion, some elements must be driven away from the idealized
flat-faced configuration used to derive its equilibrium state
[20]. Because origamis are folded from thin sheets, the bend-
ing properties of the sheets enable such deformations. Thus,
behaviors such as bistability, snap-through, self-deployment,
and plastic fatigue emerge from mechanical frustrations in the
overall configuration.

To reduce the number of adjustable parameters, a previous
study by Reid et al. only considered regular patterns fully
tiled by a single triangular or trapezoidal shape [22]. Of the
four types of achievable patterns, only the Kresling [36] and
the Miura-Ori [38] patterns demonstrate two valid flat-faced
configurations, an indicator of mechanical bistability. The
Kresling pattern is characterized by a single obtuse triangle
[see Fig. 1(a)] and can naturally be obtained when torsion is
added to the compression of a thin cylinder [36]; it is closely
related to the Yoshimura buckling pattern [39], a triangular
pattern observed when a thin cylinder is compressed. Starting
from the Kresling pattern, the Miura-Ori pattern is obtained by
fusing pairs of triangles with adjacent long-sides into obtuse
trapezoids.

Even though the two patterns seem tightly linked, the
small difference in tessellation heavily affects the mechanical
response of the resulting origami. For instance, a notable
disparity is the evolution of the polygonal base, delimited
by the horizontal folds, during the deformation. On the one
hand, a triangular tiling yields a unique cross-sectional ge-
ometry for all configurations [see Fig. 1(c)]. On the other
hand, the polygonal base is significantly modified during
the deformation when a trapezoidal tiling is considered [22].
Moreover, a quadrilateral tiling presents more opportunities
to make inexpensive small deflections of the faces compared
to triangular tiling. As a consequence, the Kresling bellows
appear stiffer under external loading, effectively producing a
higher energy barrier between equilibrium configurations, a
property that is confirmed experimentally [22]. Due to its pro-
nounced bistability and relatively unconstrained geometric de-
mands, the following study will exclusively feature Kresling
bellows.

B. Kresling patterned module

The unit cell of the Kresling pattern, shown in Fig. 1, is
defined by four vectors ωi, with i = 1, 2, 3, and 4, and two an-
gles φ2 < φ1 < π/2. The lengths of both vectors |ω1| and |ω4|
are identical, while both vectors ω2 and ω3 are constrained to
reach the same height h

2 . Given these restrictions, a unique
characteristic length l1, such that |ω1| = l1/2, is enough to
define the pattern’s dimensions completely.
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FIG. 1. Geometry of cylindrical bellows produced with a Kresling pattern. (a) Schematics of the pattern for a single barrel. The unit cell is
delimited by the dashed lines, ω1 and ω4. A Kresling pattern corresponds to φ2 < φ1 < π/2. The adjacent unit cell, characterized by ω′

2 and
ω′

3, is a mirror symmetry of the first unit cell along the horizontal fold. (b) Vector ω3 projected in the Y Z plane for a deployed configuration.
� is the angle between the projection and the z axis. (c) Cross-section in the XY plane delimited by the horizontal folds.

The kinematic conditions imposed by the rigid faces hy-
pothesis yield
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with n the total number of unit cells within a circumference,
and � the angle between the Oz axis and the projection of
the ω3 vector in the Y Z plane [see Fig. 1(b)]. The complete
computation is available in [40].

Equation 1 seems intricate at first glance, but the broader
mechanical behavior it predicts is straightforward. The plus or
minus before the radical indicates that for any order n, there
are at most two solutions for this expression, and the bellows
is at most bistable. Since the solution only has a physical
meaning if � is real-valued, the bistable region’s borders
are delineated by the constraint | sin �| � 1, which sets a
lower boundary φ1 � ( 1

2 + 1
n )π

2 , and a noncrossing constraint
imposed as φ1 � π

2 . To maximize the bellows’ deployabil-
ity, defined as the difference of the angle � between both
solutions of (1), we impose that the collapsed state must be
completely flat. This flat-foldability requires

φ2 = φ1 − π

n
(2)

for all studied bellows.
Finally, we need to account for any rotation induced by

the chirality of the unit cell. As a way to avoid this issue, we
will only consider bellows formed by pairs of mirror-stacked
rings that we call a barrel. Since the mirror symmetry yields
opposite chirality between the two halves of each barrel, the
whole bellows is achiral and will net a zero global internal
torsion during folding.

C. Bellows’ production and experimental framework

The production process for the origami bellows includes
two steps. First, we use a laser cutter to inscribe the desired
folding pattern (see Fig. 2) in 100-μm-thick transparent A4
mylar sheets. We chose �1 = 32 mm to create the largest bel-
lows with a pattern that fits inside an A4 sheet. Moreover, as a
compromise between the difficulty of producing increasingly

complex bellows and the size of the configuration space with
bistable structures, we chose n = 5. We also use the first step
to ablate a fraction of each crease’s length through a series of
perforations, diminishing its local plastic threshold as well as
its effective width. This results in a substantial decrease of the
crease stiffness [41] without eliminating it entirely and further
ensures that hinge-bending a fold is easier than bending an
adjacent face, resulting in a high-energy barrier separating
the two stable configurations. For all the studied samples, we
removed 70 % of each crease’s length, and the width of each
perforation is 0.5 mm. Then, we used double-sided tape to link
neighboring sides of the bellows with predefined tabs.

While our end goal is to study long bellows with multi-
ple barrels and stable configurations, this analysis requires
an initial understanding of the properties of a single barrel.
Hence, we started our investigation by using the starlike pat-
tern presented in Fig. 2(a) to produce modules, i.e., bellows
containing only a single barrel. Following the geometrical
analysis established in the previous section, a module should
be bistable as long as the pattern angle φ1 is between 63◦ and
90◦. In practice, for φ1 < 74◦, the modules have a single stable
configuration, while for φ1 > 82◦, the deployed configuration
is too rigid and does not properly fold under uniaxial compres-
sion. As a result, we limit our study to φ1 between 74◦ and 82◦.
Please note that the open end is closed with a pentagonal slice
of mylar sheet taped to the end tabs. Then, a simple method
to produce longer structure is to stack modules on top of each
other and use double-sided tape to connect them.

FIG. 2. Cutting pattern used to produce a single module with
�1 = 32 mm, φ1 = 75◦, and n = 5 next to the resulting bellows
after folding. Hz is the bellows’ end-to-end height. The drawings are
available online [42].
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FIG. 3. Force-displacement response of a single module with
n = 5, φ1 = 78◦, and �1 = 32 mm for three cycles of deployment-
folding. The first two cycles are transparent, while the last one is
opaque. F+ = 1.0 N and F− = −2.11 N are the threshold forces
between configurations. The heights for folded (H0

z = 21.6 mm) and
deployed (H1

z = 65.5 mm) configurations are annotated.

To probe the mechanical properties of the modules and
the stacks, we mounted the ends of every sample to plates
that cannot rotate, themselves attached to a uniaxial testing
machine (Instron). When the ends are allowed to rotate, indi-
vidual unit cells can actuate [32]; by providing rigid clamping,
we require that unit cells of opposite chirality collapse in pairs.
The testing device records the end-to-end height Hz of the
bellows and measures the force F applied during deployment-
folding experiments. The exact loading protocol will be given
for each experiment.

D. Loading a single module

Our initial step was to establish the mechanical response of
single modules and determine how it depends on the particular
folding pattern selected by the choice of φ1. To reach that goal,
we performed cycles of three deployment-folding experiments
where the module started from, and returned to, the folded
configuration. We ensured that the two limit values for the
forces entirely fold and deploy the origami at each cycle while
keeping the load low enough not to damage the sample. A
typical force-displacement response is shown in Fig. 3. While
the response during the first cycle of a newly folded bellows
is substantially different, subsequent cycles become roughly
repeatable. We believe that the viscoelastic properties of the
creases [7] are the main reason behind this behavior. Before
each experiment, the system has sufficient time to relax to an
asymptotic equilibrium; however, this is not possible during
an experiment lasting only a few minutes. As a result, the
starting state for the first cycle is unlike any of the other cycles.
This observation is reminiscent of the Kaiser behavior where
various physical systems manage to keep a memory of the
largest input [2].

The cycles present typical bistable behavior with three
equilibrium configurations corresponding to the three times
the force-displacement curve crosses the F = 0 line during
deployment or folding, where the bistability arises from the
flexibility of the faces and the existence of two flat-faces
configurations.

Notably, the system displays hysteresis with a different
response whether we fold or deploy the bellows, beyond
what was reported in the purely elastic response of a simi-
lar truss structure [32,43]. This discrepancy comes from the
system’s mechanical properties, which depend on the history
of the sample. Each crease is characterized by a rest angle,
an internal characteristic that represents the angle between
the faces when the crease is at rest. When prepared in a
folded configuration, every rest angle is required to be small
to reach a near-flat-folded configuration. During the deploy-
ment, all the creases open and, due to the plasticity of the
material, so do the rest angles [7]. The opposite happens
during folding, where the rest angles close. Consequently, the
mechanical equilibrium for the same height Hz will depend on
whether the module is being deployed or folded. An unwanted
consequence is that the height of the module in its stable
configurations is poorly defined. For simplicity, we set the
length H0

z (H1
z ), the size of the folded (deployed) module, to

be the minimal (maximal) height obtained for F = 0 during
the last cycle. We will see later that this choice is in good
agreement with the geometrical predictions.

An essential characteristic of a bistable system is the load
threshold required to switch from one stable configuration
to the other. The origami bellows’ response displays a max-
imum value for the force during deployment, F+, which is
the threshold for the transition between the folded and the
deployed configurations. In the same way, we define F− as the
threshold for the transition during folding. The difference in
amplitude between both thresholds comes from the plasticity
of the creases and the path of elastic deformation to go from
one flat-faced configuration to the other.

We tested modules with different angle φ1 in order to
obtain designs generating distinct mechanical response and
thresholds. The measurement of the threshold loads F± and
normalized heights of the stable configurations h0

z = H0
z /l1

and h1
z are shown in Fig. 4. During the normalization, we took

into account experimental approximations that we made while
gluing neighbor branches together by taking an interval for the
length �1 from 31 to 32 mm. These considerations lead to the
error bars in Fig. 4(b).

The patterns of creases we consider are flat-foldable. As
such, the expected height for the folded configuration is 0.
However, this is not mechanically feasible due to the bel-
lows’ finite wall thickness. Furthermore, we noticed that all
of the modules studied showed a similar folded height H0

z ≈
0.65 × �1 = 21 mm, substantially larger than the expected
height simply emerging from material thickness 4t ≈ 0.4 mm.
This extra height comes from the small remaining rigidity of
the creases, making the stable equilibrium configuration not
rigorously flat-faced. Still, this observation is reassuring with
regard to the reproducibility of our test since we used a signif-
icantly different pattern and obtained a consistent value of h0

z .
For the remainder of the paper, we set h0 as the normalized
height that we expect each module to have in the folded state.

In contrast, the deployed height changes dramatically with
φ1. The theoretical deployed height from the geometrical flat-
faced model comes from projecting ω3 on the z axis,

H1
z (φ1) = 2�1 cos [�(φ1)]

cot [φ2(φ1)] − cot φ1
, (3)
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FIG. 4. (a) Force thresholds with respect to the pattern angle φ1. The four highlighted modules are those used in Sec. III B. (b) Normalized
height hz = Hz

�1
measured for the folded and deployed configurations. The solid green line corresponds to the geometrical prediction of the

deployed height given by (3). The dashed orange line corresponds to the mean value h0 = 0.70 measured for the folded height.

with φ2(φ1) the solution of (2) and �(φ1) the negative solution
of (1). Experimentally, this height is measured in our system’s
state of mechanical equilibrium, which is not rigorously in
its flat-faced ideal configuration. Even with slight internal
frustration, the measured normalized height of the deployed
stable configuration h1

z stays consistent with the theoretical
prediction.

The data show a monotonic dependence of the value of
each threshold force F± on the angle φ1, a behavior that can be
understood qualitatively via the simple requirement that, as φ1

increases, the angle � at the deployed equilibrium decreases.
In other words, individual bellows become more and more
straight for larger φ1, and the straighter a cylindrical origami
is, the more the faces need to bend during the deformation.
This directly leads to the observed increase of the energy
barrier and the threshold forces.

In this section, we established the geometrical and me-
chanical properties of the Kresling single module with loading
experiments. We observed that its height in the deployed con-
figuration is in agreement with the geometrical model, while
the folded height is independent of the pattern. Another cru-
cial observation is the relative ordering of both load thresholds
F± with respect to the pattern.

III. BELLOWS AS A MECHANICAL MEMORY SYSTEM

A. Preisach model

Using the observed mechanical properties of the modules,
we can correctly predict, via Preisach modeling, the qua-
sistatic transition diagram of a stack of modules with different
�1, effectively obtaining readable and modifiable mechanical
memory. The Preisach model is a simple mathematical model
of systems with hysteresis [10,44] that was originally used to
describe the hysteretic response in magnetic materials [11].
The model consists of a set of L hysteretic elements, called
hysterons, each of which can be in one of two states, 0 or 1.
When a hysteron is in state 0, it switches to state 1 as soon as
a driving field F becomes larger than a threshold value F+.
To switch back to state 0, the driving field must become lower
than a second threshold value F− < F+. Thus for F− < F <

F+, the hysteron’s state is undetermined and depends on its
history, thereby giving rise to hysteresis. A schematic view

of the hysteron transition cycle is presented in Fig. 5(a). The
theory also assumes that each hysteron couples to the applied
external field independently, meaning each transition cycle is
unaffected by the other hysterons’ states.

Consider an arrangement of L bistable modules in series
and clamped at one end, labeled i = 1, 2, . . . , L. The hys-
teretic properties of such systems were studied by Puglisi and
Truskinovsky [45]. When an external force F is applied to
the last bellows, an equal force is likewise exerted on each
module due to internal equilibrium. As depicted in Fig. 3,
each bellows i switches from the folded (0) to the deployed
(1) configuration and back at threshold forces F±

i . These
thresholds’ values depend on the pattern via the angle φ1.
Suppose the state of each module is independent. In that case,
we can regard this system as a Preisach model, schematized
in Fig. 5(b), where each bellows is a hysteron. Therefore, we
describe the configuration or microstate of the bellows by an
L-bit vector, where each bit represents the state of the corre-
sponding bellows. Finally, we consider very slow changes of
the applied driving force so that the response is quasistatic,
and we do not need to consider dynamical behaviors.

This model’s main hysteresis loop is formed by the tran-
sition from the fully folded configuration (00 · · · 0) to the
completely deployed one (11 · · · 1) under increasing force,
and back when this force is subsequently reduced. These two

FIG. 5. Schematic description of the Preisach model. (a) Transi-
tion cycle for a hysteron σ , an element with two stable configurations
1 and 0, with respect to the external loading F . F+ (F−) is the
loading threshold for the 0 → 1 (1 → 0) transition. (b) Stack of L
independent hysterons σi in series symbolizing a stack of modules.
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FIG. 6. Preisach transition graph for a stack of four modules with—from top to bottom—φ1 = [82◦, 80◦, 78◦, 75◦]. In the transition graph,
each ordered bit 1 corresponds to a deployed module, and 0 to a folded one. Each circle is a reachable configuration, while each black/gray
(or red/orange) arrow corresponds to the deployment (or folding) of one module. Black/red (darker) arrows are a sample pathway to the 0101
configuration starting from the absorbing microstate 0000, as illustrated by the images in (b).

microstates are absorbing: starting from any stable config-
uration, the fully deployed or folded configuration will be
reached for sufficiently large forces.

The modification of the bellows’ microstate due to the
external loading can be represented as a transition graph.
The details of such a description have been given in [46].
Here, each vertex corresponds to a configuration that does not
transition spontaneously to another configuration and that is
compatible with a range of applied forces, namely the stability
interval. We call such a microstate stable. Depending on the
values of the transition thresholds F±

i of the individual mod-
ules, not all 2L configurations are stable. Transitions between
stable configurations occur when the force is increased (de-
creased) to the upper (lower) limit of a stability interval, and
a single hysteron changes its state from 0 → 1 (1 → 0). As a
result, except for the two absorbing microstates, every stable
microstate has two transitions to another stable microstate: a
bit either folding or deploying. Moreover, transitions occur
one hysteron at a time, so the Preisach model does not have
avalanches.

Among the set of stable states of a Preisach system, one
subset is distinct: the set of reachable microstates. It corre-
sponds to all configurations that can be reached from either
of the two absorbing microstates under arbitrary protocols
of driving forces. We call all other nonreachable microstates
Garden of Eden (GoE) since the system can’t return to these
configurations once it has landed in a reachable microstate
[47].

The transition graph formed by the reachable microstates
alone is called the Preisach graph [46]. It consists of the main
hysteresis loop and its subloops, which by virtue of the return
point memory are organized in a hierarchical structure [48].
Moreover, it turns out that the topology of the Preisach graph
does not depend on the values of the threshold fields F±

i per
se, but only their relative ordering. In other words, the crucial

property is the sequence in which the individual hysterons
change their state when the force is decreased relative to the
order when the force is increased [46]. In particular, if these
two orders are equal, there are no GoE microstates and all 2L

possible configurations are stable and reachable. The Preisach
graph in that case for L = 4 is depicted in Fig. 6(a), where
the folding (deployment) transitions have been marked by
black/gray (red/orange) arrows that point to the right (left).

B. Transitions of a stack of individual modules

To test the predictions of the Preisach model in an exper-
imental setting, we probed the response of a chain of four
linked modules labeled as i = 1, 2, 3, and 4 with respective
pattern angles φi

1 = 82◦, 80◦, 78◦, and 75◦. From the data
collected with single modules in Fig. 4(a), we expect the
modules to fold and deploy in the same order: 4 → 3 →
2 → 1. As such, the stack belongs to the case previously
described, for which all 24 = 16 configurations are stable and
reachable, with the transitions between them specified in the
graph presented in Fig. 6(a). After clamping the stack to our
loading device, we explored the transition diagram through
quasistatic change of the force, and we managed to observe all
the transitions predicted by the Preisach model. For instance,
the 0000 → 0101 transition is shown in Fig. 6(b). Videos of
complete deployment, folding, and the 0000 → 0101 transi-
tion are available in the supplemental material [49].

During our exploration, we examined the origami’s re-
sponse to small deformations around the rest position,
corresponding to F = 0 N, for every configuration. More
precisely, we performed a single loading-unloading cycle
between −0.5 and 0.5 N which yields two mechanical char-
acteristics for each microstate, namely its height and its
stiffness. A typical force-displacement response is shown in
Appendix A.
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FIG. 7. Mechanical properties of the stack of four modules. (a) Relative height of each microstate measured experimentally (red error bar)
and predicted (gray points) through a method detailed in the text. (b) Measured stiffness keq of the stack for small deformation in the vicinity of
the equilibrium position. The error bars show the difference between loading and unloading. The boxed number m gives the “magnetization”
macrostate, i.e., the number of deployed bellows for each microstate.

Extending our work on single modules, we compared in
Fig. 7(a) the recorded relative heights of the configurations at
rest, heq

z , to the predicted ones, heq
z, pred. The latter is obtained

by considering the sum of the height for each module,

heq
z, pred(k1 k2 k3 k4) =

∑
i

h0 + ki(h
1
z (φi

1) − h0), (4)

with i the module number, φi
1 the pattern angle, and ki the

state of the ith module. For a given module i, its deployed
height is expected to be the theoretical value h1

z (φ1) given
in (3), while its folded height is taken as the value h0

z we
measured during single-module loading. Here again, the the-
oretical value is in good agreement with the measurements
and follows the same ordering. However, a precise and un-
equivocal reading of the configuration does not arise from
our analysis. Note that the error bars, coming both from the
uncertainty on the value of �1 and the interval for heq

z found
during the mechanical probing near-equilibrium, do not al-
low for an indisputable identification of the configuration.
Still, if we consider the “magnetization” macrostate for the
system, corresponding to the total number of deployed mod-
ules, we observe an unequivocal step in height for our stack
for different macrostates, with smaller differences among its
microstates.

A way to break this degeneracy is to examine the con-
figuration’s mechanical properties. We identify the stiffness
of each configuration using a linear regression of the force-
displacement response F = keq(Hz − H eq

z ) between −0.1 and
0.1 N. Once again, we observe a notable difference between
loading and unloading, the latter appearing softer. We reported
our measurements for all microstates in Fig. 7(b). Compared
to the height, the data show that the stiffness is a worse
independent identification tool since we observe more overlap
between microstates, even for different numbers of deployed
bellows. However, as a complementary tool, it may help to
discriminate between very similar heq

z , particularly for larger
numbers of units. For instance, let us look at both config-
urations 1001 and 0110. While they both have comparable
lengths, the former appears stiffer. So a quick analysis of

the mechanical response is enough to differentiate between
these two microstates. Our analysis of a stack of individu-
ally produced modules shows that the transition map for the
collection of resulting stable configurations is well captured
by the Preisach model. Moreover, we provide a protocol to
read the microstate through their mechanical properties, more
precisely their height and apparent stiffness.

C. Hidden configurations

During our investigations, we found that, by carefully
twisting parts of a partially compressed bellows, the entire
system could be driven into unexpected stable configurations.
For instance, we managed to reach the state shown in Fig. 8(a)
with a slight compression of the stack in the 1111 state fol-
lowed by a manual twisting of the two softest barrels. These
configurations present defects: barrels that are half-folded and
half-deployed. Given these new observations, it is necessary
to increase the number of valid microstates that we consider
for each module. We will designate half-deployed barrels with
new symbols, indicating whether the deployed half faces the
stiffer (+) or softer (-) end of the bellows. Defective config-
urations should be forbidden when each module presents a
unique pattern angle φ1 and the boundary conditions impose
zero global twist. However, hidden degrees of freedom due
to the material elasticity [50] allow for opposite halves of
slightly different pattern angles to be collapsed together and
remain stable as they only require the slight penalty of a
small internal twist. After further investigation, we noticed
that only the configurations where two barrels have oppo-
site defects, i.e., they have their opposite halves folded like
the 11-+ configuration presented in Fig. 8(a), were stable.
Any other defective configurations were either unreachable,
due to the numbers of + and - defects being different, or
unstable, when the configuration presents two pairs of op-
posite defects like +-+-. Consequently, we should consider
48 additional microstates for a four-barrel bellows (the count-
ing process is detailed in Appendix B). To study them, we
built a second stack of four modules with pattern angles
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FIG. 8. (a) Photo of the defective 11-+ configuration. (b) Partial directed graph of transitions between stable configurations obtained
experimentally through quasistatic actuation. The opaque (transparent) section is the diagram for a reachable (GoE) microstates. The relation
between the module’s symbol and the state of its halves is schematized in the legend. 2-GoE loops are denoted in cyan, and 4-GoE loops in
purple. The black and gray (or red and orange) arrows correspond to the deployment (or folding) of a pair of sections observed experimentally.
Thin arrows out of the GoE loops represent irreversible “plastic” events: erasure or shift. The dotted arrows represent expected transitions from
reachable microstates that we did not observe before the sample’s breakdown.

φ1 = [81◦, 79◦, 77◦, 75◦], where the three stiffest modules
were each made with φ1 1◦ smaller compared to the first stack,
making them slightly softer. We only managed to observe 39
out of the 48 new microstates with manual actuation before
the sample became too damaged to continue. All the config-
urations and their corresponding observed transitions during
quasistatic actuation are transcribed in the directed graph
in Fig. 8(b) where we differentiate between the reachable
microstates (darker color) and the GoE microstates (lighter
color).

Following recent work on the modeling of amorphous
solid with directed graphs [51], we will focus our following
analysis on the strongly connected components (SCCs) of the
transition graph. The SCCs are the collections of subgraphs
where every configuration is reachable from every other con-
figuration. The largest SCC turns out to be the main graph
and—by definition—includes only the reachable microstates.
It is identical to the graph presented in the previous sub-
section. Therefore, there is no transition from a reachable
microstate to a defective configuration, making them GoE
microstates. We define k-GoE loops as the SCC of the graph
formed by k GoE microstates with identical defects. For in-
stance, 1-GoE loops, which we will also name isolated GoE
microstate, are single GoE microstate that cannot be reached
from any other configuration, even defective ones, through
quasistatic transitions. Our study managed to identify eight
isolated GoE microstates, five 2-GoE loops, and two 4-GoE
loops.

D. Mechanics and hierarchical structure of the GoE loops

The mechanical origin of the GoE loop can be understood
as follows. For any 2l -GoE loops, with l a positive integer,
we notice that the defect does not involve the l softer barrels.
Therefore, it remains kinetically stuck as long as we keep
the external loading small enough. If this range is enough
to actuate the l softer barrels, they will generate a Preisach
graph for l independent modules, i.e., the 2l -GoE loops we
observe. This logic holds for the 4-GoE and 2-GoE loops in
the reported graph. Following this reasoning, for a bellows
with N barrels and a pair of defects, we expect to obtain a
total number nl of 2l -GoE loops such that

nl = (N − l − 1) 2N−l−1 (5)

with l a positive integer and l < N . Here the term N − l − 1
counts the number of locations at which the other defective
barrel can be placed, while the factor 2N−l−1 accounts for the
possibility of the exchange of sign for the two defects and the
assignments of states 0 and 1 to the N − l − 2 inactive barrels.
Since for l = 1 and N = 4 we have n1 = 8, this implies that
there are three additional 2-GoE loops that we did not record
in the diagram.

A careful analysis of the graph in Fig. 8(c) shows a clear
hierarchical structure with nested loops consistent with return-
point memory [48]. Any transition from a 2l -GoE loop to
another loop only occurs when the l softer barrels are either
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completely deployed or collapse. The next barrel to be actu-
ated is the l + 1 softer barrel, which presents a defect. This
leads to two possible outcomes:

Erasure: The defects disappear, and the system shifts to the
main cycle. This removal is necessary when the total number
of deployed or folded modules becomes N and the system
transitions to the absorbing microstates 0000 or 1111.

Shift: One defect moves to a stiffer module. This allows
additional soft barrels to be freed and contributes to a larger
loop. In most cases, the defect moves to the next softest
barrel. If this barrel also presents a defect, the system usually
eliminates them both and transitions to the main cycle.

While this analysis successfully predicts most of the
transitions observed, the 00-+ → 1-+0 transition remains in-
consistent. We argue that this discrepancy comes from the
aging of the creases during our testing, leading to modifica-
tions of the configuration stability.

Even though our investigation is based on a single stack,
we expect the simple mechanical logic behind the observed
transition to hold for similar origami stacks with distinct
independent barrels. A last type of transition that is not ob-
served and is missing from our analysis is the appearance
of a pair of defects. Indeed, the constraints are inadequate
for the formation of defective configurations. The necessity
of creating internal twist makes them unfavorable over geo-
metrically preferred states. An interesting avenue to overcome
this limitation is to introduce a coupling between barrels. The
additional coupling energy changes the balance of internal
stresses and could produce systems for which the formation of
defects is beneficial. An attempt to achieve this is provided in
Appendix C, where we look at a different cutting pattern that
provides interunit coupling. In that case, we find that some
defective configurations are reachable states. This observation
confirms that tweaking the correlation between barrels is a
promising avenue for controlling the transition diagram, but
the technicalities are beyond the scope of this study.

IV. DISCUSSION

In this study, we presented the multiple memory capabili-
ties of cylindrical origami bellows. We based our analysis on
a specific subset of the pattern’s configuration space for Kres-
ling cylindrical origamis only using pairs of unit cells, here
named barrels. Our choice guarantees that the folded struc-
tures hold three properties: (i) they do not have a global twist
under loading; (ii) they have two stable configurations; and
(iii) the pattern’s geometry is governed by a single parameter,
φ1. We investigated the mechanical properties of the simplest
bellows that we call modules and which is composed of only
one barrel. The probing reveals a monotonic relation between
the parameter φ1 and the threshold forces F± of the transition
between the stable microstates. Moreover, it confirms that a
geometrical model based on flat faces correctly predicts the
height of the deployed structure.

We exploited all these properties to design a long origami
with mechanical memory by stacking modules with different
φ1, and considering the state of each module, deployed or
folded, as one bit of memory. The system requires three dis-
tinct features in order to work as effective memory: (i) Each
stable microstate has to remain stable in time. This is the case

for our stack as long as the external loading stays small. (ii)
The microstate of the system can be actively changed through
external action. The internal equilibrium ensures that the force
imposed at the extremity of the stack is applied on all the mod-
ules. Furthermore, as we assume them to be independent, and
given their mechanical properties, we always obtain a Preisach
system where every existing stable configuration is reachable
with quasistatic actuation. This property holds for any number
of modules as long as their patterns are all different. (iii) The
microstate of the system can be deduced from nondestructive
measurements. From a minute deployment-folding cycle, we
showed how the configuration is identifiable with the height
and the stiffness of the origami at rest.

More remarkably, the hidden degrees of freedom due to
the material elasticity [50] allow for new stable configurations
that a zero global twisting should forbid. These defective
configurations create a more convoluted diagram with Garden
of Eden states and irreversible transitions. Our experimental
study shows a hierarchical structure with the graph’s strongly
connected components induced by the relative mechanical re-
sponse of the modules. Notably, the size of any defective loop
depends on the stiffness of the softest defective bit of memory,
which irreversibly increases with the highest load applied to
the system during shifting events. While our analysis based
on the Preisach model remains simple, we recover behavior
typically observed in amorphous materials like the memory
of the largest input [3,4,45] or irreversible plastic events with
internal rearrangement due to external stress [52].

From an engineering standpoint, the memory capabilities
of the presented cylindrical origamis, in addition to their ca-
pacities to tune their mechanical properties, make them an
interesting reprogrammable metamaterial in line with recent
work on very similar origami structures [31]. In this paper,
we only considered systems composed of four barrels. In
principle, larger systems with distinct reachable states are ob-
tainable since degeneracy only appears if two or more barrels
have identical pattern angles {φ1, φ2}. In practice, the material
we use and our fabrication method limit the scalability to only
a few barrels before a precise reading becomes impossible.
Developing a method to reduce measurement error is essential
to make the origami bellows a tractable memory system. We
believe that the observed hysteresis comes from the nonelastic
response of the creases, which manifests as changes of their
rest angle. Consequently, we expect new production schemes
that reduce crease stiffness to diminish the experimental error
and facilitate state reading. Moreover, long deployed bellows
might prefer to buckle out of the central axis during compres-
sion instead of folding barrels, a behavior already exploited
to create origami octopus-like bendable arms [30]. We also
expect longer bellows to generate stable configurations with
more defects. The internal strain in defective configurations
is related to the internal twist per unit length. By increasing
the number of barrels, the internal strain generated by any
pair of opposite defects is reduced, which should support the
introduction of additional folding defects.

We conclude by pointing out that our works follow a very
recent surge of interest for the Preisach model and its gener-
alizations in order to explain the complex transition diagram
of multistable systems by introducing interactions between
hysterons [53–56]. While our barrel-based approach considers
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FIG. 9. Force-displacement response of the stack of four mod-
ules studied in Sec. III B near the rest position for the configuration
0000. The dotted lines represent the limit values of H eq

z that we used
in Fig. 7.

independent hysterons, the existence of defective configura-
tions highlight that each barrel is separable into two mirror
halves, which are both bistable. Consequently, another way to
analyze our system is to divide it and consider each half-barrel
as a hysteron. The condition of no-rotation imposed at the
ends creates correlations between hysterons and favors transi-
tions where hysterons of opposite chirality transition together.
We leave a thorough investigation of how these correlations
precisely relate to the folding pattern and crease properties for
future works.
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APPENDIX A: RESPONSE OF THE STACK
NEAR EQUILIBRIUM

We probed the elastic response to small deformation
around equilibrium of each reachable state for the stacks
of four modules with φ1 = [82◦, 80◦, 78◦, 75◦] presented in
Sec. III B. To do so, we started from a loading F ≈ −0.5 N
and carried one cycle of extension-compression as shown in
Fig. 9. We used linear regression on a small region around
F = 0, approximately between −0.1 and 0.1 N, during both
extension and compression to set the two limit values for the
stiffness keq used in Fig. 7.

APPENDIX B: NUMBER OF CONFIGURATION WITH k
DEFECTS FOR N BARRELS

Employing the convention taken in the paper, we consider
a defect as a pair of + and − barrels. As a result, a defect is
always associated with two barrels and necessarily N � 2k,
with N the total number of barrels. Starting from this postu-
late, counting the number of configurations nN

k with k defects
for a system with N barrels is straightforward. First, we need
to account for all the combinations of barrels associated with
the defects leading to

(N
2k

)
possibilities. Then, for all the de-

fective barrels, half must be in the state + while the other half
must be in the state +, leading to

(2k
2

)
possibilities. Finally,

each nondefective barrel has two states, 0 or 1, generating
2N−2k possibilities. As we multiply all these contributions, the
total number of configurations with k defects is

nN
k =

(
N

2k

)(
2k

k

)
2N−2k = N!

k!2(N − 2k)!
2N−2k . (B1)

The system we studied has N = 4 barrels and may have up to
k = 2 defects.

The total number of configurations should simply be the
sum of configurations realizable with k defects:

n =
2∑

k=0

n4
k

= 16 + 48 + 6

= 70.

However, since we did not observe any configurations with
two defects, we consider a total of n4

0 + n4
1 = 64 configura-

tions.

APPENDIX C: CASE OF A LONG BELLOWS WITH
COUPLED BARRELS

While developing our production schemes, we also sought
alternative solutions for generating multibarrel bellows. One
such solution involved a single long cutting pattern rather than
preparing individual modules and connecting them afterward.
We extended the design of the branches for the starlike pattern
to include multiple barrels. However, we cut each branch
separately to compensate for the limited size of the original
A4 transparent sheets. The typical pattern of a single branch
is shown in Fig. 10(a). Once again, we used double-sided tape
and precut tabs to generate a single coherent structure. To
follow as closely as possible our previous analysis, we folded
an origami bellows with five branches and four barrels, with
pattern angles φ1 = [81◦, 79◦, 77◦, 75◦]. As for the stack of
modules presented in the main paper, we tested the transition
diagram for the system through quasistatic actuation. The
result is shown in Fig. 10(b).

At first glance, the diagram seems identical to the Preisach
graph presented in Sec. III B, and it follows the same hierar-
chical structure of transitions. Yet, some reachable states are
defective configurations. Furthermore, we observe transitions
already defined in the context of GoE microstate transition
with shifting and erasure of the defect. But we also observe
transitions that we call appearance, where one degree of de-
fect is added to the system. These three types of transitions
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FIG. 10. (a) Cutting pattern for a single branch of a four-barrel stack with �1 = 32 mm, φ1 = [81◦, 79◦, 77◦, 75◦], and the resulting stack
for n = 5 after folding. The drawings are available online [42]. Below is a photo of the produced bellows for n = 5 in the 1111 configurations.
(b) Observed transition diagram. The black (red) circles represent a normal (defective) configuration. A dotted arrow corresponds to the
appearance of a defect, a dashed arrow its shift, and a dotted-dashed arrow its erasure.

make up the necessary framework to analyze the transforma-
tion of defective structures.

This specific diagram is actually easy to understand em-
pirically. We observe the appearance of a defect only when
the third barrel, corresponding to φ1 = 77◦, transitions from
1 to 0. If the configuration allows it, i.e., if at least another
barrel is deployed, the third barrel prefers to transition to the
- state and create a defect. Finally, the system remains with
a defect until either it has to be folded entirely (0000) or
the three softer barrels have to be deployed (0111 or 1111).
Meanwhile, the defect shifts and the other bellows deploy
and fold according to the mechanical rules established in
Sec. III D.

The appearance of defects can be attributed to two el-
ements. First, it might simply be due to an error during
production. Then, the analysis of the transition diagram is
an interesting tool to understand where the irregularity lies.

For instance, a misplacement of the double-sided tape could
lead to one-half of the third barrel having difficulty folding. A
second possibility comes from the difference in the cutting
pattern. Contrary to the modular approach, the barrels in a
multibarrel design are linked by a single crease with an angle
that depends on the state of the two sections it connects. The
angle ranges from π if both connecting sections are deployed,
to 0 if they are folded. An interesting case emerges when
only one side is folded. The crease’s stiffness may change the
stability of the structure, effectively changing the mechanical
properties of each module depending on the states of its neigh-
bors. As a result, a destabilization of the nondefective relative
to the defective configurations facilitates the formation of
defects and explains why we manage to reach them quasistat-
ically. We leave an investigation of the relationship between
the properties of the connecting crease and the change of the
transition diagram to future studies.
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