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Photon control and coherent interactions via lattice dark states in atomic arrays
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Ordered atomic arrays with subwavelength spacing have emerged as an efficient and versatile light-matter
interface, where collective interactions give rise to sets of super- and subradiant lattice states. Here, we demon-
strate that highly subradiant states, so-called lattice dark states, can be individually addressed and manipulated
by applying a spatial modulation of the atomic detuning. More specifically, we show that lattice dark states
can be used to store and retrieve single photons with near-unit efficiency, as well as to control the temporal,
frequency, and spatial degrees of freedom of the emitted electromagnetic field. Furthermore, we demonstrate
how to engineer arbitrary coherent interactions between multiple dark states and thereby manipulate information
stored in the lattice. These results pave the way towards quantum optics and information processing using atomic
arrays.
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I. INTRODUCTION

Ordered atomic arrays with subwavelength spacing have
emerged as versatile quantum many-body systems, where
coherent excitation exchange between the dipoles leads to a
collective response of the atomic ensemble [1–3]. The rich-
ness of the underlying interactions can be used for a wide
variety of quantum applications that range from topologi-
cal phases of matter [4–6], atomic clocks [7,8], and optical
quantum memories [9] to the ability to modify the radiative
environment of single impurities [10,11]. Atomic arrays also
offer remarkable optical properties and can act as an opti-
cal mirror for incident beams of low intensities [2,12,13].
Additionally, this platform could eventually be used to ma-
nipulate quantum light, create Schrödinger cat and photonic
Greenberger-Horne-Zeilinger states suitable for quantum in-
formation processing [14], and build photonic quantum gates
by exploiting Rydberg interactions in the few-photon limit
[15,16].

Central to understanding the physics of atomic arrays is the
notion that excitations in the lattice are characterized by their
momentum [1]. For lattice spacings smaller than the atomic
transition wavelength, a set of lattice excitations emerges
whose momenta are larger than that of any resonant electro-
magnetic field mode. Such excitations do not radiate and are
therefore called subradiant or dark states. First proposed by
Dicke [17,18], subradiant states have been thoroughly studied
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in various systems [19–24] due to their long lifetimes and their
potential applications in sensing [25,26]. While subradiant
states have recently been observed in two-dimensional atomic
arrays [12], they can only be accessed with great difficulty
due to the fact that they do not couple to incoming light fields.
One can circumvent this problem by placing an impurity close
to the array [10,11,27], by exploiting the Zeeman splitting
between J = 1 atomic levels to access a small subset of the
subradiant states that emerge in two-dimensional arrays [28]
or by applying magnetic field gradients to imprint different
phases on each atom [29].

Interestingly, coupling of subradiant modes has long been
achieved in other physical systems by spatially modulating
one of its elements or parameters. For example, subwave-
length gratings have allowed imaging beyond the diffraction
limit by converting evanescent waves near a surface into prop-
agating waves [30]. A similar technique was used to couple
propagating light to subradiant surface plasmonic modes by
means of a grating on a metallic tip [31]. Additionally, spatial
modulations of the refractive index have been leveraged to
access evanescent modes of subwavelength photonic lattices
[32]. Recent theoretical studies have applied these ideas to
atomic arrays in order to access topological boundary states
that exhibit subradiance [33] and to study quantum phase
transitions [34]. In this case, the symmetry of the atomic
lattice is broken by applying a spatial modulation of the
atomic detuning, which couples radiating states to dark states
and therefore provides a handle to redistribute excitations be-
tween the two. Intuitively, this detuning landscape introduces
a new length scale larger than the lattice spacing. Given that
subradiant modes can only be sustained if the new length
scale is smaller than a wavelength, lattice excitations that
were originally dark are now forced to radiate. Conversely,
these states can be populated by an incoming light field while
the detuning pattern is present. Upon turning the detuning
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off, they recover their long-lived nature and remain in the
array.

Here, we prove that spatial detuning patterns allow to
selectively address individual lattice dark states. Also, we
demonstrate that this technique can be used to store sin-
gle photons in the collective dark states of two-dimensional
atomic arrays and that the excitation can be subsequently
retrieved with high fidelity, even for systems with only a few
hundred atoms [35]. By properly choosing the magnitude of
the detuning during the retrieval process, one can obtain full
control over the time-frequency degrees of freedom of the
emitted electric field. In particular, we show how to emit
photons with an arbitrary temporal shape and how to produce
single photons that are in a coherent superposition of two
frequencies and can therefore be used as quantum bits [36,37].
Additionally, we explore different schemes to modify the spa-
tial properties of the emitted electric field and demonstrate
that beam steering [13,38] at the single-photon level can be
achieved. Interestingly, spatial modulations of the detuning do
not only allow to create radiative paths from dark momentum
states to the ground state, but also enable to couple multiple
dark states with one another. As a result, one can engineer
a wide variety of long-lived, coherent interactions between
them that can potentially be used to experimentally measure
the band structure of the system or to devise quantum gates
[10,39,40].

II. MODEL

Let us consider a two-dimensional square array of two-
level atoms interacting with the vacuum electromagnetic field.
The Hamiltonian governing the system is [41–44]

Ĥ =
∑

j

h̄(ω0 − � j )σ̂
†
j σ̂ j +

∑
κ,ε⊥κ

h̄ωκâ†
κ,εâκ,ε + V̂ . (1)

Here, the index j labels the atom at position r j and � j

represents the detuning of that atom with respect to its bare
frequency ω0. κ is the three-dimensional wavevector of a
given electromagnetic mode and ε its polarization. The last
term, V̂ , describes the interaction between the radiation field
and the lattice atoms and depends on the atomic dipole mo-
ment and the vacuum electric field at the atomic positions:

V̂ =
∑

j

P̂ jÊ(r j ) = −h̄
∑

j

∑
κ,ε⊥κ

gκ

(
dεσ̂ †

j âκ,εe
iκr j + H.c.

)
,

(2)
where gκ = d0

√
ωκ/2h̄ε0V and the direction and magnitude

of the dipole moment d are assumed to be the same for all
atoms.

A. Lattice dynamics

Applying the Born-Markov approximation, one can trace
out the electromagnetic degrees of freedom and obtain the
master equation describing the density operator of the atoms
[41–43]. Equivalently, the dynamics of the system are de-
scribed by an effective non-Hermitian Hamiltonian Ĥeff in the
quantum jump formalism [45–48]. If the lattice contains one
or zero excitations (one-excitation manifold) and no external
drive is applied, the quantum jumps have no effect and the

lattice dynamics are fully determined by Ĥeff [1,5]:

Ĥeff = h̄
∑

j

(ω0 − � j (t ))σ̂ †
j σ̂ j + h̄

∑
j,i

(
Jji − i

� ji

2

)
σ

†
j σi,

(3)

where Jji and � ji are the cooperative energy shifts and decay
rates arising from dipole-dipole interactions between atoms j
and i, and are given by the dyadic Green’s function in free
space [1,49,50],

Jji − i
� ji

2
= −3πγ0

ω0
d∗ · G(r j − ri, ω0) · d. (4)

Note that we define � j j = γ0 to be the spontaneous emis-
sion rate and include the Lamb shift Jj j in ω0. In the last
equation, we neglected the dispersion of the Green’s function
consistent with the Markovian approximation. Then, the field
scattered by the atoms is [51–54]

Ê(r) = μ0k2
0

∑
j

G(r j − r, ω0)dσ̂ j . (5)

The state of the lattice in the one-excitation manifold can
be expressed as |	(t )〉 = ∑

j e j (t )e−iω0t |e j〉 + g(t )|g〉, where
|g〉 is the state where all atoms are in the ground state and |e j〉
represents the state in which only atom j is excited. Applying
Schrödinger’s equation, we obtain the following equations of
motion:

de j

dt
= i� j (t )e j − i

∑
i

(
Jji − i

� ji

2

)
ei. (6)

For an infinite lattice, one can simplify the problem by
applying Bloch’s theorem. Then, the momentum states of the
atomic lattice can be expressed as vk = ∑

j e−ikr j e j , where
k is a two-dimensional momentum contained within the first
Brillouin zone of the reciprocal lattice. For a square lattice
with interparticle spacing d , each component is contained
within {−π/d, π/d}. The equations of motion in momentum
space take the form

dvk

dt
= −i

(
Jk − i

�k

2

)
vk + i

∑
j

e−ikr j � j (t )e j, (7)

where the cooperative shifts Jk and decays �k are given
by the Fourier transform of the Green’s function G̃(k) =∑

j e−ikr j G(r j ). Note that the resulting shift is small com-
pared to the bare atomic transition frequency |Jk| � ω0.
Thus, the radiation is emitted at a frequency close to ω0 and
the wavevector of the emitted photon needs to fulfill |κ| ≈
ω0/c = 2π/λ0, which defines the edge of the light cone. For
lattice spacings d < λ0/

√
2, two types of momentum states

emerge: first, those that lie inside the light cone |k| � 2π/λ0,
which couple to the radiation field and have a nonzero de-
cay rate, and second, those that lie outside the light cone
|k| > 2π/λ0 and only couple to evanescent waves of the
electromagnetic field. As a result, these momentum states do
not radiate into the electromagnetic far field and have sup-
pressed decay rates. For an infinite lattice, perfect subradiance
is achieved, �k = 0, and the momentum states are completely
dark [1,5].
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B. Coupling momentum states with a periodic spatial
detuning profile

In the case where all lattice atoms have the same detun-
ing, the last term in Eq. (7) is equal to i�(t )vk and every
momentum state evolves independently. To couple different
momentum states, one needs to break the symmetry of the
lattice. This can be achieved by introducing a periodic spatial
detuning profile. If the lattice is taken to be in the xy plane,
the most general periodic detuning profile with a periodicity
of Nx and Ny atoms along each direction can be represented
via the Fourier series

� j =
∑

Q

�QeiQr j , (8)

where we have defined the two-dimensional quasimomenta
Q = 2π/d (qx/Nx, qy/Ny) such that qx ∈ {0, Nx − 1} and qy ∈
{0, Ny − 1}. Note also that the detuning must be real at all
lattice sites, which implies �(qx,qy ) = �∗

(Nx−qx,Ny−qy ).
Using the detuning in Eq. (8), the equations of motion in

momentum space given by Eq. (7) can be ultimately written
as

dvk

dt
= −i

(
Jk − i

�k

2

)
vk + i

∑
q

�qvk−Q, (9)

such that the lattice state with momentum k = (kx, ky) is now
coupled to states with momentum k − Q = (kx − 2π

d
qx

Nx
, ky −

2π
d

qy

Ny
). Having control over the periodicity of the pattern and

the amplitude of each Fourier component allows to engineer a
wide variety of couplings that can be used for various quantum
applications discussed in subsequent sections. Note also that
qx = qy = 0 implies a constant detuning which does not break
the symmetry of the system. As discussed above, this results
in each momentum state evolving independently.

Finally, it is worth noting that this scheme can easily
be generalized to atomic arrays of different geometries and
dimensions.

Checkerboard pattern

To illustrate how different momentum states couple, we
first consider a checkerboard detuning pattern such that near-
est neighbors have detunings of opposite sign. The resulting
non-Bravais square lattice with a two-atom basis is depicted
in Fig. 1(a) and the exact form of the detuning profile can be
expressed as � j = �ei π

d rj = �(−1)nx
j+ny

j , where π = (π, π )
and n j = r j/d is an integer vector that represents the atomic
positions normalized by the interparticle spacing. This pattern
has a two-atom periodicity along both axes, contains a single
Fourier component Q = π/d , and therefore couples the mo-
mentum states |k〉 and |k + π/d〉.

The dynamics of the system are equivalent to those of a
three-level system formed by the momentum states |k〉 and
|k + π/d〉 and by the lattice ground state |g〉, as depicted
in Fig. 1(b). Each momentum state decays to the ground
state with its corresponding decay rate and is shifted from
the atomic frequency ω0 by its corresponding energy shift.
Additionally, the coupling between both momentum states is
given by the magnitude of the detuning �. The corresponding

(c) (d)

(b)(a)

FIG. 1. Checkerboard detuning pattern. (a) The checkerboard
lattice is a non-Bravais lattice with two atoms per unit cell, such that
neighboring atoms have detunings of opposite sign relative to the
natural transition frequency ω0. (b) Momentum-space representation
of a square lattice (black square) and the checkerboard lattice that
emerges at finite detuning (blue square). The detuning couples the
momentum states k and k + π/d (dashed lines) with strength �

and creates a three-level system such that both momentum states
decay to the ground state with their respective collective decay rates.
(c) Band structure for the nondetuned lattice with spacing d = 0.2λ0

and circular in-plane polarization. The radiating states are located
around the origin of the Brillouin zone � and zero decay is observed
outside the light cone. (d) Upon introducing a finite detuning, a band
gap opens. The momentum states around � mix with those close to
the corner M and the original dark band acquires a nonzero decay
rate.

equations of motion are

dvk

dt
= −i

(
Jk − i

�k

2

)
vk + i�(t )vk+π/d ,

dvk+π/d

dt
= −i

(
Jk+π/d − i

�k+π/d

2

)
vk+π/d + i�(t )vk,

|g|2 = 1 − |vk|2 − |vk+π/d |2. (10)

Note that population transfer from |g〉 to |k〉 requires an exter-
nal drive with in-plane wavevector k.

To visualize the coupling between momentum states, it
is useful to draw the lattice in reciprocal space. Figure 1(b)
shows the first Brillouin zone for the nondetuned perfect
lattice in black and for the detuned checkerboard lattice in
blue. The detuning landscape couples the points along the
two green, red, and orange dashed lines, which are translated
by π/d . For instance, the origin of the nondetuned Brillouin
zone � (a radiating state) is coupled to the corner M (a dark
state). Periodic detuning patterns therefore emerge as a natural
technique to populate lattice dark states or, alternatively, to
couple dark states to far-field radiation.

One can also understand the effect of the checkerboard
detuning by analyzing the lattice band structure. Figures 1(c)
and 1(d) show the energy shift and decay rate (color scale)
along the path M ′ → � → X ′ → M ′ of the detuned Brillouin
zone. For zero detuning [Fig. 1(c)], only the momentum states
inside the light cone, that is, close to the � point, have a
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nonzero decay rate (yellow) and radiate. Additionally, the
two bands are degenerate at the edges of the Brillouin zone,
indicating that the detuned Brillouin zone does not capture
the whole symmetry of the lattice and that the bands should
be instead unfolded along the M → � → X → M path. For
finite detuning [Fig. 1(d)], the lattice loses the full symmetry
and a band gap opens. The momentum states of the nonde-
tuned lattice vk are no longer eigenstates of the system and the
two bands are now admixtures of vk and vk+π/d . Near the �

point, this results in both bands acquiring a finite width, such
that initial dark states close to M are forced to radiate. For
small enough lattice constants, a region appears where dark
momentum states are coupled with one another and remain
subradiant despite the detuning pattern.

C. Emitted electric field

The atomic dynamics determine the electric field at any
given point and time through Eq. (5). When Fourier trans-
formed over the in-plane spatial components x and y, the field
can be written as

E(κ||, z, ω) = μ0k2
0G(κ||, z, ω0)d

∑
j

e j (ω − ω0)e−iκ||r j ,

(11)
where κ|| = (κx, κy) is a two-dimensional momentum vec-
tor, G(κ||, z, ω0) is the momentum-space Green’s function,
and e j (ω − ω0) = ∫ ∞

0 dtei(ω−ω0 )t e j (t ) is the shifted Laplace
transform of the atomic amplitudes. Note that we have again
assumed that the atomic response is narrow around its res-
onant value ω0. For an infinite lattice, the summation over
atomic sites corresponds to the definition of the lattice mo-
mentum states and Eq. (11) takes the simple form

E(κ||, z, ω) = μ0k2
0G(κ||, z, ω0)dvκ|| (ω − ω0). (12)

That is, a lattice state with a given quasimomentum k couples
only to modes of the electromagnetic field with that same
in-plane momentum κ|| = k. Because the three-dimensional
momentum κ fulfills |κ| � 2π/λ0, only states inside the light
cone can couple to the electromagnetic field and radiate. Note
also that the excitation will be identically emitted to each side
of the array such that the amplitudes at mirrored directions
(κ||,±κz ) are equal.

In order to characterize the electric field or photon emitted
by the array, we will use three figures of merit in what follows.
The first is the magnitude of the electric field as a function of
frequency for a fixed propagation direction, which is given by
the collective frequencies at which the radiating momentum
states evolve. The second is the magnitude of the electric
field for different propagation directions at a fixed frequency,
which primarily depends on the amplitude of each radiating
momentum state. The third is the overlap between the field
generated by the atomic array and the electric field of a mode
of interest, which we refer to as the detection mode. This
overlap only depends on the amplitude of the detection mode
at the atomic positions [9]. For a monochromatic Gaussian
beam of waist ρ that propagates perpendicular to the atomic
array and whose focal plane coincides with the position of the
lattice, the amount of excitation in the detection mode as a

function of time can be written as [9]

n(t ) = 3

4π2ρ2

∫ t

0
dτ

∣∣∣∣∣
∑

j

dε∗
Ge−r2/ρ2

e j (τ )

∣∣∣∣∣
2

, (13)

where εG is the polarization of the Gaussian mode. The
long-time limit η = limt→∞ n(t ) gives the efficiency of the
emission process, that is, the fraction of the photon emitted
into the desired mode.

III. SINGLE-PHOTON STORAGE AND RETRIEVAL

In the previous section, we have presented a general
method to couple different momentum states with one another.
In particular, such spatial detuning patterns allow populating
lattice dark states, that is, momentum states outside the light
cone that in general do not couple to the electromagnetic far
field. Using the checkerboard pattern presented in Sec. II B,
an incident beam with in-plane momentum k will not only
populate the radiating lattice state with that same quasimo-
mentum k, but also the dark state k + π/d . For example, a
low-intensity, classical Gaussian beam with zero in-plane mo-
mentum will populate a Gaussian distribution of momentum
states centered at the corner of the Brillouin zone M (see
Appendix C). Upon turning off the spatial detuning pattern,
the long-lived dark states will remain in the lattice.

This selective coupling to lattice dark states also enables
the storage of traveling, single photons in the atomic array. In
recent decades, disordered three-dimensional atomic clouds
[55,56] as well as two-dimensional ordered atomic arrays
[9] have been proposed as light-matter interfaces for photon
storage. While atomic clouds require large optical depths to
achieve near-unity storage and retrieval fidelity, strong inter-
actions and spatial interference can be exploited in atomic
arrays to obtain similar efficiencies with a very moderate
amount of atoms (∼100 atoms). Both platforms use a similar
storage scheme, wherein electromagnetically induced trans-
parency enables the storage of the photon in a metastable,
third atomic level. We now present a different storage mecha-
nism that requires only two atomic levels and that uses lattice
dark states to convert the incoming photon in a long-lived
collective atomic excitation.

For simplicity, let us first study the retrieval process.
Consider a collective atomic excitation at the corner of the
Brillouin zone M. Once the checkerboard detuning pattern
is turned on, the excitation will couple to the origin of the
Brillouin zone � and radiate. Due to the symmetry of the
array, the photon will be emitted on both sides of the lattice
and needs to be recombined a posteriori. The temporal shape
of the photon will be determined by the precise form of �(t ),
and the efficiency of the process is obtained by comparing
the outgoing photon with a mode of interest (i.e., a Gaussian
mode). Conversely, photon storage can be simply understood
as the time-reversed operation of retrieval [55,56]. That is,
sending the photon back in a time-reversed way and applying
the time-reversed detuning sequence ensures the storage of the
photon. It follows that the efficiencies for storage and retrieval
are identical.

This implies that a single photon can only be perfectly
stored in the two-dimensional lattice if it impinges from both

013110-4



PHOTON CONTROL AND COHERENT INTERACTIONS VIA … PHYSICAL REVIEW RESEARCH 4, 013110 (2022)

(a) (b)

(c) (d)

FIG. 2. Experimental setup and efficiency of photon retrieval.
(a) Setup to store a photon in the two-dimensional atomic array.
The incoming photon is split by a beam splitter and impinges the
lattice from both sides. Conversely, the retrieved or outgoing photon
is equally emitted on both sides of the array and needs to be recom-
bined. (b) Retrieval error of a single photon in Gaussian detection
modes of waist ρ for lattices with spacing d = 0.3λ0 and different
total number of atoms, N . In all figures, we consider the atoms to
be circularly polarized, ℘= (1, 1 j, 0)/

√
2. The solid lines represent

the error if the Gaussian photon is retrieved immediately after being
stored (ts = 0). The dashed lines show the error if a finite amount
of time tsγ0 = 50 goes by before retrieving the photon. (c) Retrieval
error as a function of storage time for waists ρ/d = 5 (blue) and
ρ/d = 7 (orange), as well as for the optimal waist ρopt for any given
storage time ts (green). A 21 × 21 lattice is considered. (d) Curvature
of the band around the Brillouin zone corner M as a function of lattice
spacing along the directions shown in the inset. The band curvature
determines the rate at which the different momentum components
dephase. Lattices with larger curvatures and stored excitations with
larger momentum width dephase faster.

sides [9,57]. The incoming photon therefore needs to be split
using the experimental setup depicted in Fig. 2(a). Moreover,
given an incoming photon, one needs to find the detuning
sequence �(t ) capable of storing it or, equivalently, capable
of producing that same temporal shape during the retrieval
process. The resulting optimization problem is treated in
Sec. IV A.

In what follows, we evaluate the retrieval efficiencies that
can be obtained for various lattice sizes, as well as the inherent
limitations of photon memories with lattice dark states.

Retrieval efficiency

To evaluate the retrieval efficiency of the array, we com-
pute the overlap of the emitted photon with various detection
modes of Gaussian shape. The amount of excitation emitted in
the desired channel as a function of time is given by Eq. (13)
and its limit at long times gives the efficiency η of the process.
We consider square arrays of different atom number N , as well
as Gaussian beams of different waists ρ. The corresponding
initial dark states are obtained by illuminating a deexcited
lattice with a low-intensity classical Gaussian beam of the
desired waist. As shown in Appendix C, applying the checker-

board detuning pattern results in a Gaussian-like superposition
of dark momentum states around the Brillouin zone corner M.

Figure 2(b) shows the retrieval error ε = 1 − η of such
dark states as a function of beam waist ρ for different array
sizes. We retrieve the same bounds as in Ref. [9], where the
excitation is stored in a third, metastable level. For beam
waists larger or comparable to the array size, the error cor-
responds to the amount of energy that propagates outside the
array and does not interact with the lattice. At low beam
waists, the Gaussian beam contains wavevectors with many
different propagation directions. Different angles of incidence
have maximum reflectance at different detunings [2], which
results in a reduced overall reflectance of the photon and
a subsequent increase of the retrieval error. There exists an
intermediate region where both error sources are simultane-
ously reduced and minimal errors are obtained. Larger lattices
reduce the amount of energy lost outside of its boundaries and
enable the storage of Gaussian beams with larger waists, and
therefore lower momentum spreads. As a result, larger lattices
attain lower errors and the optimal waist scales with the array
size. Note that one can achieve storage and retrieval errors of
the order ε ∼ 10−4 for 21 × 21 lattices, that is, arrays of 441
atoms. Provided that the spacing d is small enough such that
the lattice presents subradiant modes, the exact value of the
efficiency only depends on the ratio ρ/d and the size N of the
array.

While the efficiency is mostly unaffected by the specific
detuning �(t ) applied during the retrieval process, it strongly
depends on the spatial shape of the incoming photon. A pho-
ton with a finite waist is stored in a superposition of dark
momentum states, each of them having a different energy shift
Jk from the bare atomic frequency ω0. Therefore, once the
photon is mapped to a collective atomic excitation and the spa-
tial detuning is turned off, each momentum component freely
evolves at a different frequency vk(t ) = e−iJktvk(t = 0). As
a result, different momentum components acquire different
relative phases while the excitation remains stored in the
lattice and the system dephases. If the excitation is retrieved
immediately after being stored, all momentum components
have the original phases and the photon is emitted almost
perfectly into its original mode [solid lines in Fig. 2(b)]. If one
waits a finite amount of time ts before starting the retrieval
process, this is no longer the case and the spatial profile of
the emitted photon depends on the exact shape of the band
structure at the region where the excitation was stored. Around
the M point, the dispersion is parabolic and the resulting field
no longer has the perfect Gaussian profile of the stored photon.
Consequently, the efficiency of the retrieval process decreases
with ts. As shown by Fig. 2(c) and the dash-dotted curves in
Fig. 2(b), this decay in efficiency is lower for photons with
a large waist, as they excite a narrower distribution of dark
momentum states. The minimum error for a 21 × 21 lattice
with d = 0.3λ0 as a function of storage time is given by the
green curve in Fig. 2(c) and reaches ∼2% for tsγ0 = 50, a
value that can be significantly reduced by increasing the size
of the lattice. Note also that the dephasing rate in square
lattices is given by the curvature of the band at the M point,
which is minimal for spacings d ∼ 0.2λ0 [see Fig. 2(d)]. Al-
ternatively, the dephasing can be minimized by considering
different lattice geometries and exploiting the properties of
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their band structures. For example, storing the photon in mo-
mentum states lying on flat bands would eliminate dephasing
and allow to retrieve the photon after large storage times with
almost unit fidelity.

IV. SHAPING A SINGLE PHOTON

One of the fundamental goals of quantum optics is to
control the state of nonclassical light. In this section, we
discuss how two-dimensional atomic lattices can be used to
modify the properties of single photons by choosing different
temporal detuning sequences and spatial detuning patterns for
the storage and retrieval processes. More concretely, we show
how to create photons with arbitrary temporal shapes, as well
as how to produce states of light relevant in multidimensional
quantum information science [36,37,58–62] such as photons
that are in a coherent superposition of different frequencies or
directions.

A. Temporal shape

For a given spatial detuning pattern, the amplitude of the
detuning determines the strength of the coupling between
momentum states and the dynamics of the retrieval process.
As a result, a photon with a given temporal shape can only
be achieved by some detuning sequence �(t ). As discussed
in Sec. III, this knowledge is necessary to properly store an
incoming photon and to later retrieve it with the same tempo-
ral shape. Additionally, one can also manipulate the temporal
shape of the outgoing photon at will by modifying �(t ).

For simplicity, we will first consider an infinite lattice with
an excitation initially stored in a dark state with momentum
kd . Applying a checkerboard detuning pattern, the dark state
will couple to the state kr = kd + π/d , which will radiate if
it is located within the light cone. The equations of motion
for the three-level system containing the momentum states
kd and kr and the ground state |g〉 are given by Eq. (10).
To simplify the notation, we will denote the amplitude in the
dark state vkd ≡ vd and the amplitude in the radiating state
vkr = vkd +π/d ≡ vr . Similarly, the energy shifts and decay
rates of both states will be labeled as Jd , Jr , and �r (note that
�d = 0).

The amount of excitation in the radiation field is equal to
the amount of excitation that has left the system. If the photon
is retrieved into the detection mode with high efficiency, the
derivative of the photon number in the detection mode dn/dt
is given by

dn

dt
≈ d|g|2

dt
= −2Re{v̇dv

∗
d + v̇rv

∗
r } = �r |vr |2. (14)

That is, the desired temporal shape of the photon fixes the
population of the radiating state during the retrieval process
and can therefore be related to the detuning sequence �(t )
needed to produce that photon. For that, we discretize the time
evolution in small steps of time, δt . At each time step k, the
amplitudes in the momentum states are

v
(k)
d = v

(k−1)
d + δt

(−iJv
(k−1)
d + i�(k−1)v(k−1)

r

)
,

(15)
v(k)

r = v(k−1)
r + δt

(
i�(k−1)v

(k−1)
d − �rv

(k−1)
r /2

)
,

where we have defined J = Jd − Jr . Plugging these expres-
sions in the discretized version of Eq. (14) results in a
second-order equation for the detuning at step k − 1 with
solution

�(k−1) = (−b ±
√

b2 − 4ac)/2a,

a = δt2
∣∣v(k−1)

d

∣∣2
,

b = 2δt (1 − �rδt/2)Im
{
v(k−1)

r v
(k−1)∗
d

}
,

c = −dn/dt |k
�r

+ ∣∣v(k−1)
r

∣∣2
(1 − �rδt/2)2, (16)

with initial conditions vd (t = 0) = 1 and vr (t = 0) = 0. For
this result to be valid in the case of a finite lattice and a stored
state with a finite momentum width, one requires the decay
rate �r and the difference in energy shifts J to be approxi-
mately constant over the distribution of momenta contained in
the initial dark state. The band structure in Fig. 1(c) shows that
this is the case for an excitation initially stored at the corner
of the Brillouin zone M and that couples to the origin �.

Using the M and � points as a reference, we numerically
obtain in Fig. 3(a) the detuning sequences for photons of the
following shapes: Blackman window (blue), Tukey window
(red), triangular window (green), and sinusoidal window (or-
ange). We then consider a 21 × 21 square lattice of spacing
d = 0.2λ0 with a stored Gaussian beam of waist ρ = 1.2λ0.
Applying the optimized sequences to this finite lattice results
in the temporal photon shapes dn/dt in the lower plot of
Fig. 3(a), which perfectly resemble the target shapes. Note
that the exponential nature of the atomic decay makes it chal-
lenging to obtain a temporal shape that abruptly finishes at
a given finite time tend. For such shapes, where dn/dt (t �
tend ) �= 0 and dn/dt (t > tend ) = 0, the numerical method in
Eq. (16) yields detuning strengths that significantly grow close
to tend. Here, we replace these growing endings by constant de-
tuning plateaus at � = 0.5γ0. While the effect is negligible for
temporal shapes with a smooth tail such that d2n/dt2(t = tend )
is continuous (i.e., Blackman and Tukey windows), this is no
longer true for shapes that exhibit sharp endings with a discon-
tinuous d2n/dt2(t = tend ). That is, the exponential nature of
the atomic array forces the triangular and sinusoidal photons
to also have a smooth tail. Additionally, the discontinuity of
d2n/dt2 at the peak of the triangular photon requires a jump
in �(t ).

Figure 3(b) shows the detuning and photon shape for
Blackman windows (similar to a confined Gaussian window)
of different duration. While the emission is centered around a
single frequency in all cases, shorter temporal profiles require
larger magnitudes of the detuning and their spectrum conse-
quently has a larger linewidth [see inset Fig. 3(b)].

Note that all photons generated in Fig. 3 have the same spa-
tial profile, which is uniquely defined by the spatial detuning
pattern (in this case a checkerboard pattern) and the storage
time, during which the relative phases between momentum
states are modified.

B. Frequency profile

While applying time-dependent detuning sequences such
that at all times �(t ) < �r produces photons centered at a
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(a)

(b)

FIG. 3. Temporal shape of the emitted photon. (a) Optimized
temporal detuning sequences �(t ) for an infinite lattice and emitted
photons of the following shapes: Blackman window (blue), Tukey
window (red), triangular window (green), and sinusoidal window
(orange). Lower plot: Population emitted in a Gaussian mode of
waist ρ = 1.2λ0 per unit of time dn/dt for the different detuning
sequences and for a 21 × 21 lattice with lattice spacing d = 0.2λ0.
(b) Detuning sequences optimized for a finite lattice and resulting
temporal shape of the emitted photon for Blackman windows of
different durations. Again, a 21 × 21 lattice with lattice spacing
d = 0.2λ0 is used. The inset shows the spectrum of the emitted
electric field. The resulting photon has only one central frequency
and its width increases as its temporal duration decreases.

single frequency, this is no longer the case for sufficiently
large magnitudes of the detuning. From a band-structure per-
spective (see Fig. 1), increasing the magnitude of the detuning
also increases the gap between the bands. For large enough
detunings, the frequency difference between the bands will be
larger than their widths or decay rates and one would expect
the emission to happen at two different frequencies.

To analyze this phenomenon, let us consider that a dark
state and a radiating state of the infinite lattice are coupled
via a checkerboard detuning pattern of constant strength �.
Then, Eq. (10) can be solved analytically and the amplitude in

(a)

(b)

FIG. 4. Frequency profile of the emitted photon. Frequency pro-
file of the emitted electric field for different detuning strengths and
for spacings (a) d = 0.3λ0 and (b) d = 0.2λ0. As the detuning is
increased, the central frequency peaks splits into two. The insets
show the band structure of the lattice with zero detuning. The sign
of J� − JM determines whether the most prominent peak is found at
frequencies larger or lower than the natural transition frequency ω0.
The same color scale is used for both insets.

the radiating state vr can be written as

vr (t ) = �

2
√

�2 + G2
(eiω+t − eiω−t ), (17)

where we have defined G = Jd −Jr+i�r/2
2 and ω± =

−Jd −Jr+i�r/2
2 ± √

�2 + G2. Note that the real and imaginary
parts of ω± correspond to the energy shifts and decay rates of
the two bands of the checkerboard lattice.

The photon will be emitted at the in-plane momentum of
the radiating state kr and its frequency at late times can be
obtained from Eq. (12):

Eκ||=kr (ω) ∝ 1

ω − ω0 + ω+
− 1

ω − ω0 + ω−
. (18)

It is now clear that the spectrum will have two Lorentzian
peaks. Their centers are given by the real part of ω±, whereas
the magnitude and width of the peaks are determined by the
imaginary part of the ω±.

Figures 4(a) and 4(b) show the frequency profile of the
photon emitted by a 21 × 21 lattice with spacing d = 0.3λ0

and d = 0.2λ0, respectively. As expected, only one frequency
peak is observed for low detunings such that � � �r . If the
detuning is increased, the frequency difference between both
bands becomes larger than their decay rates and two asym-
metric peaks emerge, indicating that the outgoing photon is
in a superposition of two colors. For a very large detuning,
the decay rates of both bands tend to �r/2 and the probability
to emit at each frequency is the same. In this limit, we can
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think of the atomic array as being formed by two independent
square lattices of spacing

√
2d . Their resonance frequencies

are shifted by 2� and their decay rates are identical and
equal to �r/2. Note that arrays with a smaller spacing have
a larger decay rate and therefore require a larger detuning
before emission in two colors is observed. Also, the most
prominent peak corresponds to the band with the original dark
state. Depending on the spacing, the dark state can have a
larger or lower energy shift than the radiating state and the
predominant peak will correspondingly appear at a frequency
larger or lower than ω0.

Additional control of the frequency profile can be achieved
by adding a periodic time-dependent detuning [63,64] that is
equal at all lattice sites. In Appendix D, we show that it results
in modulation-shifted sidebands and that the photon is emitted
in a coherent superposition of many frequencies.

C. Direction of emitted photon

While modifying the magnitude of the detuning over time
gives control over the time-frequency degrees of freedom of
the emitted photon, it cannot modify its direction or spatial
profile E(r). This can only be achieved by using different
spatial detuning patterns for the storage and retrieval pro-
cesses. In this section, we store a perpendicularly incoming
Gaussian photon at the X point of the Brillouin zone [green
circles in Fig. 5(a)] by applying a pattern with a single Fourier
component Q = (π/d, 0), which creates a two-atom period-
icity along the x axis given by �S = �(−1)nx

j . Using retrieval
patterns of a higher periodicity, we show that the outgoing
photon can be produced in a coherent superposition of differ-
ent directions.

In general, a detuning pattern with n atoms per unit cell will
couple n momentum states with each other. That is, an initial
dark state will be coupled to a set of n − 1 momentum states.
Provided that all of them lie inside the light cone, the photon
will in general be emitted in a coherent superposition of n − 1
directions (on each side of the lattice) given by the in-plane
momenta of the radiating momentum states. The percentage
of the photon emitted in each direction can be controlled by
properly engineering the shape of the detuning pattern.

The first nontrivial detuning corresponds to a periodicity
of three atoms, for example, along the x axis. The three possi-
ble Fourier components are Q0 = 0 and Q± = (±2π/3d, 0).
The dark state with momentum k = (π/d, 0) will therefore
be coupled to the momentum states k = (±π/3d, 0) illus-
trated by the red circles of the Brillouin zone in Fig. 5(a).
For d > λ0/6, these momentum states lie within the light
cone and the photon will be emitted along the directions
κ ≈ 2π/λ0(± sin θ, 0,± cos θ ), which correspond to the four
red arrows (two on each side of the array) in the real-space
sketch of Fig. 5(a). They form an angle of sin θ = λ0/6d with
the axis perpendicular to the array. To simplify nomenclature,
we will label the different momentum states according to their
normalized momentum kxd along the x axis, such that vπ is
the dark state and v±π/3 the radiating states. For a general de-
tuning � j = αeiQ0r j + βeiQ+r j + β∗eiQ−r j = α + βei2πnx

j/3 +
β∗e−i2πnx

j/3 such that α ∈ R and β ∈ C, the equations of

(a)

(b)

FIG. 5. Direction of the emitted photon. (a) The photon is ini-
tially stored at the X point by coupling it to the origin of the Brillouin
zone � (green dots). Applying spatial detunings with a periodicity
of three atoms along the x direction, the X point is coupled to the
two red dots with momentum k = (±π/3d, 0). In real space, the
photon to be stored impinges the array in the perpendicular direction
(green arrows), whereas the excitation is retrieved in a superposition
of the four red arrows which form an angle sin θ ≈ λ0/6d with the
perpendicular axis. We compute the magnitude of the electric field
along the directions κθ = 2π/λ0(sin θ, 0, ± cos θ ) contained in the
xz plane for two different detunings: �A/γ0 = eiQ+r j /2 + eiQ−r j /2
(blue) and �B/γ0 = −ieiQ+r j /2 + ieiQ−r j /2 (orange), where Q± =
(±2π/3d, 0). (b) Same for detuning patterns with a periodicity of
four atoms. The X point is in this case coupled to the origin � and the
states k = (±π/2d, 0) and the photon is emitted in a superposition
of six directions, two perpendicular to the array and four which
form an angle sin θ ≈ λ0/4d with the normal axis. The most gen-
eral detuning pattern is � j = βeiQ̃+r j + β∗eiQ̃−r j + δeiQπ r j , where
Q̃± = (±π/2d, 0) and Qπ = (π/d, 0). Three detuning patterns are
considered: pattern C with βC = 0.75γ0 and δC = 0, pattern D with
βD = 0.75eiπ/4γ0 and δD = 0, and pattern E with βE = 0.5eiπ/4γ0

and δE = 0.7γ0. In all cases, 41 × 41 lattices with spacing d = 0.3λ0

are used and the stored Gaussian photon has a waist of ρ = 12d .

motion are
dvπ

dt
= − i(Jπ − α)vπ + i Re(β )v+ − Im(β )v−,

dv+
dt

= − i

(
Jπ/3 − α − Re(β ) − i

�π/3

2

)
v+,

+ 2i Re(β )vπ + Im(β )v−

dv−
dt

= − i

(
Jπ/3 − α + Re(β ) − i

�π/3

2

)
v+

+ 2 Im(β )vπ − Im(β )v+, (19)
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where we have introduced the rotated momentum basis v± =
vπ/3 ± v−π/3. From Eqs. (19), it is clear that the amount of
excitation emitted into each direction depends on the param-
eter β. For β ∈ R, vπ couples only to v+. If the excitation is
initially stored in the dark state, then v−(t ) = 0 at all times
and the amplitudes in the radiating states are always the same,
vπ/3 = v−π/3. The resulting photon is therefore emitted in an
equal superposition of the four directions, as shown by the
emission pattern A in Fig. 5(a). For a general complex β, all
three states are coupled with one another and it is no longer
true that |vπ/3| = |v−π/3|. The probability to emit the photon
at an angle θ and −θ will therefore be different [see pattern
B in Fig. 5(a)] and the electric field will have an asymmetric
spatial profile. Note that the relative amplitudes between both
directions can be controlled by adjusting the magnitude of the
detuning β.

To obtain simultaneous emission perpendicular to the array
and along two oblique directions, one needs to introduce a
detuning pattern with a periodicity of four atoms along the
x direction. Now, the Fourier components Q0 = 0, Q̃± =
(±π/2d, 0), and Qπ = (±π/d, 0) couple the stored dark mo-
mentum state k = (π/d, 0) with the states k = (±π/2d, 0)
and k = 0, which correspond to the red circles in Fig. 5(b).
For d > λ0/4, these momentum states lie within the light cone
and the photon will be emitted either at the perpendicular
direction θ = 0 or at an angle ±θ such that sin θ = λ0/4d .
Again, different types of interference effects between momen-
tum states can be engineered to obtain arbitrary electric fields.
For a general detuning pattern containing only the Fourier
components Q̃±, the photon will be emitted along the oblique
directions ±θ (with equal amplitude) and along the perpen-
dicular direction, as shown by trace C in Fig. 5(b). For certain
values of the detuning, however, the momentum states k =
(±π/2d, 0) destructively interfere to suppress the amplitude
in state k = 0. The resulting electric field, given by trace D
in Fig. 5(b), is zero along the perpendicular direction. Finally,
one can break the symmetry between the oblique directions
±θ by introducing a component Qπ in the spatial detuning
pattern. Then, the photon is emitted in a superposition of all
three directions and the amplitude in each of them is different
[see trace E in Fig. 5(b)]. A more thorough analysis can be
found in Appendix E.

V. LONG-LIVED COHERENT INTERACTIONS BETWEEN
LATTICE DARK STATES

Coupling lattice dark states to radiating momentum states
results in dissipative dynamics between both states (as a decay
path through the radiating state is always available) that can
be used to store excitations in the lattice or to control the
properties of the emitted light. One can further exploit the
suppressed decay rate of dark states by coupling them with
one another and thus engineer extremely long-lived coherent
interactions between them. Although the atomic excitation
corresponding to a dark state is delocalized and shared among
all the dipoles of the lattice, we show in this section that their
dynamics are similar to those of coupled individual quantum
emitters [10,11].

The simplest type of interaction is obtained in the case of
two coupled dark states, which can be achieved by a spatial

detuning pattern with a period of two atoms. Let us denote
their amplitudes in the infinite lattice case as v1 and v2 and
their corresponding energy shifts as J1 and J2. In the case
of constant detuning, the equations of motion v̇1 = −iJ1v1 +
i�v2 and v̇2 = −iJ2v2 + i�v1 generate Rabi oscillations be-
tween the dark states. If the excitation is initially stored in v1,
the amplitude in the other momentum state takes the simple
form

v2(t ) = i
�

�gen
e−i J1+J2

2 t sin(�gent ), (20)

where �gen =
√

�2 + ( J1−J2
2 )2 is the generalized Rabi

frequency.
The oscillation frequency of the momentum pair as well as

their global phase depend on the difference between energy
shifts J = J1 − J2. For a stored excitation with a momentum
distribution of finite width, this difference will vary among
momentum pairs and a distribution of J values appears, which
can cause two types of dephasing. The first one comes in
through the phase exp(−i(J1 + J2)t/2) and therefore only
introduces relative phases between momentum states. Such
a dephasing would already happen without the detuning pat-
tern and does not modify the direction of the photon emitted
through a later retrieval scheme. The second source of de-
coherence originates from the difference in Rabi frequencies
�gen and results in different momentum pairs undergoing
Rabi oscillations with slightly different frequencies. One can
estimate the time tdephase needed for two momentum pairs
to have their maxima displaced by a certain angle �min

as �gen(kc)tdephase = �gen(k �= kc)tdephase ± �min, where kc is
the central momentum of the original distribution and k is a
momentum in the neighborhood of kc. Dividing this quantity
by the period of the oscillations T ≈ π/�gen(kc), one can
obtain the quality factor of the oscillations between two mo-
mentum pairs:

Q(dephase)(k) ≈ tdephase

T
≈ �gen(kc)�min/π

|�gen(kc) − �gen(k)| . (21)

In Fig. 6, we show the decoherence quality factor for an
infinite square lattice of spacing d = 0.3λ0 and such that the
initial collective excitation centered at the Brillouin point X
is coupled to M via the detuning pattern � j = �(−1)ny . The
quality factor increases with increasing � and is lower for
momenta farther away from the center frequency kc. On the
x axis at the top of the figure, we show the waist of the
Gaussian photon such that 99.8% of the excitation is
contained within the corresponding momentum range. For
example, for a waist ρ = 6d = 1.8λ0 and a detuning � =
10γ0, 99.8% of the excitation has a quality factor ∼5 × 103.
Because the predominant momenta will be around kc, this is
only a very conservative estimate and we can generally expect
quality factors for Gaussian momentum distributions to be
larger than those given by Eq. (21). Figure 6(b) shows two
examples of the resulting long-lived Rabi oscillations between
momentum states centered at X (blue) and M (orange) for a
Gaussian photon of waist ρ = 6d stored in a 21 × 21 lattice
of spacing d = 0.3λ0. Note that the oscillations can be ex-
perimentally measured by changing the detuning pattern and
coupling the X point (or M point) to the � point, forcing the
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(a)

(b)

FIG. 6. Rabi flopping of two momentum dark states. (a) Quality
factor of the coherent oscillations, limited by decoherence effects
arising from a finite momentum width of the dark state stored at the
X point of the Brillouin zone. The quality factor is plotted versus
momentum in reciprocal space (lower x axis) or, analogously, versus
the beam waist such that 99.8% of the excitation lies within the
corresponding momentum (upper axis). The inset shows how the
detuning profile �R = �(−1)ny couples momentum states X (blue)
and M (orange). (b) Rabi oscillations between momentum states with
spread ρ = 1.8λ0 centered around X (blue trace) and M (orange
trace) for � = 0.3γ0 and � = 5γ0 in a 21 × 21 lattice of spacing
d = 0.3λ0.

excitation in that momentum state to leave the atomic array in
the perpendicular direction.

It is possible to engineer more complex interactions be-
tween a larger number of momentum states by applying
detuning patterns with larger spatial periods. In general, a
detuning landscape with m atoms per unit cell couples m
different momentum states. By properly choosing the weights
of each Fourier component Q of the detuning, one can
control the specific nature of the coupling and achieve a
wide variety of dynamics. For example, the symmetry of
the detuning patterns �A and �D presented in Sec. IV C
reduces the dynamics of the system to those of simple
Rabi oscillations between superpositions of dark momen-
tum states. More interestingly, one can produce interactions
that create a cyclic population transfer between momen-
tum states k = (π, 0) → (π, π/n) → (π, 2π/n) → · · · →
(π, (n − 1)π/n) = (π,−π/n). In Figs. 7(a) and 7(b), we
show such cyclic dynamics between three and four momen-
tum states, respectively, as well as the detuning patterns
used to achieve them. Alternatively, it is possible to partially
suppress the amplitude in some momentum states through
interference effects. This is the case of Fig. 7(c), where the
momentum states k = (π, 0) and k = (π, π ) oscillate be-
tween zero and one, whereas the states k = (π,±π/2) have
identical amplitudes always below 0.25.

(a)

(b)

(c)

FIG. 7. Engineering coherent interactions. Cyclic population
transfer between (a) three and (b) four lattice dark states and (c) al-
ternative four-atom dynamics with partially suppressed population at
states k = (π,±π/2) (orange and red). The different detuning pat-
terns have the following Fourier components: (a) Q± = (±2π/3d, 0)
and (c) Q̃± = (±π/2d, 0) with amplitudes ±5i; (b) Q̃± with ampli-
tudes 5

√
2e±iπ/4 and Qπ = (π/d, 0) with amplitude 5. High-quality

coherent interactions between multiple dark states require large ar-
rays and narrow excitation distributions in reciprocal space. Here,
we consider a 61 × 61 lattice with spacing d = 0.4λ0 in (a) and
d = 0.3λ0 in (b) and (c), and incident photons with waists ρ = 16d .

Again, the excitations can be retrieved by applying an ap-
propriate retrieval pattern. For example, the two-atom pattern
�R = �(−1)nx couples the dark momentum states (π, ky) to
(0, ky). For three-atom patterns, the three momentum states
are emitted into different directions of the electromagnetic
field provided that d > λ0/3. For four-atom patterns, only
three momentum states can be retrieved at a time and the
threshold is reduced to d > λ0/4. This does not only allow
to experimentally measure the oscillations and thus the in-
teractions of the system, but also to steer the emitted photon
in a similar way as discussed in Sec. IV C. Thus, protocols
combining oscillations between dark states and more complex
retrieval schemes can provide a greater control on the spatial
degrees of freedom of the emitted electromagnetic field.

Two-dimensional lattices also emerge as a promising plat-
form for quantum information science. In particular, lattices
have been recently proposed to enhance the interaction be-
tween individual impurities [10,11] and therefore realize
quantum gates [39,40]. Due to the versatile and nonlinear
nature of their interactions, momentum dark states can be
envisioned as an alternative platform to realize quantum gates
that does not require additional impurity atoms. To engineer
high-quality interactions and dynamics, one generally needs
well-defined and nonoverlapping excitation distributions. This
can be achieved by reducing the lattice spacing, increasing the
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beam waist of the incident photon, and increasing the number
of atoms in the array.

Additionally, coherent interactions between dark momen-
tum states can be used to experimentally measure the band
structure of atomic arrays in the single-excitation manifold.
The frequency of the resulting oscillations and the amplitude
of each momentum state solely depend on the energy shifts of
each state. Thus, turning on the interactions for different time
durations and measuring the state of the emitted photon di-
rectly gives the difference in collective energy shifts between
different points in reciprocal space. Combining several spatial
detuning patterns and incident photons with different angles
with respect to the array, one can finally reconstruct its band
structure.

VI. CONCLUSION AND OUTLOOK

In this work, we demonstrate full control over the dark
modes that emerge in structured arrays by applying periodic
spatial modulations of the atomic detuning. In quantum op-
tical platforms such as atomic arrays, these detuning profiles
can be experimentally achieved by superimposing several op-
tical lattices with varying periodicities, which results in an
optical superlattice [65,66].

In particular, we show that single photons can be stored
in a superposition of dark states and subsequently released
with high fidelities for arrays with a few hundred atoms, much
less than the size required by other quantum optical platforms
such as disordered atomic clouds [56]. For protocols based on
electromagnetically induced transparency that store photons
in single-particle dark states [9,56], the storage time is given
by the lifetime of the third, metastable level. In our case, the
light is stored in collective dark states of the lattice that present
largely enhanced lifetimes [67] and the performance of the
memory is limited by the dispersion of the energy bands. The
storage time can therefore be significantly improved by con-
sidering lattices with alternative geometries that present flat
bands. Interestingly, the band structure gives a direct handle
to modify the momentum profile of the photon. For example,
placing the excitation in a region with linear dispersion results
in a shift in real space of the emitted electric field. Note that
the storage fidelities reported in this work are sensitive to
experimental imperfections, such as missing atoms or disor-
der in the atomic positions. More concretely, the reduction
in efficiency is proportional to the fraction of the photon
intensity that impinges on the defects [9] (see Appendix F)
and to the variance associated with the distribution of atomic
displacements [2,9].

Additionally, applying detuning patterns with different
strengths over time allows to engineer single photons with
arbitrary temporal shape and different spectral properties. In
particular, one can systematically produce photons in a su-
perposition of multiple frequencies, which can be used as
quantum bits in multimode quantum information protocols
[36,37]. Similarly, combining detuning patterns with different
spatial periods allows control of the emission angles of the
emitted light field and opens the door to beam steering [38] at
the single-photon level.

These ideas can be extended to atomic arrays beyond
the single-excitation manifold [11,15,16,68,69]. In particu-

lar, the potential of ordered arrays to store multiple photons
is still unknown and could help envision atomic arrays as
quantum metasurfaces capable of generating entanglement
between different photons and producing more complex quan-
tum states of light [14,70]. Additionally, the long-lived nature
of lattice dark states could ease the requirements on the
interaction strengths needed to create phase shifts between
different photons, relevant to produce quantum gates [15]
and study correlations and many-body physics. In that regard,
accessing dark states in the multiple-excitation regime and en-
gineering interactions between them may allow to devise more
diverse quantum gates and protocols than the ones possible
with a single excitation.

From a fundamental point of view, the combination of
atomic arrays and spatial modulations of the atomic detuning
can open the door to studying the nature and properties of
collective subradiant states. As opposed to current experi-
mental methods with atomic clouds, which rely on waiting
for a small fraction of the system to decay into subradi-
ant states [22,71], our protocol provides a direct and easy
way to excite them. Due to their highly directional emis-
sion profiles and their properties to store and control light,
two-dimensional arrays could also be used as building blocks
for quantum-computing architectures in the optical regime
[39,40]. Exploring other types of two-dimensional lattices and
arrays of different dimensions could help achieve higher con-
trol over the properties of the emitted photons and unveil other
quantum functionalities. Recent work by Ballantine and Ru-
ostekoski [35] has shown how to engineer a Huygens surface
with a rectangular bilayer lattice, as well as how to generate
entanglement between the atomic array and a cavity. Finally,
this work could be extended to other structured systems such
as nitrogen-vacancy centers [72] and excitons in atomically
thin semiconductors (i.e., transition metal dichalcogenides
[73–75]), where superlattices can be optically imprinted to
modify the properties of the band structure [75,76].

Note added. Recently, we became aware of a submission
by Ballantine and Ruostekoski [35] with a similar proposal,
where ac Stark shifts of the atomic levels are used to access
subradiant modes of atomic arrays. The work discusses how to
engineer a Huygens surface with a rectangular bilayer lattice
and how to generate entanglement between the lattice and a
cavity.
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APPENDIX A: GREEN’S FUNCTION

The dyadic Green’s function in free space used in Eq. (4)
can be written in Cartesian coordinates as [49,50]

Gαβ = − eikr

4πr

[(
1 + i

kr
− 1

(kr)2

)
δαβ

+
(

−1 − 3i

kr
+ 3

(kr)2

)
rαrβ

r2

]
+ δαβδ(3)(r)

3k2
, (A1)

where k = ω/c, r =
√

x2 + y2 + z2, and α, β = x, y, z.

APPENDIX B: BAND STRUCTURE OF A NON-BRAVAIS
LATTICE

For an infinite lattice with two atoms per unit cell, as it is
the case of the checkerboard lattice presented in Sec. II B, the
two bands can be obtained by diagonalizing the 2 × 2 matrix
M for each quasimomentum k in the first Brillouin zone [4,5].
The components of M are

Mμν = (
ω

(1)
0 − i�0/2

)
δ1μδ1ν + (

ω
(2)
0 − i�0/2

)
δ2μδ2ν + χμν,

(B1)
where μ, ν = 1, 2 represent each of the two sublattices and
ω

(1)
0 and ω

(2)
0 are their corresponding transition frequencies.

The last term describes atom-atom interactions and is given
by

χμν = 3π�0c

ω
(1)
0

[∑
R1 �=0

eikR1 G(R1)δ1μδ1ν

+
∑
R1

eikR1 G(R1 + b)δ1μδ2ν

+
∑
R2 �=0

eikR2 G(R2)δ2μδ2ν

+
∑
R2

eikR2 G(R2 − b)δ2μδ1ν

]
, (B2)

where {R1} and {R2} are the atomic positions in each sub-
lattice. Additionally, we have assumed that the difference in
transition frequencies is small such that 1/ω

(1)
0 ≈ 1/ω

(2)
0 .

For a non-Bravais lattice with more than two atoms per
unit cell, similar expressions can be obtained. In that case, the
dimension of M is m × m.

APPENDIX C: POPULATING LATTICE DARK STATES
WITH A LOW-INTENSITY, CLASSICAL DRIVING FIELD

In Sec. I, we presented the Hamiltonian of the system and
the equations of motion in the absence of an external field.
If we now consider a weak external drive such that only the
one-excitation sector is relevant [2], the effective Hamiltonian
in Eq. (3) acquires the extra term

∑
j � j (σ

†
j + σ j ), where

� j is the spatially dependent Rabi frequency. The resulting

equations of motion are

de j

dt
= i� j (t )e j − i

∑
i

(
Jji − i

� ji

2

)
ei + i� jg,

dg

dt
= i

∑
i

�iei. (C1)

For an infinite lattice, the system is described by the ampli-
tudes in each quasimomentum state within the first Brillouin
zone. In the case of a checkerboard detuning pattern, we have

dvk

dt
= −i

(
Jk − i

�k

2

)
vk + i�vk+π/d + i�kg. (C2)

In the weak-driving limit, we can approximate g ≈ 1. A ra-
diating state kr inside the light cone is coupled to the dark state
kd = kr + π/d and the equations of motion for the weakly
driven system are

dvkr

dt
= −i

(
Jkr − i

�kr

2

)
vkr + i�vkd + i�kr ,

dvkd

dt
= −iJkd vkd + i�vkr , (C3)

and an incoming drive with a certain in-plane momentum
excites lattice components with the same quasimomentum.
As a result, the dark state is not driven by the external field,
as its quasimomentum lies outside the light cone. Instead,
it is populated through the coupling with the radiating state
produced by the spatial detuning pattern.

Starting with all the atoms in the ground state, we obtain
the steady-state amplitude in the dark state,

vkd = − ��kr

�2 − (
Jkr − i �kr

2

)
Jkd

. (C4)

For an incident Gaussian beam perpendicular to the array,
with waist ρ and whose focal plane coincides with the posi-
tion of the lattice z = 0, the electric field distribution in the
lattice plane is E(x, y) = E0εGe−(x2+y2 )/ρ2

, which corresponds
to a Gaussian distribution N (0, ρ2). The weights �kr are
proportional to the momentum-space distribution of the elec-
tric field, which is again a Gaussian distribution N (0, ρ−2).
From the band structure in Fig. 1(c), one can see that the
term (Jkr − i�kr /2)Jkd varies only weakly around the � and
M points. A Gaussian classical drive therefore populates a
near-Gaussian distribution of dark momentum states.

In Sec. III, we study the retrieval process of dark states
given by Eq. (C4) for different values of beam waist ρ and
show that they can be retrieved into Gaussian modes of the
same waist with almost unit efficiency.

APPENDIX D: FREQUENCY MODULATION

For a lattice with a constant checkerboard detuning pattern
of magnitude � and a time-dependent homogenous detuning
ξ (t ) equal at all lattice sites, the equations of motion for the
amplitudes in the dark vd and radiating vr momentum states
are given by

v̇d = −iJdvd + i�(t )vr + iξ (t )vd ,

v̇r = −i(Jr − �r/2)vr + i�(t )vd + iξ (t )vr . (D1)
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If the dynamics for ξ (t ) = 0 are given by v
(0)
d (t ) and

v(0)
r (t ), the solution for a general ξ is simply given by

vd (t ) = v
(0)
d (t )eiζ (t ),

(D2)
vr (t ) = v(0)

r (t )eiζ (t ),

with ζ (t ) = ∫ t
0 ξ (τ )dτ .

If ξ (t ) is additionally periodic, such that ξ (t + 2π/�) =
ξ (t ), the term eiζ (t ) can be expanded as [63]

A(t ) = eiζ (t ) =
∞∑

n=−∞
anein�t ,

an = �

2π

∫ 2π/�

0
e−in�τ eiζ (τ )dτ. (D3)

For a sinusoidal modulation ξ (t ) = δ cos(�t ), these coef-
ficients are an = Jn(δ/�), where Jn is the Bessel function of
order n [63]. The amplitude in the radiating field is then

vr (t ) =
∞∑

n=−∞
Jn(δ/�)v(0)

r (t )ein�t

=
∞∑

n=−∞

�Jn(δ/�)

2
√

�2 + G2

(
ei(ω++n�)t − ei(ω−+n�)t). (D4)

The frequency profile of the outgoing photon with momen-
tum matching that of the radiating state can be obtained from
Eq. (12):

Eκ||=kr (ω) ∝
∞∑

n=−∞
Jn(δ/�)

×
(

1

ω − ω0 + ω+ + n�
− 1

ω − ω0 + ω− + n�

)
.

(D5)

Comparing with the result in Eq. (18), the modulation
ξ (t ) just replicates the original profile every n�. For a good
resolution of the sidebands, one requires � to be larger than
the width of the original profile, ∼2� + �r . The amplitude
of each sideband n can be controlled by adjusting the ratio
δ/�. Figure 8 shows the resulting frequency profiles for dif-
ferent combinations of δ/� and for two different detuning
amplitudes � = 1 and � = 4. In the first case, a single peak
is replicated, whereas in the second case the repeating unit
contains two peaks.

APPENDIX E: DIRECTION OF EMITTED PHOTON FOR
DETUNING PATTERN WITH A FOUR-ATOM PERIOD

Let us consider an excitation initially stored at k =
(π/d, 0). The most general detuning pattern with four atoms
in the unit cell and along the x axis contains the Fourier com-
ponents Q0 = 0, Q± = (±π/2d, 0), and Qπ = (±π/d, 0)
and can be written as � j = αeiQ0r j + βeiQ+r j + β∗eiQ−r j +
δeiQπ −r j such that α, δ ∈ R and β ∈ C. It couples the momen-
tum states k = (π/d, 0) with k = (±π/2d, 0) and k = 0.
The photon will in general be emitted in a superposition of
three different directions: the axis perpendicular to the array
and the two directions forming an angle θ = ± arcsin(λ0/4d )

(a)

(b)

FIG. 8. Frequency modulation of emitted photon. Frequency
profile of the emitted electromagnetic field from a 21 × 21 lattice
with spacing d = 0.3λ0 and an initial Gaussian state of waist ρ = 6d .
(a) A checkerboard detuning pattern with strength � = 0.75γ0 is ap-
plied and the frequency of the homogeneous detuning is � = 2πγ0.
(b) The parameters are � = 3γ0 and � = 6πγ0. The three traces
correspond to different ratios of the relevant parameter δ/�.

with it. Labeling the states by their generalized momentum
kxd along the x axis, we obtain the equations of motion

dvπ

dt
= − i(Jπ − α)vπ + iβvπ/2 + iβ∗v−π/2 + iδv0,

dvπ/2

dt
= − i

(
Jπ/2 − α − i

�π/2

2

)
vπ/2

+ iβv0 + iβ∗vπ + iδv−π/2,

dv−π/2

dt
= − i

(
Jπ/2 − α − i

�π/2

2

)
v−π/2

+ iβvπ + iβ∗v0 + iδvπ/2,

dv0

dt
= − i

(
J0 − α − i

�0

2

)
v0

+ iβv−π/2 + iβ∗vπ/2 + iδvπ . (E1)

By appropriately choosing the values of each Fourier com-
ponent, one can produce different types of output photons:

(a) Choosing for example β ∈ R and α = δ = 0, we ob-
tain equal emission along the directions θ = ± arcsin(λ0/4d ),
as well as nonzero emission perpendicular to the array. This
can be seen by writing Eq. (E1) in the basis v± = vπ/2 ±
v−π/2:

dvπ

dt
= − iJπvπ + iβv+,

dv+
dt

= − i

(
Jπ/2 − i

�π/2

2

)
v+ + 2iβ(vπ + v0),
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dv0

dt
= − i

(
J0 − i

�0

2

)
v0 + iβv+,

dv−
dt

= − i

(
Jπ/2 − i

�π/2

2

)
v−. (E2)

For an initial excitation in the dark state vπ , only the sym-
metric superposition v+ will be populated. Thus, v−(t ) = 0,
such that vπ/2 = v−π/2 during the whole time evolution and
emission along both nonorthogonal directions is identical.
Additionally, v0 is coupled to v+ and will be populated during
the decay process, such that emission perpendicular to the
array will also occur. The relative amplitudes between per-
pendicular and oblique emission can be controlled through the
parameter β.

(b) The emission perpendicular to the array can be sup-
pressed by choosing a proper complex β = |β|eiπ/4. In that
case, the momentum states v±π/2 destructively interfere and
the amplitude at v0 vanishes. In the basis ṽ± = eiπ/4vπ/2 ±
e−iπ/4v−π/2, the equations of motion are

dvπ

dt
= − iJπvπ + i|β|ṽ+,

d ṽ+
dt

= − i

(
Jπ/2 − i

�π/2

2

)
v+ + 2i|β|vπ ,

dv0

dt
= − i

(
J0 − i

�0

2

)
v0 + |β|ṽ−,

d ṽ−
dt

= − i

(
Jπ/2 − i

�π/2

2

)
ṽ− − 2|β|v0. (E3)

Now, the dynamics are split in two uncoupled blocks: one
that contains the dark state vπ and the radiating superposition
ṽ+, and a second one that comprises the radiating states ṽ−
and v0. For an excitation originally stored in the dark state, we
have ṽ−(t ) = v0(t ) = 0. The resulting photon therefore has a
suppressed amplitude along the perpendicular direction θ = 0
and equal amplitudes in the other two oblique directions.

(c) Keeping the complex β = |β|eiπ/4 and introducing a
finite δ, one couples the states vπ and v0. As a result, the
two blocks get coupled and it is no longer true that |vπ/2| =
|v−π/2|. The photon is emitted in a coherent superposition
of all three directions, such that the amplitudes in all direc-
tions are in general different and determined by the relative
strengths of |β| and δ.

An example of the magnitude of the electric field as a
function of propagation direction for all three cases can be
found in Fig. 5(b) of the main text.

APPENDIX F: EFFECT OF DEFECTS IN THE LATTICE

The performance of the array as a memory, as well as
its potential to modify the properties of single photons, are
generally affected by imperfections of the system. Here, we
study the role of missing atoms in the array, which we refer
to as defects. Let us define the storage efficiency for a finite
array of atoms as η and the efficiency for a lattice with a set
of defects as ηdef . Figure 9(a) shows that the relative decrease
in efficiency (η − ηdef )/η is proportional to the fraction of the
incoming intensity that impinges on the missing atoms. One

(a)

(b)

FIG. 9. Effect of defects. (a) Relative decrease in efficiency
(η − ηdef )/η as a function of

∑
d∈defects |Ed |2/

∑
l∈lattice |El |2. A linear

relation with proportionality constant α = 1.19 is found between
both quantities (black dashed line). The different colors represent
results for systems with different sets of holes: orange has a hole
at (2d, 0); grey has three holes at (2d, 0), (−d,−d), and (6d, 3d);
red corresponds to a set of seven holes at (0,0), (2d, 0), (−2d, 2d),
(−3d, d), (5d, −d), (4d, 4d), and (8d, 8d); cyan corresponds to a set
of nine holes, the seven in red plus (−d, d) and (0, −3d). The origin
of the lattice is considered to be at (0,0). (b) Infidelity versus beam
waist ρ for different single-atom defects. The blue dots correspond
to a defect at position (8d, 8d), the green dots to a defect at (4d, 3d),
and the orange to a defect at (2d, 0). The black dashed line is the
result for the corresponding finite lattice without defects. In all cases,
a lattice with d = 0.3λ and 21 × 21 atoms is considered.

can therefore write [9]

ηdef ≈ η

(
1 − α

∑
d∈defects |Ed |2∑
l∈lattice |El |2

)
, (F1)

where α is a constant, Ej is the amplitude of the detection
mode at the atomic position r j , and the sums in the denomi-
nator and the numerator run over the positions of the whole
(defectless) lattice and the positions of the defects, respec-
tively.

As a result, the efficiency is mostly unaffected by defects
lying far from the center of the array (assuming that the
incoming photon is well centered), as shown by the blue
curve in Fig. 9(b). However, the efficiency can be considerably
reduced by defects lying close to the center of the array. As
demonstrated by the orange trace, the efficiency of a 21 × 21
lattice with spacing d = 0.3λ0 and a hole at a distance 2d
from the center of an incoming photon with waist ρ = 4d is
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reduced to ∼96%. The approximate 4% decrease is close to
the percentage of the incoming light that hits the defect, which
amounts to ∼3%. Note also that the decay in efficiency gets

suppressed for large enough beam waists, when the ratio of
intensities between a single defect and the perfect lattice with
N atoms approaches 1/N .
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[6] R. J. Bettles, J. Minář, C. S. Adams, I. Lesanovsky, and B.
Olmos, Topological properties of a dense atomic lattice gas,
Phys. Rev. A 96, 041603(R) (2017).

[7] L. Henriet, J. S. Douglas, D. E. Chang, and A. Albrecht, Criti-
cal open-system dynamics in a one-dimensional optical-lattice
clock, Phys. Rev. A 99, 023802 (2019).

[8] S. Krämer, L. Ostermann, and H. Ritsch, Optimized geometries
for future generation optical lattice clocks, EPL (Europhys.
Lett.) 114, 14003 (2016).

[9] M. T. Manzoni, M. Moreno-Cardoner, A. Asenjo-Garcia, J. V.
Porto, A. V. Gorshkov, and D. E. Chang, Optimization of pho-
ton storage fidelity in ordered atomic arrays, New J. Phys. 20,
083048 (2018).

[10] T. L. Patti, D. S. Wild, E. Shahmoon, M. D. Lukin, and
S. F. Yelin, Controlling Interactions Between Quantum Emit-
ters Using Atom Arrays, Phys. Rev. Lett. 126, 223602
(2021).

[11] S. J. Masson and A. Asenjo-Garcia, Atomic-waveguide quan-
tum electrodynamics, Phys. Rev. Research 2, 043213 (2020).

[12] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M.
Stamper-Kurn, C. Gross, and I. Bloch, A subradiant optical mir-
ror formed by a single structured atomic layer, Nature (London)
583, 369 (2020).

[13] K. E. Ballantine and J. Ruostekoski, Cooperative optical wave-
front engineering with atomic arrays, Nanophotonics 10, 1901
(2021).

[14] R. Bekenstein, I. Pikovski, H. Pichler, E. Shahmoon, S. F. Yelin,
and M. D. Lukin, Quantum metasurfaces with atom arrays, Nat.
Phys. 16, 676 (2020).

[15] M. Moreno-Cardoner, D. Goncalves, and D. E. Chang, Quan-
tum Nonlinear Optics Based on Two-Dimensional Rydberg
Atom Arrays, Phys. Rev. Lett. 127, 263602 (2021).

[16] L. Zhang, V. Walther, K. Mølmer, and T. Pohl, Photon-photon
interactions in Rydberg-atom arrays, arXiv:2101.11375.

[17] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[18] M. Gross and S. Haroche, Superradiance: An essay on the
theory of collective spontaneous emission, Phys. Rep. 93, 301
(1982).

[19] W. Guerin, M. O. Araújo, and R. Kaiser, Subradiance in a
Large Cloud of Cold Atoms, Phys. Rev. Lett. 116, 083601
(2016).

[20] R. G. DeVoe and R. G. Brewer, Observation of Superradiant and
Subradiant Spontaneous Emission of Two Trapped Ions, Phys.
Rev. Lett. 76, 2049 (1996).

[21] S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I.
Zheludev, Many-Body Subradiant Excitations in Metamaterial
Arrays: Experiment and Theory, Phys. Rev. Lett. 119, 053901
(2017).

[22] G. Ferioli, A. Glicenstein, L. Henriet, I. Ferrier-Barbut, and A.
Browaeys, Storage and Release of Subradiant Excitations in a
Dense Atomic Cloud, Phys. Rev. X 11, 021031 (2021).

[23] D. Plankensteiner, L. Ostermann, H. Ritsch, and C. Genes,
Selective protected state preparation of coupled dissipative
quantum emitters, Sci. Rep. 5, 16231 (2015).

[24] J. A. Needham, I. Lesanovsky, and B. Olmos, Subradiance-
protected excitation transport, New J. Phys. 21, 073061
(2019).

[25] L. Ostermann, H. Ritsch, and C. Genes, Protected State
Enhanced Quantum Metrology with Interacting Two-Level En-
sembles, Phys. Rev. Lett. 111, 123601 (2013).

[26] G. Facchinetti and J. Ruostekoski, Interaction of light with pla-
nar lattices of atoms: Reflection, transmission, and cooperative
magnetometry, Phys. Rev. A 97, 023833 (2018).

[27] M. Moreno-Cardoner, D. Plankensteiner, L. Ostermann, D. E.
Chang, and H. Ritsch, Subradiance-enhanced excitation transfer
between dipole-coupled nanorings of quantum emitters, Phys.
Rev. A 100, 023806 (2019).

[28] G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, Storing Light
with Subradiant Correlations in Arrays of Atoms, Phys. Rev.
Lett. 117, 243601 (2016).

[29] H. H. Jen, M.-S. Chang, and Y.-C. Chen, Cooperative single-
photon subradiant states, Phys. Rev. A 94, 013803 (2016).

[30] Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun,
and X. Zhang, Far-field optical superlens, Nano Lett. 7, 403
(2007).

[31] C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B.
Raschke, and C. Lienau, Grating-coupling of surface plasmons
onto metallic tips: A nanoconfined light source, Nano Lett. 7,
2784 (2007).

[32] B. Alfassi, O. Peleg, N. Moiseyev, and M. Segev, Diverging
Rabi Oscillations in Subwavelength Photonic Lattices, Phys.
Rev. Lett. 106, 073901 (2011).

[33] A. Zhang, L. Wang, X. Chen, V. V. Yakovlev, and L. Yuan, Tun-
able super- and subradiant boundary states in one-dimensional
atomic arrays, Commun. Phys. 2, 157 (2019).

[34] C. D. Parmee and J. Ruostekoski, Signatures of optical
phase transitions in superradiant and subradiant atomic arrays,
Commun. Phys. 3, 205 (2020).

013110-15

https://doi.org/10.1103/PhysRevX.7.031024
https://doi.org/10.1103/PhysRevLett.118.113601
https://doi.org/10.1103/PhysRevLett.116.103602
https://doi.org/10.1103/PhysRevLett.119.023603
https://doi.org/10.1103/PhysRevA.96.063801
https://doi.org/10.1103/PhysRevA.96.041603
https://doi.org/10.1103/PhysRevA.99.023802
https://doi.org/10.1209/0295-5075/114/14003
https://doi.org/10.1088/1367-2630/aadb74
https://doi.org/10.1103/PhysRevLett.126.223602
https://doi.org/10.1103/PhysRevResearch.2.043213
https://doi.org/10.1038/s41586-020-2463-x
https://doi.org/10.1515/nanoph-2021-0059
https://doi.org/10.1038/s41567-020-0845-5
https://doi.org/10.1103/PhysRevLett.127.263602
http://arxiv.org/abs/arXiv:2101.11375
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1103/PhysRevLett.116.083601
https://doi.org/10.1103/PhysRevLett.76.2049
https://doi.org/10.1103/PhysRevLett.119.053901
https://doi.org/10.1103/PhysRevX.11.021031
https://doi.org/10.1038/srep16231
https://doi.org/10.1088/1367-2630/ab31e8
https://doi.org/10.1103/PhysRevLett.111.123601
https://doi.org/10.1103/PhysRevA.97.023833
https://doi.org/10.1103/PhysRevA.100.023806
https://doi.org/10.1103/PhysRevLett.117.243601
https://doi.org/10.1103/PhysRevA.94.013803
https://doi.org/10.1021/nl062635n
https://doi.org/10.1021/nl071340m
https://doi.org/10.1103/PhysRevLett.106.073901
https://doi.org/10.1038/s42005-019-0263-0
https://doi.org/10.1038/s42005-020-00476-1


RUBIES-BIGORDA, WALTHER, PATTI, AND YELIN PHYSICAL REVIEW RESEARCH 4, 013110 (2022)

[35] K. E. Ballantine and J. Ruostekoski, Quantum single-photon
control, storage, and entanglement generation with planar
atomic arrays, PRX Quantum 2, 040362 (2021).

[36] M. G. Raymer and K. Srinivasan, Manipulating the color
and shape of single photons, Phys. Today 65(11), 32
(2012).

[37] B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer,
Photon Temporal Modes: A Complete Framework for Quantum
Information Science, Phys. Rev. X 5, 041017 (2015).

[38] P. C. Wu, R. A. Pala, G. Kafaie Shirmanesh, W.-H. Cheng,
R. Sokhoyan, M. Grajower, M. Z. Alam, D. Lee, and
H. A. Atwater, Dynamic beam steering with all-dielectric
electro-optic III–V multiple-quantum-well metasurfaces, Nat.
Commun. 10, 3654 (2019).

[39] E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient
quantum computation with linear optics, Nature (London) 409,
46 (2001).

[40] J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D.
Branning, Demonstration of an all-optical quantum controlled-
not gate, Nature (London) 426, 264 (2003).

[41] R. H. Lehmberg, Radiation from an n-atom system. I. General
formalism, Phys. Rev. A 2, 883 (1970).

[42] R. H. Lehmberg, Radiation from an n-atom system. II. Spon-
taneous emission from a pair of atoms, Phys. Rev. A 2, 889
(1970).

[43] J. D.-R. a. G. G. C. Cohen-Tannoudji, Atom-Photon Interac-
tions: Basic Process and Applications (Wiley-VCH Verlag,
Weinheim, 1998).

[44] P. Meystre and M. Sargent, Elements of Quantum Optics
(Springer-Verlag, Berlin, 2007).

[45] J. Dalibard, Y. Castin, and K. Mølmer, Wave-Function Ap-
proach to Dissipative Processes in Quantum Optics, Phys. Rev.
Lett. 68, 580 (1992).

[46] H. Carmichael, An Open Systems Approach to Quantum Optics:
Lectures Presented at the Université Libre de Bruxelles, October
28 to November 4, 1991 (Springer-Verlag, Berlin, 1993).

[47] K. Mølmer, Y. Castin, and J. Dalibard, Monte Carlo wave-
function method in quantum optics, J. Opt. Soc. Am. B 10, 524
(1993).

[48] H. Carmichael and K. Kim, A quantum trajectory unraveling
of the superradiance master equation, Opt. Commun. 179, 417
(2000).

[49] W. C. Chew, Waves and Fields in Inhomogenous Media (Wiley,
New York, 1999).

[50] L. Novotny and B. Hecht, Principles of Nano-Optics (Cam-
bridge University Press, Cambridge, UK, 2006).

[51] H. T. Dung, L. Knöll, and D.-G. Welsch, Resonant
dipole-dipole interaction in the presence of dispersing
and absorbing surroundings, Phys. Rev. A 66, 063810
(2002).

[52] S. Y. Buhmann and D.-G. Welsch, Dispersion forces in macro-
scopic quantum electrodynamics, Prog. Quantum Electron. 31,
51 (2007).

[53] S. Xu and S. Fan, Input-output formalism for few-photon trans-
port: A systematic treatment beyond two photons, Phys. Rev. A
91, 043845 (2015).

[54] T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, and
D. E. Chang, Quantum dynamics of propagating photons with
strong interactions: A generalized input-output formalism, New
J. Phys. 17, 113001 (2015).

[55] A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen,
Photon storage in �-type optically dense atomic media. I.
Cavity model, Phys. Rev. A 76, 033804 (2007).

[56] A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and
M. D. Lukin, Universal Approach to Optimal Photon Storage in
Atomic Media, Phys. Rev. Lett. 98, 123601 (2007).

[57] T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J.
Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and
D. Faccio, Coherent perfect absorption in deeply subwave-
length films in the single-photon regime, Nat. Commun. 6, 7031
(2015).

[58] D. Kielpinski, J. F. Corney, and H. M. Wiseman, Quantum
Optical Waveform Conversion, Phys. Rev. Lett. 106, 130501
(2011).

[59] J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps,
Wavelength-multiplexed quantum networks with ultrafast fre-
quency combs, Nat. Photonics 8, 109 (2014).

[60] H. P. Specht, J. Bochmann, M. Mücke, B. Weber, E. Figueroa,
D. L. Moehring, and G. Rempe, Phase shaping of single-photon
wave packets, Nat. Photonics 3, 469 (2009).
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