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Imaging signatures of the local density of states in an electronic cavity
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We use scanning gate microscopy to study electron transport through an open, gate-defined resonator in
a Ga(Al)As heterostructure. Raster-scanning the voltage-biased metallic tip above the resonator, we observe
distinct conductance modulations as a function of the tip position and voltage. Quantum-mechanical simulations
reproduce these conductance modulations and reveal their relation to the partial local density of states in the
resonator. Our measurements illustrate the current frontier between possibilities and limitations in imaging the
local density of states in buried electron systems using scanning gate microscopy.

DOI: 10.1103/PhysRevResearch.3.L032005

I. INTRODUCTION

Scanning gate microscopy (SGM) provides a unique mean
to investigate local properties of carrier transport in semi-
conductor nanostructures based on buried two-dimensional
electron gases (2DEG) [1,2]. This imaging technique uses the
capacitive coupling between the voltage-biased metallic tip
scanned above the sample surface and the electrons in the
2DEG. Successfully imaged local phenomena and systems
in various materials range from disorder-induced or engi-
neered localized states [3–12], magnetic focusing of electrons
[13,14], quantum rings [15–18], quantum Hall edge states
[19], ballistic as well as viscous regimes of interacting elec-
tron liquids [20], to the milestone observation of branched
electron flow [21–23]. One major goal of SGM is the ex-
perimental measurement of the local density of states in
nanostructures. Here, SGM provides a unique opportunity,
as only few scanning probe experiments allow one to image
the local density of states directly, and the most successful
technique, scanning tunneling microscopy, requires the 2DEG
to be accessible at the surface.

The imaging of the local density of states with SGM is
well studied in theory [15,24,25] and approached experimen-
tally by a number of pioneering experiments [16,21–23,26–
28]. However, a major obstacle for the experimental realiza-
tion of scanning gate measurements of truly local electron
properties is the invasiveness of the tip-induced potential,
which alters the quantum states of interest. Imaging local

*cgold@phys.ethz.ch

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

quantum-mechanical properties, such as the local density of
states, with SGM thus requires weakly invasive tip potentials.
Unfortunately, the measurement signals obtained in the latter
are too weak to be resolved unless strongly confined systems
are investigated. These, in turn, lead to a significant loss of
spatial resolution of the SGM measurement [29].

Recently, an accommodation for these two competing re-
quirements of weakly invasive tip potential and sufficient
signal strength was found [26]. An open resonator structure
of intermediate size [30–32] confines only fundamental one-
dimensional cavity modes which can be uniquely identified
and addressed [33]. This holds true even in slightly less
open resonators [26]. In the latter, the moderate confinement
and size of the cavity allows for SGM imaging with tip po-
tentials smaller than the Fermi energy and sufficient spatial
resolution [26].

In this Letter, we demonstrate the correlation between
the partial local density of states in such an open resonator
structure with the conductance modulations observed in SGM
measurements. We scan the voltage-biased metallic SGM tip
above the structure for both weakly and strongly invasive tip
voltages, and observe distinct conductance modulations in
the area of the resonator. Quantum-mechanical simulations
not only exhibit a good qualitative agreement with the ex-
perimental data but also display a correlation between the
conductance modulations in the SGM conductance maps and
the partial local density of states in the cavity. These results
show that weakly invasive SGM provides a tool for measuring
direct signatures of the partial local density of states in large
two-dimensional electronic structures.

II. SAMPLE AND EXPERIMENTAL SETUP

Our measurements are performed at T = 270 mK
using the measurement setup depicted schematically in
Fig. 1(a). The SGM tip is raster-scanned above a Ga(Al)As
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FIG. 1. (a) Schematic of the measurement setup. Voltage-biased
metallic gates (golden) on a Ga(Al)As heterostructure form an open
resonator structure (schematic blue standing wave pattern) in the
two-dimensional electron gas (blue). A SGM tip is positioned above
the structure to measure the conductance between source (S) and
drain (D) ohmic contacts as a function of the tip position. (b) SGM
image G(x, y) of the cavity area for tip voltage Vtip = −1 V and
cavity gate voltage Vcav = −400 mV. Dotted lines outline the ap-
proximate position of the Schottky gates. Measurements in Fig. 2
are performed along the orange dashed line [Fig. 2(b)]; respectively,
the green crossed point [Fig. 2(a)].

heterostructure, in which a 2DEG resides 90 nm underneath
the surface. Applying suitable voltages to the lithographically
defined metallic Schottky gates allows us to form an open
resonator for electrons by depleting the 2DEG underneath the
gates.

The back and forth reflection of electrons between the
quantum point contact (QPC) through which they are injected
into the cavity and the arc-shaped cavity gate enhances the
local density of states in the resonator as compared to an
open 2DEG in the absence of the cavity. The length (2μm)
and opening angle (90◦, defined by the arc of the cavity gate)
of the resonator render its area significantly larger than any
characteristic lateral size of the SGM tip-induced potential.
This avoids the insufficient spatial resolution observed for
SGM inside smaller closed structures [29].

Throughout the measurements, the QPC is set to the third
conductance plateau (in absence of the cavity) and the res-
onator is formed by applying a cavity-gate voltage which
depletes the 2DEG underneath the gate. In this configuration,
the resonator supports more than 50 populated, radial, spin-
degenerate modes [34].

We perform SGM measurements over the whole cavity
area defined by the QPC gates on one side and the cavity gate
on the other side. By raster-scanning the voltage biased tip at a
height of htip ≈ 80 nm above the sample surface, we measure
the differential conductance G(x, y) = dISD(x, y)/dVSD as a
function of the tip position (x, y) in a two-terminal setup.
Here, ISD (VSD) is the current (voltage) between the source
and drain ohmic contacts. The resulting conductance G(x, y)
for a weakly invasive tip (for which the amplitude of the
tip-induced potential is much smaller than the Fermi energy)
is depicted in Fig. 1(b). It exhibits conductance modulations
in the cavity area, which are in good agreement with previous

FIG. 2. (a) Differential conductance G(Vcav,Vtip ) as a function of
cavity voltage Vcav and tip voltage Vtip at the tip position marked by
the green cross in Fig. 1(b). (b) Differential conductance G(ytip,Vtip )
along the orange dashed line in Fig. 1(b).

measurements on the same sample [26]. Cross-capacitance
between the QPC and cavity gates, as well as scattering of
electrons by the cavity gate back through the QPC reduce the
overall conductance well below G = 3 × 2e2/h.

III. TIP INFLUENCE ON THE MODULATED
CAVITY CONDUCTANCE

To study the influence of the tip-induced potential on the
cavity, we measure the conductance G(Vcav,Vtip ) of the device
for various fixed tip positions along the orange dashed line in
Fig. 1(b). By tuning the voltage Vcav in a range for which the
2DEG underneath the gate is depleted, we vary the electronic
length of the cavity. In contrast, the tip-induced electrostatic
potential with maximum value Ut is varied over the full range
from strongly invasive tip potentials (Ut > EF, where EF is
the Fermi energy) to weakly invasive tip potentials (Ut <

EF) [26]. Figure 2(a) exemplarily depicts the conductance
measured at the tip position marked by the green cross in
Fig. 1(b) (ytip = 0.59 μm). We observe distinct conductance
modulations, which are equidistantly spaced and diagonal as a
function of the tip (Vtip) and cavity (Vcav) voltages, as indicated
by the red arrows.

The Fourier transform of the data in Fig. 2(a) reveals a
λF/2 periodicity of the conductance modulations [34]. This
observation is evidence for quasi-one-dimensional radial cav-
ity modes [33], which are separated in energy [35] by more
than eVSD [34]. Electronic transport through the cavity is
modulated by the cavity modes, which are shifted in energy
by either the tip-voltage Vtip or the cavity-gate voltage Vcav.
This leads to the diagonal conductance modulations seen
in Fig. 2(a).

In order to improve our understanding of the relationship
between the regular conductance modulations in Fig. 2(a) and
the seemingly random modulations in Fig. 1(b), we measure
the conductance as a function of the tip potential and tip
position along the orange dashed line in Fig. 1(b). We plot
the resulting conductance G(ytip,Vtip ) in Fig. 2(b). At strongly
invasive, negative tip potentials the overall conductance is
reduced similar to the observation in Fig. 2(a). Transition-
ing from strongly to weakly invasive tip potentials, peaks
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and troughs in the conductance shift towards the middle
of the cavity (ytip = 1.6 μm), thus forming arcs. Ultimately,
the conductance modulations disappear for a small range of
tip voltages centered around Vtip = 0 V [cf. dashed line in
Fig. 2(b)]. Increasing the tip voltage beyond this region, we
observe a similar but mirrored behavior for conductance mod-
ulations at positive tip potentials.

At the common axis in Fig. 2 (Vcav = −400 mV,
ytip = 0.59 μm), the conductance modulations in G(Vcav,Vtip )
line up with the conductance modulations in G(ytip,Vtip ) (see
also Supplemental Material [34]). We conclude that the arc-
shaped modulations in Fig. 2(b) are related to the discrete
radial cavity modes.

IV. UNDERSTANDING THE MODULATED
CAVITY CONDUCTANCE

There are two common approaches to evaluate the transport
properties of noninteracting mesoscopic devices, which have
been used extensively to understand SGM measurements:
semiclassical expansions [22,36–38] and tight-binding cal-
culations [15,39–41]. The former is formulated in terms of
the classical trajectories of electrons exiting the QPC. These
are then guided onto branches with an increased electron
flow due to the random disorder potential generated by the
ionized donors [21–23]. The action of a cavity gate leads
to a back-folding of the branches, which are simultaneously
deflected by the tip-induced potential. Some of us [42] have
used a semiclassical approach to theoretically investigate the
effect of varying the tip-branch distance and tip voltage, which
leads to arc-shaped conductance features in agreement with
the experimental observation in Fig. 2(b). Here, we choose
to use tight-binding calculations instead, which reproduce
both the arc-shaped as well as the λF/2-periodic conductance
modulations in Fig. 2 and provide an intuitive framework to
understand the physical processes in terms of cavity modes.

Specifically, we perform our tight-binding calculations
using the KWANT package [43]. The gate geometry in the
simulations is similar to the experiment and the potential of
the gates is modeled according to the potential suggested in
Ref. [44]. The magnitude of the potential applied to the QPC
gates for all simulations is chosen such that the QPC is set to
the third conductance plateau in absence of the cavity. The dis-
order in the cavity is modeled by remote impurities positioned
at a distance s = 60 nm from the two-dimensional electron
gas. Realizing a specific disorder potential configuration [34],
we account for the finite thickness of the electron gas as well
as its stand-off distance from the Ga(Al)As surface by using
the Fang-Howard variational wave function. Furthermore, we
include Thomas-Fermi screening of the disorder potential and
assume a spatial correlation of the ionized donors to match
the high mobility in our sample [34]. The thus modeled elec-
trostatic potential U (in units of the effective Rydberg energy
ERy = 5.763 meV) of the system in the absence of the tip is
depicted in Fig. 3(a). The tip is included in the simulation
via its electrostatic potential induced in the two-dimensional
electron gas [26]. Here, we use a (long-ranged) Lorentzian po-
tential motivated by a breadth of previous works [1,15,41,45]
though a Gaussian potential leads to similar results [34].

FIG. 3. KWANT simulations of the cavity. (a) Electrostatic poten-
tial U (in units of the Rydberg energy ERy) of the cavity in absence
of the tip. (b) Numerical SGM data of the transmission through the
cavity as a function of the tip position (xtip, ytip) within the cavity
area. (c) Numerical transmission as a function of tip voltage and
tip position along the dashed orange line in Fig. 3(b). (d) High-
resolution calculation of the transmission within the yellow rectangle
in Fig. 3(c). The fitted maxima of the parabolic feature of interest
are denoted by the red parabola. The simulations depicted in Fig. 4
are performed for the tip parameters denoted by the red arc and the
orange/yellow lines.

We perform numerical SGM measurements by calculating
the transmission between the source and drain contacts at the
Fermi energy as a function of the tip position (xtip, ytip ) and the
tip voltage Vtip. The calculated equivalents to Figs. 1(b) and
2(b) are shown in Figs. 3(b) and 3(c), respectively. The nu-
merical and physical experiments show striking similarities,
with seemingly random modulations in the two-dimensional
scan and more regular arc-shaped modulations in the line cut.

We numerically investigate the correlation between these
transmission modulations and the cavity modes. To this end,
we concentrate on a single conductance maximum, which is
isolated from its neighbors and flattens at ytip ≈ 1.4 μm [see
Fig. 3(d)]. We calculate the partial local density of states DP

originating from the source contact in the cavity [46] for each
tip parameter along the conductance maximum and along two
cuts of fixed tip potential and position, respectively. The tip
parameters are chosen such that all three lines cross in a
single point (xc

tip, yc
tip,V c

tip) [see Fig. 3(d)]. The resulting partial
local density of states DP(xtip, ytip,Vtip ) is a two-dimensional
map in (x, y) which varies as a function of the parameters
xtip, ytip,Vtip [47].

To facilitate the comparison of the three different cuts [red,
yellow, and orange lines in Fig. 3(d)], we calculate the average
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FIG. 4. Spatially resolved variation of the partial local density of states (a) along the conductance maximum, (b) across the conductance
maximum for fixed tip position and varying tip voltage, and (c) across the conductance maximum for fixed tip voltage and varying tip position
ytip. The orange-red dots inside the cavity area denote the tip positions and tip voltages for the respective data set.

(over the length of each cut) deviation in the partial local
density of states
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where the index i indicates the points along each of the cuts.
We thus obtain in Fig. 4 three two-dimensional plots of the
typical spatially resolved variations of DP along each of the
three curves in parameter space.

Along the conductance maximum [Fig. 4(a)], DP changes
weakly and uniformly across the cavity. On the other hand,
both lines which cross the maximum [Figs. 4(b) and 4(c)]
display strong local changes close to ytip ≈ 1.4 μm, which
indicate a change in the structure of the partial local density
of states (cf. Supplemental Material [34]). In terms of cavity
modes, we find that the vertical and horizontal cuts through
the conductance maximum result in a change of the mode
itself. Particularly, we observe that the mode is localized in
a region centered around the position of the flattening of the
conductance maximum in the simulated SGM measurement
in Fig. 3(d). In contrast to this we probe a single mode by
following the conductance maximum.

We conclude that the conductance maxima in our experi-
ment are a function of the tip-induced potential and position
and contain information about the unperturbed partial lo-
cal density of states. This demonstrates that weakly invasive
SGM measurements in sample geometries like this open res-
onator do preserve properties of the partial local density of
states even in the presence of the tip-induced potential. Fur-
thermore, our data shows that information about the partial
local density of states can be resolved also for Lorentzian-
shaped tip-induced potentials with a full width half maximum
of 250 nm.

Both the experimental and numerical data show that most
modes feature an enhanced local density of states in the cen-
tral region of the cavity. Thus, the tip voltage required to tune

a specific mode in this region to the Fermi energy is minimal
and the transmission features are almost flat along the arc.

In contrast to this, a small variation in the tip positions
in regions close to the edges of the cavity requires a larger
tip voltage difference to tune a certain cavity mode to the
Fermi energy. We thus understand the origin of the arc-shaped
modulations observed both in the experimental [Fig. 2(b)] as
well as the theoretical data [Fig. 3(c)].

V. CONCLUSION

The scanning gate measurements in the open resonator
structure presented in this Letter reveal distinct conductance
modulations as a function of the cavity-gate voltage Vcav,
the tip position (xtip, ytip), and the tip voltage Vtip. Numerical
simulations using the KWANT package [43] substantiate the
premise that these conductance modulations are related to the
cavity modes. While we cannot measure the local density of
states directly, the measurements presented in this Letter offer
a potential platform to extract information about large-scale
(> 250 nm) modulations of the density of states from scan-
ning gate measurements. A possible measurement scheme
to achieve the latter would be to repeat the measurement
presented in Fig. 2(b) for all tip positions xtip throughout
the cavity. Information about the local density of states and
the localization of the modes is then contained in the ex-
act trend of the thus measured curves and can potentially
be extracted (for details, see Supplemental Material [34]).
This method explores new avenues to gain insights into the
partial local density of states in buried electron systems. At
the same time, it also illustrates the current frontier between
possibilities and limitations in determining the latter via SGM
measurements.
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