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Photonic quantum simulations of coupled P 7 -symmetric Hamiltonians
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Parity-time-symmetric (P7 -symmetric) Hamiltonians are generally non-Hermitian and give rise to exotic
behavior in quantum systems at exceptional points, where eigenvectors coalesce. The recent realization of
PT-symmetric Hamiltonians in quantum systems has ignited efforts to simulate and investigate many-particle
quantum systems across exceptional points. Here, we use a programmable integrated photonic chip to simulate
a model composed of twin pairs of P7 -symmetric Hamiltonians, with each the time reverse of its twin.
We simulate quantum dynamics across exceptional points including two- and three-particle interference, and
a particle-trembling behavior that arises due to interference between subsystems undergoing time-reversed
evolutions. These results show how programmable quantum simulators can be used to investigate foundational

questions in quantum mechanics.
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I. INTRODUCTION

Dirac Hermiticity of a Hamiltonian has been a tenet of
quantum theory since its inception. This constraint guaran-
tees real eigenvalues, orthogonal eigenstates, and a unitary
time evolution; it reflects the dynamics of an isolated system.
Over the past two decades, non-Hermitian Hamiltonians that
are symmetric under combined parity (P) and time-reversal
(7) transformations were extensively investigated, first math-
ematically [1,2] and then experimentally in classical wave
systems [3,4]. In the classical domain, P7 -symmetric sys-
tems have shown remarkable properties such as unidirectional
invisibility [5], single-mode [6,7] and topological [8,9] lasing,
topological energy transfer [10], mode switching [11], and
enhanced sensitivity [12,13]. While generally non-Hermitian,
PT -symmetric Hamiltonians exhibit exceptional points (EPs)
at which two (or more) eigenvalues become degenerate and
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the corresponding eigenstates coalesce. For all these ad-
vances, the role of thermal and quantum noise on EPs in these
semiclassical systems is not yet understood [14,15].

Realizing P7T -symmetric systems in the quantum do-
main has been a major challenge [16], and its circumvention
has relied on two methods. The first approach, known as
passive PT symmetry, is based on the equivalence (after
normalization) of a P7 -symmetric Hamiltonian and a dissi-
pative Hamiltonian with mode-selective losses [17,18]. Such
a dissipative Hamiltonian arises naturally from a Lindblad
approach for open quantum systems when certain quantum
jumps are ignored and allows the implementation of coher-
ent, nonunitary dynamics in a minimal quantum system [19].
The second method uses Hamiltonian dilation that places
the P7T -symmetric Hamiltonian in a larger Hilbert space by
introducing an ancillary two-level system [20-22], and the
coherent, nonunitary dynamics of interest are recovered from
the unitary dynamics in the larger Hilbert space. In the first
approach, the evolution time of the system is limited by the
exponentially decaying signal or postselection success prob-
ability, while the second method requires a time-dependent
Hermitian Hamiltonian for the larger Hilbert space.

Here, we propose a framework for the quantum simulation
of PT -symmetric Hamiltonians that is particularly suited to
technology platforms that allow the direct implementation
of unitary transformations [23-25]. The nonunitary evolu-
tion operator, and a second operator that is the time reverse
of the first, are embedded together into a global unitary
transformation that is then implemented by the device. The
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overall evolution in this model allows single- or many-particle
excitations to tunnel between the twin systems, with a prob-
ability that scales with the non-Hermiticity of the simulated
Hamiltonians. This construction permits the experimental in-
vestigation of states superposed across opposite directions of
time in the context of non-Hermitian Hamiltonians.

We experimentally simulate multiparticle dynamics [26]
in two- and three-mode P7T-symmetric Hamiltonians us-
ing a programmable photonic chip [27] and ensembles of
one-, two-, and three-photon input states. We reproduce the
dynamics in the P77 -symmetric regime (defined by real eigen-
values) and across the EP into the P7 -symmetry-broken
regime (defined by complex-conjugate eigenvalues), includ-
ing the effects of mutual coherence and interference between
the forward-in-time and backward-in-time subsystems. Com-
bined with the current advances in photonic technologies,
these demonstrations point towards the inclusion of non-
Hermitian simulations in the realm of quantum technologies.

II. MODEL AND SIMULATION PROCEDURE

Our simulation approach begins by considering a fam-
ily of PT-symmetric systems consisting of a linear chain
of N modes with a coupling amplitude J > 0 between
nearest-neighbor modes. In addition, an imaginary potential
of opposite sign +iy located in the two spatially symmetric
end modes determines a gain and a loss site. We fix the
energy scale of our system by choosing J = +1 so that the
Hamiltonian reads

N—1
Hy(y) ==Y (k) k+ 1]+ [k + 1) {(k])
k=1
+ iy (I1)(1] = IN)(ND), e))

where |k) is the state associated with the kth mode. Us-
ing {|k)}}_, as a basis, the parity operator we choose is
represented by the antidiagonal matrix P,,, = &, n+1-n, and
the time-reversal operator 7 corresponds to the complex-
conjugation operation. Hy(y) presents an EP for a critical
value y = y, that depends on N [28,29]. The spectrum of the
Hamiltonian Hy(y) is purely real for y < y., and the corre-
sponding eigenvectors are simultaneous eigenvectors of the
antilinear P77 operator (unbroken symmetry phase). At the
EP, y = y., two or more states coalesce, while at y > y., two
eigenstates with opposite imaginary eigenvalue emerge from
the previously coalescing states (broken symmetry phase).
The full spectrum of the Hamiltonian can be obtained by
solving a set of transcendental equations reported in Ref. [28],
but y. is given by a simple closed form: y./J = 1 whenever N
is even and y./J = /(N + 1)/(N — 1) when N is odd. For
a static, non-Hermitian Hamiltonian Hy(y ), the nonunitary
time evolution operator Gy (y, t) is given by (assuming /i = 1)

Gn(y,t) = exp[—iHy(y)1]. ©))

We note that these choices set the time scale for our system,
hi/J, to unity.

To simulate its dynamical evolution with a device that
implements unitary transformations, we adopt the Halmos
unitary dilation [30,31]. Namely, we first rescale Gy(y,t) by

its largest singular value ||Gy (Y, t)||, obtaining

Gn(y,1) = Gn(y, D/IIGn(y, D2, 3)

so that the operator norm of the scaled operator Gy (y,1) is
unity. Then, defining the defect operator as

Dy(Gy) :=[1 — Gn(y, )G} (v, )], 4)

we construct the following unitary transformation Uy (y, t)
defined on a Hilbert space twice the size. The block matrix
representation of Uy (y, 1) is

_[Gn(y.1) iDy(Gn)
Un(y. 1) = [z‘DmGL) GTN(y,t)}'

We map the modes of the dilated Hilbert space onto the
spatial modes of a reprogrammable linear optical chip. The
time evolution of excitations in the P7T -symmetric system is
simulated by injecting single photons into the optical circuit
and reprogramming it to implement the unitary transfer matrix
U,y (y, t) for a sequence of time steps {Uoy (v, 1)}:; see Fig. 1.
To simulate the evolution determined by Hy(y ), we encode
the initial state in the first N modes of the interferometer
and consider detection events on the outputs of those same
modes. Our construction is applicable for P77 -symmetric sys-
tems even when the spectrum of the Hamiltonian becomes
complex, allowing simulations across exceptional points. We
also emphasize that since we realize the unitary, and not the
(dilated) Hamiltonian, time is a parameter and so we can sim-
ulate arbitrary time scales. Specifically, we can simulate the
long-time dynamics expected at the EP, due to the vanishing
eigenvalue gap.

Interestingly, since the Hamiltonian is transpose-
symmetric, i.e., H;,(y) = Hj;(y), the global unitary Uon (y, 1)
describes two coupled P77 -symmetric systems that are the
time reverse of each other. Indeed, GZT\,()/, t) = G]’(,(y, t) =
TGN()/, HT L, meaning that a system initialized in the
last N modes of the interferometer transforms with a
backwards-in-time (reverse) evolution. Whenever y # 0,
the two systems are coupled by the defect matrix Dy, and
excitations can tunnel between these two systems. In addition
to simulating individual P7 systems, the statistics output
from the photonic chip track the unitary evolution of the
closed composite system.

We also note that the above dilation process is not spe-
cific to P77 Hamiltonians. Any nonunitary evolution operator,
Gy (t), can be embedded in a larger unitary transformation,
following the above method. This process has already been
used to simulate Lindbladian dynamics [32] and could be
extended to simulate anti-P7 systems [33].

&)

III. EXPERIMENTAL PROCEDURE

Our photonic chip comprises a triangular mesh of 15 in-
terconnected Mach-Zehnder interferometers, controlled by 30
metallic thermo-optic phase shifters, and is capable of imple-
menting any unitary linear optical transformation over its six
waveguides (see Ref. [27] for additional device details). By
means of the algorithm demonstrated by Reck et al. for the
decomposition of any discrete optical unitary operator [34],
for each Uoy(y, t;) we retrieve the list of phases which, when
applied in our interferometer, implement the desired unitary
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FIG. 1. (a) Graphical representation of the simulated 77 -symmetric non-Hermitian Hamiltonian Hy(y) that describes an open quantum
system. Excitations, represented by yellow circles, can populate the N modes of a linear chain. Nearest-neighbor modes are coupled by a
potential J that is set to unity during the simulations reported in this paper. The imaginary potential, iy, has the effect of amplifying and
deamplifying the probability amplitude of an excitation in the first and last mode, respectively. H, ;,(y) is equivalent to Hy (y) with the first and
last modes swapped. The time evolution of a system with Hamiltonian Hy(y ) is described by a nonunitary operator Gy(y, t). (b) Simulation
procedure based on unitary dilation. Given a non-Hermitian Hamiltonian H(y) and an evolution time ¢, it is possible to create a unitary
U(y,t) that consists of G(y,t) = G(y,t)/||G(y,t)|| and an auxiliary matrix D(y, t). The simulation proceeds by implementing U (y, t)
and initializing a desired input state in modes of the device corresponding to the forward system input. The effect of the unitary device will
transform the input and distribute it across the forward and reverse output modes. When the output state is detected in the forward output, the
input state successfully transforms via G(y, t). (c) Photonic implementation of the quantum simulation. Single-photon states are injected into
the input ports of the first N = 3 waveguides of a configurable integrated photonic circuit. Forward and reverse output are detected at the first
and last output ports of the interferometer. A triangular mesh of integrated beam splitters and metallic phase shifters allows us to reconfigure

the integrated interferometer to implement the desired U (y, ).

transformation. Calibration of the on-chip thermo-optic phase
shifters allows us to map a desired phase shift to a voltage bias
to be set. Input photons are generated with a bulk spontaneous
parametric downconversion source and coupled in and out of
the chip with packaged optical fibers, before detection with
silicon avalanche photodiodes. This setup is capable of simu-
lating coupled P7T -symmetric Hamiltonians with N = 2 and
N = 3 modes in each subsystem and multiparticle evolution.

Tuning the strength of the complex potential y corresponds
to changing the unitary matrix U,y (Y, 1;), and therefore the set
of phases dialed on our chip. In this way, all values of y can
be implemented in the same way, allowing us to investigate
the system dynamics in four regimes: uncoupled Hermitian
evolution, coupled PT -symmetric evolution, evolution at the
EP, and evolution in the broken symmetry phase. As we in-
crease y, we also increase the coupling between the systems,
iD(y, t), which correspondingly decreases the probability of
a photon remaining in the desired subsystem.

To distinguish between the state of the simulated system
and the photonic Fock state of our simulator, we will use
the subscript p for the latter. That is, for N = 2, Fock states
{I1,0,),10,1,)} encode the states {|1),|2)}, respectively,
while for N = 3, Fock states {[1,0,0,),10,1,0,),[0,0,1,)}
encode the states {|1),12),|3)}. The Fock states [0,0,0,)

or 10,0,), corresponding to an unoccupied system, will be
represented with |vac). Furthermore, subscript F or R will
differentiate between the forward and reverse systems, or
equivalently, between the first or last N modes of our inter-
ferometer, respectively.

IV. SIMULATION OF TWO-MODE
PT-SYMMETRIC SYSTEMS

We first simulate two-mode P7 -symmetric systems.
With N =2, the eigenvalues of the Hamiltonian are € =
+,/1 — y2. Since the global model in this instance comprises
four modes in total, there is sufficient redundancy in the
six-mode chip to implement a separate tomography stage.
The first section of the chip implements the state evolution
described by {Us(y,t;)};. The remaining part of the chip is
used to perform projective measurements allowing the recon-
struction of the density matrices for evolved single-photon
states.

Figure 2 shows the results from the simulations of the
unbroken and broken symmetry phases. Experimental points
are presented next to theory lines. In Figs. 2(a) and 2(b) we
report the probability for an excitation initialized in the state
[1)r ® |vac)r to be detected in any of the forward system
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FIG. 2. Simulation of the forward system across different regimes of the P77 Hamiltonian. Solid lines (dots) correspond to the theory
(experimental data). (a) and (b) A single excitation is initialized in |1)r and observed in the {|vac), |1), |2)}r basis as shown with red, black,
and blue data, respectively. (a) In the unbroken symmetry phase (y = 0.25), the plot shows the tunneling of excitations between the forward
and reverse systems resulting in a periodic oscillation in the vacuum probability; the inset shows the Hermitian regime (y = 0) with a constant
vacuum probability of 0 and sinusoidal oscillations between the two populated levels. (b) In the broken symmetry phase (y = 1.1), the evolution
is not periodic, and the system tends rapidly to a steady state; the inset shows the evolution of the system at the exceptional point. (¢) and
(d) Evolution of the initial state py = 0.5|1)g1|r 4+ 0.5|2)2|. (c) The entropy of the system is periodic for y < 1 and goes asymptotically to
0 for y > 1. Time is reported in units normalized as a function of y by dividing by t = 7 /,/|1 — y2|. (d) Signaling violation as a function of
y and for evolution time r = 7 /,/|1 — y?| with a maximum at the exceptional point y = 1. The outcomes of measurements on one qubit are

affected by local operations on a P77 qubit, entangled with the first.

modes, but we enforce that the cumulative outcome statistic
from the forward and reverse subsystems is normalized to 1.
To do so, we retained both the events where the propagat-
ing excitation was detected in the forward subsystem modes
heralding its evolution according to G, and those where the
excitation has left the forward modes to reappear in the re-
verse subsystem modes. If the excitation moves to the reverse
system, the forward system is left in its vacuum state with
no excitation, |vac)p, and as such is reported in Figs. 2(a)
and 2(b). A formal derivation of the forward state description
as a result of a partial trace over the modes of the reverse
system is available in Appendix C. In the unbroken symmetry
phase, shown in Fig. 2(a) with y = 0.25, the time evolution
of the system is periodic, and the finite probability of de-
tecting |vac)g indicates that the excitation can tunnel from
the forward system to its time-reversed twin. In contrast,
the inset in the same plot shows the evolution when y = 0.
Since the system is closed and Hermitian, only sinusoidal
oscillations of the probabilities of detecting |1)r and |2)r are
observed. Figure 2(b) shows, instead, the evolution in the

broken symmetry phase with y = 1.1. The system rapidly
tends to a steady state with no oscillations and with a nonzero
probability of finding the excitation in either the forward or
reverse systems. Such a qualitative distinction between the
two regimes is caused by the characteristic phase transition
at the EP. In the inset of Fig. 2(b), we report the evolution
observed at the EP when y = 1. Here, the period of the system
oscillation T = 7 /,/1 — y2 tends to infinity. The probabilities
evolve towards a never-reached turning point, and the systems
effectively tends to a steady state with coefficients that follows
a polynomial power law. In contrast, in the broken symmetry
phase, the system approaches its steady state with an exponen-
tial power law whose characteristic time, 7" = 7 //y? — 1,
decreases for increasing .

Figures 2(c) and 2(d) show the evolution of a completely
mixed input state, pg = 0.5|1)g{1|g + 0.5|2)K2|r, which was
realized by first entangling two photons using a photonic gate
[35]. The total unitary implemented by the chip is obtained
by multiplying together the transfer matrix that describes the
entangling gate, and Us(y, ), in such a way that one photon is
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injected into the two modes of the forward system of Uy(y, t)
while the second photon of the entangled pair is transmitted
by two ancillary waveguides not affected by the Us(y, ). To
herald the successful generation of the entangled photon pair,
the tomographic reconstruction of the state is performed by
retaining only the coincidental events of a photon detected in
the forward PT -symmetric system and a photon detected in
the two ancillary waveguides.

In Fig. 2(c) we report the evolution of the von Neumann en-
tropy S[p(#)], of the initially mixed P77 qubit py, for different
values of y. As opposed to a closed Hermitian system whose
entropy is a constant of motion, in the unbroken symmetry
phase, the entropy is a nonmonotonic function of time. By
reporting the time parameter in units of 7 = 7 /{/|1 — y2|, the
entropy has a minimum when ¢ = 0.57. Instead, when y > y,
the entropy decays to 0. The periodic behavior of the entropy
in the PT-symmetric phase indicates the flow of information
from the forward system to its time-reversed twin and back
[36].

Figure 2(d) shows the results of a signaling violation test,
as described in Refs. [37,38]. The test refers to the possibility
of affecting the state of a system B by performing only local
operations on a system A. For a pair of qubits, the signaling
violation, s.v., expressed in terms of the measurement proba-
bility P on the qubit B, reads

s.v. = [P(1]S) — PQ2I$] — [P —PQ2ID],  (6)

where 1 (2) corresponds to the first (second) level of the qubit
B, and I (S) refers to a local identity (swap) transformation
applied to the qubit A. Our simulation proceeds by entangling
the qubits A and B, then applying either the identity or the
swap transformation, and finally simulating the evolution of
qubit A with the PT -symmetric Hamiltonian. Meanwhile, the
qubit B is encoded by the photon transmitted over the two
ancillary waveguides. Figure 2(d) shows that the probabilities
of the two alternative outputs for qubit B are conditioned by
the a local unitary transformation applied to the P77 qubit A
prior to its nonunitary evolution. The no-signaling condition
is violated for all ¥ # 0 and is maximal for y = y.. To max-
imize the signaling violation, the evolution time for the PT
system is settor = 7 //|1 — y2|.

Since in our framework excitations initialized in one sys-
tem naturally tunnel to its time-reversed twin, we investigate
the interference effects that arise from an initial excitation
coherently superposed across the forward and the reverse
systems. Interference between systems evolving in opposite
directions in time is an effect pertinent to the foundations of
quantum mechanics [39] and gives rise to peculiar quantum
effects predicted in the dynamics of a relativistic electron
[40,41], recently investigated with trapped ions and Bose-
Einstein condensates [42,43].

We choose to measure an observable that manifests a qual-
itative change depending both on the coherence between the
two systems and their deviation from Hermiticity. We define
a generalization of the o, operator for the forward (reverse)
system

SER) = @)

O OO
=]
S = O

as represented in the {|vac)gwr), |1)rR), |2)F®)} basis. Such an
observable is a constant of motion in the Hermitian regime
and can be considered as a discrete-variable equivalent of a
particle coordinate operator [44]. However, if we prepare an
input state that is a coherent superposition of the forward and
reverse subsystems, such as (|1)g + II)R)/ﬁ, both (Sg) and
(Sr) exhibit oscillatory behavior.

The amplitude of these oscillations is reduced if the co-
herence between the states |1)g and |1)gr decreases, and it
vanishes if the input is a statistical mixture of |1)r and |1)g
[Fig. 3(a)]. We therefore associate this oscillatory behavior
with the coherent interference between forward and reverse
modes of the P7T -symmetric doublet, a situation that is anal-
ogous to the Zitterbewegung effect [40]. This predicts an
oscillatory or “trembling” behavior of the position expectation
value for a relativistic electron, stemming from interference
between positive and negative energy solutions of the Dirac
equation. For this experiment, the mixed state spread across
the forward and reverse system is simulated by statistically
averaging the results from two orthogonal pure single-particle
input states. We finally note that in the broken symmetry phase
[Fig. 3(b)], (Srr)) no longer exhibits oscillatory behavior
since the system loses its periodicity, but the final configu-
ration of the system changes greatly depending on the initial
coherence between the two subsystems.

V. THREE-MODE AND MANY-PARTICLE
PT-SYMMETRIC SYSTEMS

We have up to now discussed the nonunitary evolution
of a single excitation over two modes, thereby simulating
single-particle P7 -symmetric systems. We now fix N = 3.
In addition to gain and loss modes, the three-mode P7T -
symmetric systems possess a neutral mode. With N = 3, the
eigenvalues of Hy(y) become € € {0, \/2 —y2, —\/2 -y}
We refer the reader to AppendixF for an analysis of the evolu-
tion of a single excitation over three modes. Instead, here we
show how the same interferometer set to realize the evolution
described by Uy (y, t) can be used to study the interference of
many identical photons undergoing nonunitary time evolution
under a P77 -symmetric Hamiltonian.

Using pairs of indistinguishable photons, we observe the
evolution of the following two-particle input states:

1€21) = |1[’11’0P>F ® |0POPOI’)R’
[€02) = PTI21) =10,1,1,)p ®10,0,0,)-

®)

|€21) has one photon in the gain and neutral modes each,
while |€2;) has one photon in the loss and neutral modes
each. Figures 4(a)—4(c) show the probability for the sys-
tem to collapse onto gain-neutral, gain-loss, and neutral-loss
modes, i.e., states |1,1,0,)g, [1,0,1,)r, and [0,1,1,)g, re-
spectively, as a function of time. We choose four values of y,
in the Hermitian, P7T -symmetric (y = +/2/2, y = 3v/2/4),
and P7T-symmetry-broken regimes (y = 1.1+/2). A similar
procedure can be adopted to simulate the non-Hermitian
two-photon (Hong-Ou-Mandel) interference [26]. The prob-
abilities reported in Figs. 4(a)—4(c) are normalized over all
the possible antibunched patterns over the six modes of
the interferometer. We note that, due to the P7 symmetry
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FIG. 3. Simulation of Zitterbewegung-like interference effects between coupled, time-reversed, two-mode P77 systems. Expectation values
of SF(R) = |1>F(R) (2|F(R) + |2>F(R)<1 |F(R) for the system initialized as Pin = 1/2(| 1)]:(1 |F + |1>R<1 |R) + a(l 1)1:(1 |R + |1)R(1 |F) are shown. The
parameter a characterizes the degree of coherence between the time-reversed systems. (a) In the unbroken symmetry phase (y = 0.25), the
amplitude of the oscillations of (Sgg)) is proportional to the initial level of coherence of the input state. (b) In the broken symmetry phase
(y = 1.1), the initial level of coherence of the input state dictates the saturation level of (Sgw)).

between these input states, we expect their evolution to
proceed in opposite directions in time and to present an
exchange of probabilities between the observation of the pat-
terns |1,1,0,) and |0,1,1,). The probability of detecting one
photon in gain and neutral modes each at time ¢ starting from
state |€2;) is equal to the probability, at time —t, of detecting
one photon in neutral and loss modes each when starting from
state |€2,). For these reasons, data collected for the input state
|€2,) have been plotted in the reverse temporal direction to
simplify the comparison with the input state |<2;). By increas-
ing the value of y, the system undergoes the transition from
the symmetric to the broken symmetry phase characterized by
an increase of the period of the evolution, for y < ﬁ, and by
a nonperiodic evolution, for y > +/2.

Lastly, we demonstrate the effect of non-Hermiticity on
photon bunching by starting with a maximally antibunched
three-photon input state,

|X1> = |1p1p1p>F ® |OPOPOP)R' (9)

To prepare the desired input state, we simultaneously collect
two photon pairs and then use one of these photons to herald
the generation of a three-photon antibunched state, which we
inject into the chip. The data in Figs. 4(d)—4(f) show the evo-
lution of the probability of different photon bunching events in
the forward system modes. Due to the underlying parity-time
symmetry, the probability distribution satisfies Prob(z, |)) =
Prob(T(y) —t, P|v¥)), where T(y) =21 //|2 — y?| is the
fundamental period of a PT -symmetric trimer. Additionally,
in the Hermitian limit, due to the underlying parity symmetry,
the probability of two photons in mode 1 and one photon in
mode 2 (i.e., pattern |2, 1,,, 0,)r) is equal to that of its parity-
symmetric pattern |0,, 1,,,2,)r. When y > 0, the exchange
symmetry between modes 1 and 3 is broken; the weight at
smaller times ¢ < T'(y)/2 shifts to the gain mode, and the
weight at times ¢ > 7 (y)/2 shifts to the loss mode. For y =
0.2, parity-symmetric output patterns such as [2,0,1,)r and
[1,0,2,)r show probability curves that are exchanged under
time inversiont — T (y) —t.

It is computationally complex to simulate the evolution
of quantum Hamiltonians [32] that produce particle statistics
which are governed by intractable matrix functions. In the
case of boson sampling [46], in which photons propagate in
a circuit that is ideally described by a unitary matrix, classical
intractability arises because the detection statistics are given
by permanents of complex matrices. Yet photon loss reduces
the computational complexity in experimental implementa-
tions of boson sampling [47]. Similarly, a photonic simulation
of a traditional model for an open system, such as the Lindblad
approach, could become classically tractable via the loss that
is necessarily built into the model. However, in our simulation
model for twin PT -symmetric Hamiltonians, while each sub-
system is open and lossy, the overall model is unitary and an
ideal implementation is lossless; generally, statistics provide
information about both the forward and backward subsystems,
and the relation between them.

VI. DISCUSSION

The theory of PT -symmetric Hamiltonians emerged two
decades ago as a complex extension of quantum mechan-
ics [48]. Over the past decade, it has galvanized research
primarily in the classical (wave) domain [3,4]. With recent
realizations of effective P77 symmetry and exceptional points
in minimal quantum systems, the subject of non-Hermitian
quantum systems is at the forefront again. Although most
studies to date have been limited to single-particle sys-
tems, non-Hermitian quantum many-particle systems are an
emerging and challenging frontier. This is true because most
approximate methods—variational principle, tensor networks,
and perturbation theory—developed to reduce the exponential
complexity of a many-body system, are designed for and work
only with Hermitian Hamiltonians.

The task of simulating non-Hermitian, quantum many-
particle systems, including noninteracting bosons propagating
with a non-Hermitian Hamiltonian, brings new challenges
[49,50]. We have shown that a programmable, unitary sim-
ulator is suited to addressing these challenges. Combined
with the increasing sophistication of integrated photonic
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FIG. 4. (a)-(c) Two-photon correlation measurements. Data representing the evolution of the input states [©2;) = [1,1,0,)r ® [0,0,0,)r
and [Q2;) =0,1,1,)r ®[0,0,0,)r. The plot shows the probabilities of detecting the output patterns [1,1,0,)r ® [0,0,0,)r, [1,0,1,)F ®
10,0,0,)r, and [0,1,1,)F ® |0,0,0,)r, With dots corresponding to experimental data. Data collected for the state |$2;) (in red) are plotted
in the reverse temporal direction. Data for input state |€2,) follow the same evolution as for input state |$2;), provided that the output patterns
[1,1,0,)r and [0,1,1,)r are exchanged. (d)—(f) Three-particle evolution. When y > 0, the output patterns related by a spatial inversion
symmetry evolve in opposite directions in time. The curves for these related output patterns become identical when y = 0. Error bars are

obtained via bootstrapping methods [45].

devices, our simulation techniques will allow the investigation
of PT-symmetric quantum systems beyond the computa-
tional capability of classical computers, paving the way for
quantum technologies that can simulate and harness the po-
tential advantages of non-Hermitian quantum systems.
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APPENDIX A: UNITARY DILATION PROCEDURE

To dilate a nonunitary operator Gy (t) of size N x N, we
must first ensure that its maximum singular value is less than

013051-7



NICOLA MARAVIGLIA et al.

PHYSICAL REVIEW RESEARCH 4, 013051 (2022)

1, ||G(t)|]2 < 1. We enforce this condition by scaling the op-

erator Gy (¢) by a multiplicative factor «. Such normalization

does not alter the quantity of the form

Tr[MaG(y, )pG (v, Da*] | TGy, H)pG (v, 1)]
Tr{aG(y, )pGi (v, Da*] o> Ti[G(y,0)pGi(y, 1]’

GN(I): GN(t)

max, [[|Gn(D)][2]

where IT is a linear operator. Therefore o does not affect the
resulting statistics of our simulations. We can either choose
the scaling factor to be the maximum singular value over both
time and spectrum of singular values or choose to use a time-
varying scaling factor that is the maximum over the spectrum
of singular values at time ¢. That is, Gy(¢) is normalized as

Gn(t)

Gn() = N
VO =G0l

(AD)

The second solution was preferred since it better adapts to the broken symmetry regime cases where the singular value of Gy (¢)
~ — .
increases exponentially with time. Gy (¢) can be decomposed by singular value decomposition as U cos 6 V', where U,V are

N-dimensional unitary matrices and cos T = diag(cos 6y, ..., cos Oy). This allows for Gy(t) to be embedded in the upper left
corner of a 2N x 2N unitary matrix. Indeed, possible dilations of Gy (#) can be written as

U 0 T A YA AN
cos isin
Uw(y,t) = ( ) < ) (A2)
by 0 AJ\isin 7 cos 5) 0 B
for any N-dimensional unitary matrix A and B and for sin 6 = diag(v/1 — cos 60,2, ..., /T — cos6x2). Setting A = V and
B =U" gives
Ucos?VT iU\/I—coszg)UT
Uw(y,1) = — _ (A3)
- 2yt o
iVy[Il—cos” 6V Vecos 6 U

Furthermore, if C is a semipositive definite diagonal matrix, by using that for a unitary matrix W and a matrix E =

WCW?', JE = WA/CW?, we obtain

Gy (1)

UZN()/! t) = ~ -
iJI — Gl (t)Gy (1)

Since in our model Gy(t) = G},(t), we have V =U*

and (/I — GL(1)Gn(t))* = /I — Gy (t)G},(t). Then, defin-
ing the defect operator as Dy (¢) = /I — G’N(I)G;iv (1), we can

rewrite U,y as

Gy (1)

iD} (1) (A5)

Un(y.1) = ( iDN(”).

Gl ()
In the case when Hy is Hermitian, Gy () is unitary and the

singular values are 1, so Dy = 0, giving two independently
evolving systems.

APPENDIX B: EFFECTIVE HAMILTONIAN

As the evolution of the pair of coupled systems is unitary,
it can be generated by a Hermitian Hamiltonian H¢ over the
2N modes satisfying the equation

HetUoy = idiU2N~ (BD)

t
From this, knowing Uy, it is possible to obtain Heys =
i(%UZN)U;N and numerically solve for H, which turns
out to be time dependent. In Fig. 5 we show the results
of the numerical calculation of the Hey elements for N = 2
and y € {0.25,0.9, 1.1}. In the symmetric regime, the ele-

ments oscillate with a recurrence time 7 = 27 /{/1 — y2, so

i/ — GyGL (1)

~ (A4)
G ()

(

we set an equivalent “relaxation time” 7 =2 //|1 — 2|
in the broken regime. The unplotted elements in Fig. 5 are
all (numerically) O including all diagonal elements Hj ; for
1 < k > 4. The spikes appearing in H; 3 and H, 4 represent
asymptotes.

APPENDIX C: FORWARD AND REVERSE SYSTEMS
WITH VACUUM CONTRIBUTION

The dynamics of the forward (F) and reverse (R) systems
are recovered by the reduced states of the full 2N-mode sys-
tem:

pr(1) = Tig p(t) := Trr[Uan (v, 1)p(ONhsy (v, )],
pr(1) = Trg p(t) := Tre[Uan (v, DpOU, (v, )], (C1)

Here, p(0) is the input photonic state, and U,y is the unitary
operator acting on the photonic Fock space according to the
transfer matrix U,y (y,t), which transforms the input-mode
creation operators a:f as

Unn(y. DajUsy(y. 1) = Y [Ua(y. Dlal.  (C2)
J

To simulate a single N-dimensional P7 system, we use
2N optical modes, and we assume that the optical system is
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FIG. 5. Nonzero elements of the effective Hamiltonian Hg of the dilated unitary for the two-mode P7 -symmetric Hamiltonian H,.

constrained to the one-photon subspace. In this space a basis where |0,) is the single-mode vacuum state. Doing this, the
is density matrix at time ¢ can then be denoted as

1) = Usn(y, )pO)US (v, 1). Cc4
{1k) = 10,)8%=D]1,)]0,) BN 2N | ©3) o(t) Wy, DHpO)U,, (v, 1) (C4)

J

However, we can treat the modes 1 to N as composing the forward system and modes from N + 1 to 2N as composing the
reverse system leading to the definition of two reduced density matrices obtained performing the partial trace over one of the
systems. For the reduced density matrix of the forward system pr we obtain

2N

pr =trgp =trg ¥ pulk){l|
k=1

2N
= trg Z pkl|0p)®(k’1)|lp)|0p)®(2N’k)(0p|®(l’1)(1,,|(0,,|®(2N’”
k=1

N
= trR< Y pul0) = VI1,)10,) 2PN R0, 1201, (0, 22V D
k=1

oN

T2 pul0)®HVI1)I0,) Y0, %0010, YD
kI=N+1
N 2N

—i—Z Z pkl|0p>®(k—1)|1p)|Op)®(2N—k)<0p|®(l—l)(1p|<0p|®(2N—l)
k=1 I=N+1
2N N

py Zpkl|0p>®“‘”l1p>|0p>®(2”—"><0p|®“—'><1p|<op|®<2N_l))
k=N+1 I=1
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2N

N
= > pul0p) 4 V1,10, 2V 0, 12D (110, PN+ S pul0,) BN (0,1 8

k,i=1
N 2N
= Z prlk) (] + Z Prr|vac) (vac|.
ki=1 k=N+1

Similar results are obtained when the partial trace is per-
formed over the forward system, showing that the partial trace
operation over the reverse (forward) system sums the diagonal
elements of the bottom (top) N modes of p(¢) and places this
value in the vacuum state of the forward (reverse) system.
That is, the Fock spaces of the systems are decomposed into
particle number subspaces as F/R = /0 @ 3"/ Ac-
cording to this, we can choose the basis states of the forward
or reverse system as {|k)"/® =10,)®*=D|1,)]0,) 8NV
and an additional basis state in each system |vac) = |O,,)®N .
Furthermore, no coherence is present between the one-photon
and zero-photon subspaces.

Whenever there is interest in considering only the original
‘PT system without introducing the reverse system and the in-
teraction terms between them, we need to redefine the density
matrix of the forward system without including the vacuum
contribution as

5 Zﬁcv,z=1 P lk)(l]
F=—y -
Zgﬂ Pkk

This approach has been used in the simulation of the no-
signaling violation.

(C5)

APPENDIX D: EXPERIMENTAL METHODS

1. Photon generation

For all the experiments described in this paper, the single
photons are generated via spontaneous parametric downcon-
version in a bismuth borate nonlinear crystal satisfying type
I phase-matching conditions. The crystal is pumped with
light pulses at 404 nm obtained from a second-harmonic-
generation process induced in a barium borate crystal by
a 808-nm Ti:sapphire mode-locked laser. The pairs of pho-
tons generated in the downconversion are spectrally filtered
with a 3-nm-bandwidth interferometric filter centered around
808 nm and are collected from two diametrically opposite
positions of the generation cone. The pair of photons, coupled
to single-mode polarization-maintaining fibers, are used either
as a two-photon Fock state, by injecting them both into our
interferometer, or as a heralded single photon by connecting
one of the two fibers to a single-photon detector and injecting
the other photon into the interferometer. When interested in
the two-photon Fock state, we record all the events where two
single photons are detected at the output of the chip. For the
experiments in which we only need a single photon source, we
record all the events when both the heralding photon and the
photon at the output of the chip are detected. Three-photon
experiments are performed collecting two separate pairs of
photons from the emission cone and recording the coinci-
dental detection of a heralding photon from one pair and

k,/=N+1

(

of three photons passing through the optical modes of the
interferometer.

2. Integrated interferometer

The programmable interferometer used to implement the
multiple unitary transfer matrices of the experiments was
produced by the NTT Group in Japan and is described in
Ref. [27]. The triangular arrangement of 15 integrated Mach-
Zehnder interferometers with 30 thermally tunable phase
shifters allows us to prepare any unitary optical transfer matrix
across six modes. Alternatively, the same device can be used
as a cascade of 2 x 2 interferometers in order to sequentially
implement state preparation, evolution, or projection in phys-
ically different parts of the chip.

3. Probabilistic number resolving

The three-photon simulations reported in this paper require
the ability to resolve multiple occupancy in the output modes
to detect bunching photon events. To measure the probability
of these events, we performed probabilistic number resolving
detection of up to two photons in the same mode using auxil-
iary fiber beam splitters (FBSs) and detectors. By inserting
a FBS at each of the first three output modes of the inter-
ferometer and connecting both output modes of each FBS to
detectors, there is a finite probability that photons bunched
in the same output mode separate at the FBS and generate a
signal at both detectors to which the FBS is connected.

4. Detection calibration

We experimentally estimate the probability of collapsing
the quantum state of our simulator onto a particular Fock state
by multiplying the number of occurrences of each detected
pattern by a detector calibration factor associated with that
pattern and then normalizing to unity the sum over all relevant
output patterns. The relative detector efficiency at the different
output modes, for single-photon events, is obtained by testing
500 random phase configurations of our interferometer and
comparing the experimental statistic with the expected photon
statistics due to the phase settings. The efficiency correction
of each mode that maximizes the statistical fidelity between
the experimental statistics and the theoretical distribution is
chosen as a numerical correction for the data collected dur-
ing single-photon experiments. For two-photon antibunched
events, the occurrence of each pattern is multiplied by the
product of the correction factor of the individual output modes
populated with photons.

In the pseudo-number-resolving configuration, the detec-
tion calibration factor is obtained by using the single-photon
detector efficiency v; recorded at each output of the FBS.
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FIG. 6. Plots showing the evolution of a single excitation in the forward subsystem. Solid lines (points) show the theoretical curve
(experimental data). We show the probabilities for the excitation being detected in the forward subsystem (|1)g, |2)r) and the reverse subsystem
(|1)r, |2)r). Both panels follow the legend in (b). (a) Plots for a P77 Hamiltonian in the unbroken regime (y = 0.25). We see periodic
oscillations of the excitation in all four modes. (b) Plots for the broken symmetry regime. All probabilities evolve exponentially to a steady

state (y = 1.1).

To take into account the probabilistic nature of the pseudo-
number-resolving scheme, the experimental occurrence of a
detection pattern such as ((n;.1, n12), (n2,1, n22), (13,1, 132))
is divided by

L((n1,1,n1,2), (2,1, 22), (13,1, 132))
i=3

_ niy . Ni2

= l_[ Vi1 Vi
i=1

The number of events associated with an output state
[N1pN2pN3p) with Ny, = ni 1 + ny 2 is given as the average of
the occurrences of equivalent detection patterns. For example,
((1, 1), (1,0), (0,0)) is equivalent to ((1, 1), (0, 1), (0, 0))
since both correspond to the output state |2,1,0,). The final
probabilities are normalized over all the output states charac-
terized by three photons in the forward system modes but with
less than three photons bunched in the same mode.

(i1 +nip)! (D1)

5. State preparation and reconstruction

The preparation of fully mixed single-photon states is
obtained by the interference of two indistinguishable single
photons. The Hong-Ou-Mandel visibility of their interference
is measured to be 0.97. During the entropy evolution simula-
tion, the interferometer is set to implement Upo; Us (Y, 1) Ugn,
where

00 2 £ o o0
00 0 0 ¥ 2
1o 0o o 0 0
Un=lo0 1 0 o o o[ ©®?
00 2 £ o o0
00 0 o ¥ £

Us(y, t) transforms the bottom four modes of the interferom-
eter, and Upyo; projects the bottom two modes on the bases
of the Pauli operators. Physically separate components of
the optical circuit are involved in the implementation of the
three cascaded unitaries. The evolution of excitations super-

posed across the forward and reverse systems is performed by
compiling the two transformations required for preparing and
evolving the states. The resulting unitary is implemented in
the first part of the chip. The expectation values of Sr and Sg
are measured using three further concatenated interferometers
to project each of the systems, independently, on the eigen-
states of the Pauli operators.

When N = 3, to simulate the evolution of a single-particle
state prepared in a superposition across multiple modes of
the forward or reverse system, we multiplied the transfer
matrix Ug(y, t) with the state rotation necessary to transform
a localized single photon into the desired superposition. The
resulting unitary transformation is then dialed on the optical
chip.

The experiment with two-photon Fock states is performed
setting the transfer matrix of the chip to implement Ug(y, t)
while the input state is obtained injecting either [0,1,1,)r ®
10,0,0,)r or [1,1,0,)F ® 10,0,0,)r into our integrated in-
terferometer. The production of the desired input state is
assumed every time a coincidence detection happens at two
of the detectors connected to the output modes of our device
neglecting higher-order pair generation occurring with a two-
order-of-magnitude-lower rate.

APPENDIX E: REVERSE SUBSYSTEM
IN A TWO-MODE SYSTEM

In the main text we show the dynamics of an excitation
in the forward subsystem for a two-mode P7 system. We
included a combined vacuum probability which contained
the probability of the excitation tunneling into the reverse
subsystem. Using the same experimental data, in Fig. 6 we
show the evolution of both forward and both reverse modes.
This captures the full dynamics of a single excitation in the
forward subsystem. We show the data for both the unbroken
(y = 0.25) and broken (y = 1.1) symmetry regimes. We see
a periodic oscillation in the probability of all four modes in the
unbroken regime. In the broken regime all four mode proba-
bilities evolve exponentially towards a steady-state value.
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FIG. 7. Results for the simulation of the three-level P7 -symmetric Hamiltonian. Plots show the evolution of the probability, in the
unbroken (a) (y = 0.5y.) and broken (b) (y = 1.1y.) symmetry regimes, for three input states: |1(z = 0)) = (|1)p — i|2)p)/\/§, Y3t =
0)) = (1)r + i|2)R)/\/§ (top row), and ¢ (t = 0)) = (i|2)r + |3)F)/\/§ (bottom row). Solid lines in the top row represent theory curves
for the time evolution of |y (7)), while solid lines in the bottom row represent theory curves for the time evolution of |y, (¢)). The data for
|r3) show the same temporal behavior as for |¢). Conversely, the data for |y,) follow the opposite temporal evolution as |y), while the

probabilities of observing |1) and |3) are exchanged.

APPENDIX F: SINGLE-PARTICLE DYNAMICS
IN A THREE-MODE SYSTEM

Since, for N = 3, the third-order exceptional point oc-
curs at y, = +/2, to analyze unbroken and broken symmetry
regimes, we perform simulations for y = +/2/2 and y =
1.1 /2, respectively. Transfer matrices, concatenating state
preparation and unitary evolution described by Us(y,t;),
are implemented by using the entirety of the six-mode
chip.

Figure 7 shows data reproducing the evolution of three
single-particle initial states {|¥(zt = 0))g, |¥2(t = 0))p,
|[Y¥3(t = 0))r}. These are related by symmetry transforma-
tions as follows:

Y10 = (Ig — il2)p)/V2 (F1)

is an example of a state coherently superposed across gain and
neutral sites of the forward system;

[¥200))5 = (i12)r + 13)p)/v2 = PT 41 (0))5 (F2)

is the result of a P77 transformation of |y (0))f; and
[Y3(0)g = (ID)g +i12)r)/V2 = T1¥1(0))g (F3)

is prepared in the reverse system and, via time inversion, is
analogous to the state 7 |11 (0)).

Due to the symmetries of our model, the mode occupation
of these states during their evolution is closely related. Specif-
ically, we expect

(k|2 (1)) = (kIPT G3(=t)PT ¥2(0))
= (4 — kIG3(=1)y1(0))", (F4)
and since H3(y) = H3T(y), we also have
(kIG3()"93(0)) = (kT G3(t)T¥3(0))
= (kITG3(@)¥1(0))
= (k|G3()yn (0)". (F5)

Figures 7(a) and 7(b) show that the (forward) evolution of
state |¢;) with Hamiltonian H3 is the same as the (reverse)
evolution of the state |yr3) with Hamiltonian H;. These results
at time —t match the evolution of state |y,) with Hamiltonian
Hj at time ¢, demonstrating the mirror symmetry about t = 0.
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