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Chaos in spin-torque oscillator with feedback circuit
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Excitation of chaotic magnetization dynamics in nanomagnets is of great interest because it bridges the con-
densed matter physics and nonlinear science and has a potential to emerging technologies such as neuromorphic
computing. However, it has been difficult to observe and identify chaos in spintronics devices because the
excitation of chaos requires dynamics in a large-dimensional phase space, according to the Poincaré-Bendixson
theorem. An efficient way to overcome this issue is using feedback, which enables the dynamical degrees of
freedom to be increased even in a single device. Here, we experimentally demonstrate the excitation of chaos
in a vortex spin-torque oscillator by utilizing a feedback circuit. The radio-frequency current emitted by the
oscillator flows in the feedback circuit and is converted into an oscillating magnetic field. The oscillating field
generates a torque acting on the vortex and modulates its dynamics, resulting in chaotic dynamics which can be
tuned by electrical means.
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I. INTRODUCTION

Chaos is deterministic but unpredictable nonlinear dy-
namics with high sensitivity to the initial state. It has been
observed in phenomena studied in a wide variety of natural
sciences [1–7], including meteorology [4], optics [5], elec-
tronics [6], and neuroscience [7], and bridges physics and the
other research fields. Moreover, chaos, or highly nonlinear
dynamics at the edge of chaos, play fascinating or even some-
times undesirable roles in neuromorphic computing [8–17].
The growing interest in brain-inspired computing using spin-
tronic devices [18–20] has led us to investigate a possibility
of exciting and/or controlling chaos in nanomagnets, which
may one day lead to the realization of ultrahigh-density solid-
state neuromorphic devices. Several proposals have been put
forward on how to excite chaos in nanomagnets [21–31], such
as by utilizing magnetic multilayers consisting of two free
layers [21–23] or applying a periodic current or magnetic field
[24–26]. We note that an excitation of chaos in nanomagnets
is a challenging task due to the following reason. It has been
revealed that the magnetization dynamics is well described
by several simplified models, such as macrospin and vortex,
with two dynamical degrees of freedom [32]. The validity of
these models has been confirmed by experiments. However,
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chaos occurs in a phase space larger than two dimensions, ac-
cording to the Poincaré-Bendixson theorem [2,32]. Therefore,
additional factors, such as periodic signal, are necessary to
increase the number of degrees of freedom. The previous pro-
posals are inefficient in this sense. For example, the macrospin
system with periodic input [24–26] has only three degrees
of freedom. In addition, the computational performance of
neuromorphic computing, such as in terms of the memory
capacity of reservoir computing, is bounded by the dynamical
degrees of freedom in the system [33]. Therefore, excitation
of chaos in a large dimensional system is highly desired.

An intriguing approach to overcoming these issues is utiliz-
ing systems with a feedback signal [34]. The feedback effect
inherently exists in natural and artificial systems because of
finite speed of signal propagation. However, the number of
the experimental investigations on the dynamical systems with
time delay had been limited because the time scales in the
proposed systems were slow and therefore, the implementa-
tion of long time delay was required [35]. For example, it took
approximately 20 years to perform the experiment of Mackey-
Glass system [36] after its proposal [34]. On the other hand,
a fast time scale, on the order of gigahertz, of magnetization
dynamics in spintronics devices is advantageous to realize the
feedback effect in a relatively simplified circuit. The feedback
effect makes the number of degrees of freedom uncountably
infinite in principle, and therefore, highly nonlinear (complex)
dynamics can be easily excited [35]. In fact, it has been shown
that feedback signals in the form of an oscillating current or
magnetic field can modulate the amplitude and coherence of
the magnetization oscillation in spin-torque oscillators (STOs)
[37–41]. An oscillating behavior of a magnetic domain wall
driven by direct current was also studied by numerical
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FIG. 1. Schematic illustration of vortex STO with feedback circuit. Direct (bias) voltage injected into the STO excites an oscillation of the
vortex through the spin-transfer effect. An external magnetic field is also applied normal to the film plane. The output power is separated from
the bias voltage through a bias-tee and is divided into two paths by a power divider. One path is connected to an oscilloscope measuring the
vortex dynamics. The other is connected to an attenuator and delay line. The length of the delay line, 50 m, corresponds to the delay time τ

of 250 ns. The electric signal passing through the delay line is converted into an oscillating magnetic field, which is applied to the STO as a
feedback signal. The feedback signal reflects the past position of the vortex core through the TMR effect.

simulation [42]. These results indicate that spintronics devices
are suitable to investigate the complex dynamics caused by
the feedback effect experimentally. It has also been found that
STOs with a feedback circuit have a large memory capacity
in physical reservoir computing [43,44]. However, excitation
of chaos in spintronic devices by using a feedback signal
has not been experimentally investigated yet, although it was
theoretically predicted recently [45–47].

In this study, we report the observation of chaos in a
vortex STO with a feedback circuit. Here, the magnetic field
generated by the power from the STO is used as a feedback
signal. We performed multiple and comprehensive analyses
to conclude that the observed nonlinear dynamics are chaotic
in nature. We found that chaotic dynamics appear over a wide
range of feedback gain above 10–20 dB. These results indicate
the tunability of the chaotic state through electrical means,
which is a preferable feature for computing applications. Our
findings provide an example of chaos in a fine structure and
contribute to the deep understanding on the time-delayed
system.

The paper is organized as follows. In Sec. II, the materials
and device structure of the vortex STO and the feedback
circuit are described. In Sec. III, we show three analyses
to identify chaos in the STO. Section IV is devoted to the
summary and discussion of the present work.

II. MATERIALS AND STRUCTURE OF
SPIN-TORQUE OSCILLATOR

Figure 1 is a schematic illustration of the device and
circuitry used in this work. The magnetic tunnel junctions
(MTJs) used in the study have the following stacking
structure: substrate [Si/SiO2 (500)]/Ta(10)/Cu(40)/Ta(20)/
PtMn(5)/CoFe(2.5)/Ru(0.9)/CoFeB(2.5)/MgO(1)/FeB(5)/
MgO(1)/Ta(5)/Ru(5) (thickness in nanometers). The nominal
diameter is 375 nm. An external magnetic field of 590 mT is
applied normal to the film plane. A magnetic vortex is created
in the FeB free layer because of its relatively large size
and thickness. The magnetization in the CoFe/Ru/CoFeB
reference layer is mainly aligned in the film plane but is
slightly tilted out of plane due to the external magnetic field

[48]. The perpendicular component of the magnetization in
the reference layer provides a perpendicular component to the
spin torque acting on the vortex core, which is necessary to
induce its self-oscillation [49]. The TMR ratio is about 140%.
The device size was designed so that the resistance would be
50 �. All experiments were performed at room temperature.

The MTJ is connected to a direct voltage source. Self-
oscillation of the gyrotropic motion of the vortex core is
excited by the spin transfer effect when the applied voltage
becomes larger than a threshold value (150 mV). The applied
voltage is subsequently fixed at 225 mV. The input and output
powers are separated by the bias-tee shown in Fig. 1. The
output power is sent along two paths after passing through
the power divider. One path is to an oscilloscope; the other
is to a feedback circuit. The gyration of the vortex core is
electrically detected using the oscilloscope as an oscillating
voltage through the tunnel magnetoresistance (TMR) effect.
In addition, part of the output voltage is sent into the feedback
circuit, which is constituted by a field line antenna located
on top of the STO. The attenuator between the power divider
and the delay line and the amplifiers determine the feedback
gain. The power of the attenuator is variable, whereas those
of the amplifiers are fixed. Accordingly, the feedback gain
can be varied from −10 dB to 40 dB. The magnitude of
the noise in the amplifiers is at least 10 dB smaller than the
power of STO, and therefore, is negligible. Feedback sig-
nal flows through the metal line to generate the oscillating
magnetic field. Note that the metal line does not match the
impedance of the circuit with 50 � and reflects the feedback
signal. To damp the reflected wave, the other attenuator is
connected to the metal line and reduces the standing wave in
the circuit. The length of the electrical cable in the feedback
circuit is 50 m, corresponding to a delay time of 250 ns. The
oscillating magnetic field in turn excites a torque acting on
the vortex core that changes its dynamics. Since the mag-
nitude of the delayed feedback signal reflects the position
of the vortex core in the past through the TMR effect, the
vortex interacts with its past information. As a result, highly
nonlinear dynamics are expected [35]. The nonlinearity of
the vortex dynamics, as well as the existence of chaos, is
analyzed from the power spectra and the dynamic trajectory
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FIG. 2. Power spectra density (PSD) of STO. (a) Time domain signal of the output voltage and its power spectrum density at a low feedback
gain of −10 dB. (b),(c) Power spectra density at feedback gains of 15 dB and 40 dB. (d) Power spectra density as a function of feedback gain.

in the embedding space, as well as through a noise-limit
estimation.

III. IDENTIFICATION OF CHAOS

In this section, we report three analyses to identify chaos
in the STO with the feedback circuit.

A. Spectral analysis

The inset in Fig. 2(a) presents an example of the signal
in the time domain of the output voltage at a low feedback
gain of −10 dB. The signal is similar to a sinusoidal function
with a period of 2.3 ns. A Fourier transformation of such a
time trace represents the power spectral density in frequency
space and, as shown in Fig. 2(a), it has a single peak at
0.43 GHz. The peak is a typical signature of self-oscillation
of the vortex core due to spin-transfer effect with a single
well-defined frequency excited in the STO [50]. The spectral
shape changes drastically when the feedback gain is increased
to 15 dB, as shown in Fig. 2(b). In this case, multiple peaks
(in addition to the main peak) appear with an interval of
3.85 MHz, corresponding to the inverse of the delay time
(250 ns) of the feedback circuit. The main and the modulation
peaks can be easily distinguished, unlike in the case of 40-dB
feedback gain [Fig. 2(c)]. Figure 2(d) summarizes the power
spectra densities as a function of feedback gain in which a
multipeak structure appears when the feedback gain is larger
than 5 dB. We find that the main peak is disappearing for the
feedback gain exceeding approximately 20 dB.

There are two possible origins of the multiple peaks. The
first one is a periodic oscillation with an amplitude modula-
tion [51,52], while the second possibility is the existence of
chaos [45–47]. In the former case, the spectrum has a main
peak around which the multiple small peaks appear. On the
other hand, in the latter case, the spectral shape becomes
broad and several peaks have nearly the same amplitude.
It is, however, difficult to distinguish the boundary between
the self-oscillation with the amplitude modulation and chaos
quantitatively solely from the spectral shape. In addition, we
should note that the output signal from the STO does not fully

reflect the actual vortex dynamics; indeed the output signal
reflects only the projection of the magnetization direction in
the free layer onto the one of the reference layer through the
TMR effect. Therefore, the change in the spectral shape might
be insufficient information to conclude that chaos appears
in the STO. To tackle this issue, we examine two ways to
identify the existence of chaos in the STO. The first one is
based on the reproduction of the dynamic trajectory in the em-
bedding space, and the second one evaluates the noise limit.
In the following, we describe the details of these analyses.

B. Dynamic trajectory in embedding space

An approach to identifying the existence of chaos is to
reproduce the dynamic trajectory in an embedding space [53].
We use this method to investigate the relation between the
output voltages v(t ) and v(t + τc), where the time difference
τc is determined so that the autocorrelation function of v(t )
becomes zero. The map of v(t ) and v(t + τc) reflects the
dynamic trajectory of the vortex core. For example, if the
vortex core shows a circular oscillation in real space, the map
of v(t ) and v(t + τc) in the embedding space also becomes a
circle. As can be seen in this example, the trajectory in the
embedding space still reflects the dynamical properties in the
original (real) space; see also Appendix A where the result of
macrospin simulation based on previous work [46] is given as
an example.

Figures 3(a) and 3(b) present the output voltage from the
STO and its autocorrelation function for a feedback gain equal
to 40 dB. In this case, the time difference τc is estimated to
be about 0.7 ns. We repeated the estimation of τc for several
values of the feedback gain.

Figures 3(c)–3(e) illustrate the dynamic trajectories in the
embedding space for feedback gains being −10 dB, 15 dB,
and 40 dB, respectively. The horizontal and vertical axes are
v(t ) and v(t + τc), respectively. The trajectory at low gain
shown in Fig. 3(c) is circular, indicating an excitation of a
periodic self-oscillation of the vortex core in the STO. The
small spread of the trajectory is attributed to random motion of
the vortex core due to thermal fluctuation. A circular trajectory
can be seen until the feedback gain is approximately less than
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FIG. 3. Dynamical trajectory in embedding space. (a) Time-domain signal of the output voltage and (b) its autocorrelation function at
feedback gain of 40 dB. (c)–(e) Dynamic trajectories of the vortex core in the embedding space, where the feedback gains are −10 dB, 15 dB,
and 40 dB, respectively.

20 dB. Note that the power spectra densities corresponding
to the feedback gain between 5 dB and 20 dB correspond
to the case for which the periodic vortex-core dynamics are
modulated by the feedback signal; see Sec. III A. However,
when the feedback gain is further increased, the trajectory
significantly deviates from a circle and covers a large area of
the embedding space, as shown in Fig. 3(e).

Two possible origins are considered to explain such a
spread of the trajectory. The first one is thermal fluctuation
disturbing the vortex-core dynamics randomly, whereas the
second one is an appearance of chaos. We should emphasize
that thermal fluctuation exists even in a trajectory recorded at
the low gain shown in Fig. 3(c). Therefore, the wide spread of
the dynamical trajectory found in Figs. 3(d) and 3(e) cannot
be attributed to random noise. Accordingly, the results shown
in Figs. 3(c)–3(e) imply that chaos appears in the STO with
increasing the feedback gain. A highly modulated dynamics
may, however, exist in a large feedback-gain region, which
makes it difficult to find the boundary between modulated pe-
riodic dynamics and chaos. Therefore, we perform time-series
analysis in the next section, which can distinguish periodic
and chaotic dynamics.

C. Time-series analysis

In this section, we discuss the alternative approach de-
veloped in Refs. [54,55] to identifying chaos in our STO.
It involves adding white noise to the experimental data and
repeating the procedure while increasing the strength of the
noise until the nonlinearity of the original data is neutralized
by the noise; see also Appendix B. The maximum value of the

standard deviation of the added white noise at which the data
with noise still shows nonlinearity is called the noise limit.
This method can distinguish chaos from noisy dynamics due
to thermal fluctuation and has been used to identify chaos in a
different type of STO at 77 K [28]. In addition, the noise limit
is zero when the STO falls into a fixed point or shows periodic
dynamics. Accordingly, we can identify the existence of chaos
from the evaluation of the noise limit by excluding the effect
of noise and the possibility of periodic dynamics.

Figure 4 shows the dependence of the noise limit on the
feedback gain. The error bars represent the difference of the
noise limit with respect to ten different sets of 5000 points of
data extracted from the original time series (see Appendix B).
The averaged noise limit is less than 10% for feedback gain
smaller than 10 dB, indicating that the dynamical state is
periodic or weakly chaotic [28,55]; see also Appendix B. On
the other hand, the noise limit becomes larger than 10% when
the feedback gain is further increased, being a signature of
the onset of a strongly chaotic regime [28,55]. This threshold
value is slightly different from the one estimated from the
spectrum shape and the dynamical trajectory in the embedding
space, which might be due to the uncertainty in judging chaos
from the spectrum and trajectory, which are subject to gradual
changes in their shapes, as well as the data dependence in the
estimation of the noise limit (see the error bars in Fig. 4 and
Appendix B). The result, however, qualitatively agrees with
the other methods and guarantees the existence of chaos.

Note also that noise limit shows nonmonotonic behavior
with respect to the feedback gain. Whereas it increases with
the feedback gain in low-gain region, the value saturates, or
might decrease, in high-gain region. We note that the value of
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FIG. 4. Noise limit as a function of feedback gain. The bars
represent the range of the minimum and maximum values of ten
trials in the evaluation. The finite value of the noise limit indicates
the existence of chaos.

noise limit often reflects the value of the Lyapunov exponent,
although negative and zero Lyapunov exponents cannot be
distinguished from the value of noise limit [55]. Assuming
that noise limit in the present system also has some correspon-
dence to the Lyapunov exponent, the nonmonotonic behavior
of noise limit on the feedback gain in Fig. 4 is similar to the
theoretical evaluation of the Lyapunov exponent in macrospin
STO with feedback circuit [46]. In Ref. [46], the Lyapunov ex-
ponent changes from zero to positive in low-gain region. The
Lyapunov exponent, however, begins to decrease at a certain
feedback gain and finally becomes zero in high-gain region,
where transient chaos appears. The nonmonotonic behavior
observed in the present experiment might also indicate an
existence of transient chaos. However, further enhancement
of the feedback gain is technically difficult, and we had not
observed evidence of transient chaos in this work.

IV. DISCUSSION

We have experimentally investigated the existence of chaos
in a vortex STO with a feedback circuit. We examined three
methods to identify chaos in the STO. First, we evaluated
the power spectra density as a function of feedback gain
and found an expansion and splitting of the power peak in
frequency space. The appearance of a multipeak structure
indicates that the dynamical trajectory changes from a simpli-
fied circular one to complex orbit due to modulation or chaos.
Second, we reproduced the dynamic trajectory in the embed-
ding space, and found a spread of the trajectory covering a
wide range of the area dimension in the space. The spread of
the trajectory is wider than that found in periodic dynamics,
indicating that the spread of the trajectory is also evidence of
chaos and it cannot be attributed to thermal fluctuation. Third,
we evaluated the noise limit and found that it becomes finite in
a large feedback-gain region. These results indicate that chaos
appears in the STO when the feedback gain is approximately
larger than 10–20 dB.

There are mainly two conditions to efficiently excite chaos
by using a feedback signal [35,45–47]. One is to use a large
feedback gain, and the other is to make the delay time long.
The former strengthens the interaction between the magne-
tization and its past information, whereas the latter helps
to increase the dynamical degrees of freedom. We should
emphasize that both requirements are satisfied in the present
experiment. For example, the delay time, 250 ns, is two orders
of magnitude longer than the oscillation period of the STO
that is 2.3 ns. This is the main reason that we can observe
chaos by utilizing the feedback effect. In addition, the use of
a vortex STO might be beneficial to observing chaos because
the vortex structure is relatively robust against disturbances
arising from thermal fluctuation. For example, it has been
shown that the spectrum linewidth of a vortex STO is one or
two orders of magnitude narrower than that of a macrospinlike
STO [50]. This fact indicates that the vortex-core dynamics
are more deterministic compared with macrospin dynamics
even in the presence of random disturbances due to thermal
fluctuation. These efficient feedback effects and the robust-
ness against thermal disturbances have made it possible to
observe chaos in the STO with a feedback circuit.

The above findings have significance to both fundamental
and applied sciences. From the viewpoint of fundamental
science, this is an example of chaos in a small world [1–3].
The chaos in nanoscale driven by the feedback effect will
be of great interest for further development of nonlinear
science on time-delayed dynamical system, where relatively
large electric circuits have been used for the experimental
implementation [35]. We have excluded the effect of ther-
mal fluctuation to provide solid evidence of chaos because it
has been clarified that random motion of the vortex core in
STO is non-negligible, although the vortex-type STO has a
relatively high thermal stability among spintronics devices, as
mentioned above. For practical purposes, the observation of
chaos provides a new direction for neuromorphic computing
using spintronics technology. Remember that the control of
the feedback gain is the trigger of chaos in this study. The
tunability between chaotic and nonchaotic states by electronic
means would have wide practical applicability. For example,
the computational performance in physical reservoir comput-
ing could be enhanced by tuning the dynamical state of STO to
the edge of chaos [13]. Optimization problems can be solved
by using chaotic systems [14]. The present device is thus an
important development toward neuromorphic and information
sciences.
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APPENDIX A: DYNAMIC TRAJECTORY IN EMBEDDING
SPACE BY MACROSPIN SIMULATION

The present work is motivated by our previous work [46],
where we developed theoretical and numerical analyses on
chaos in spin-torque oscillator (STO) driven by feedback
circuit. In this previous work [46], we had performed zero-
temperature simulation and evaluated the Lyapunov exponent
to distinguish chaos from ordered dynamics. Here, we extend
it to finite-temperature simulation and compare the dynamical
trajectory in the embedding space.

The Landau-Lifshitz-Gilbert (LLG) equation used in the
theoretically analysis is given by [46]

dm
dt

= −γ m × H − γ Hsm × (p × m) + αm × dm
dt

(A1)

where m and p are the unit vectors pointing in the mag-
netization directions of the free and reference layers. Note
that the STO used in Ref. [46] consists of a perpendicularly
magnetized free layer and an in-plane magnetized reference
layer. We assume that p is parallel to the x axis pointing in
the in-plane direction. The gyromagnetic ratio and the Gilbert
damping constant are γ and α, respectively. The magnetic
field H = [Happl + (HK − 4πM )mz]ez consists of an applied
field Happl, interfacial magnetic anisotropy field HK, and de-
magnetization field −4πM. The spin-transfer torque strength
Hs is given by

Hs = h̄ηI[1 + χm(t − τ ) · p]

2e(1 + λm · p)MV
, (A2)

where M and V are the saturation magnetization and the
volume of the free layer, respectively. The spin-transfer torque
strength is characterized by the spin polarization η and spin-
transfer torque asymmetry λ. The values of the parameters
used in this work are derived from the experiment [56], as
well as a theoretical analysis [57] as M = 1448.3 emu/c.c.,
HK = 18.616 kOe, Happl = 2.0 kOe, V = π × 602 × 2 nm3,
η = 0.537, λ = 0.288, γ = 1.764 × 107 rad/(Oe s), and α =
0.005. The current of I = 1.0 mA corresponds to the current
density of 8.8 MA/cm2. In the following, we use I = 2.5 mA.
The strength of the spin-transfer torque, Eq. (A2), includes the
feedback current given by χ Im(t − τ ) · p, where χ is the rate
of the feedback current with respect to the direct current I ,
whereas τ is the delay time. Due to tunnel magnetoresistance
effect, the feedback current depends on the relative direction
of the magnetizations, m · p. Therefore, the feedback current
brings in the past information of the magnetization state and
extends the dimension of the phase space, which presents a
possibility to excite chaotic magnetization dynamics. Note
also that random torque −γ m × h is added to the right-hand

side of Eq. (A1) to clarify the role of thermal fluctuation on
the dynamic trajectory. The components of the random field h
satisfies the fluctuation-dissipation theorem [58],

〈hk (t )h
(t ′)〉 = 2αkBT

γ MV
δk
δ(t − t ′). (A3)

There are two differences between the previous and present
works. Firstly, the magnetic structures are different. The pre-
vious work [46] used a macrospin model because the work
was motivated by our past experiment [56] using uniformly
magnetized free layer. On the other hand, the present exper-
iment uses the vortex STO because it has a relatively large
thermal stability [50]. Secondly, the injection methods of the
feedback signal are different. The previous work [46] injected
the feedback signal to STO as electric current. In contrast, the
present experiment converts the feedback signal to magnetic
field to avoid electrostatic breakdown by large feedback cur-
rent. In this Appendix, we use the macrospin model developed
in Ref. [46] because the bifurcation points between ordered
and chaotic states is already identified by the analysis of the
Lyapunov exponent.

We solve the LLG equation numerically and evaluate the
dynamic trajectory in the embedding space by the method
described in the main text. We use the x component of m, mx,
as the output signal because it can be measured experimen-
tally through the magnetoresistance effect. Figures 5(a)–5(d)
show the trajectories in the embedding space, where the di-
mensionless feedback gain χ defined in our previous paper
and temperature T are (a) χ = 0.02, T = 0 K, (b) χ = 0.02,
T = 300 K, (c) χ = 0.5, T = 0 K, and (d) χ = 0.5, T =
300 K, respectively. The delay time is τ = 30 ns. Note that
the dynamics with χ = 0.02 is modulated dynamics, whereas
that with χ = 0.5 is chaos, as clarified by the evaluation of
the Lyapunov exponent in our previous work [46]. We firstly
notice that the role of temperature is minor. The dynamical
trajectory is not disturbed significantly, which might be due to
high thermal stability in the free layer. Secondly, the dynami-
cal trajectory is approximately a circle even in the modulated
dynamics because the modulation is usually small. On the
other hand, the dynamical trajectory is distributed when the
system is in chaos. However, the appearance of the distributed
trajectory in the embedding space does not necessarily guar-
antee an existence of chaos; one might consider a possibility
that highly modulated dynamics with distributed trajectory are
excited in STO. Therefore, to find the boundary between mod-
ulated periodic dynamics and chaos, we developed time-series
analysis, as mentioned in the main text.

APPENDIX B: DETAIL OF TIME-SERIES ANALYSIS

The noise limit was evaluated by using the second-order
discrete Volterra-Wiener-Korenberg (VWK) series defined
as [54]

yc,n = a0 + a1yn−1 + a2yn−2 + · · · + aκyn−κ + aκ+1y2
n−1 + aκ+2yn−1yn−2 + · · · + aM−1y2

n−κ

+ b1yn−1−D + b2yn−2−D + · · · + bκyn−κ−D + bκ+1y2
n−1−D + bκ+2yn−1−Dyn−2−D + · · · + bM−1y2

n−κ−D (B1)
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FIG. 5. The dynamical trajectory in the embedding space obtained from macrospin simulation developed in Ref. [46]. The dimensionless
feedback-gain parameter χ is 0.02 in (a) and (b) and is 0.5 in (c) and (d). The temperature is zero in (a) and (c), whereas it is 300 K in (b) and
(d).

where yn corresponds to the voltages outputted from the STO
at a discrete time n with a time increment of t = 0.1 ns. The
expansion coefficients are denoted as ak and bk . The memory
κ in our analysis was set to 20. The maximum number of
terms in the VWK series is M = (d + κ )!/(d!κ!), where d
is the nonlinear dimension and is 2 in Eq. (B1). The VWK
series consisting of some of the yn and their nonlinear com-
binations is called a truncated VWK series. A linear VWK
series including only linear terms of yn is defined in a similar
way. Note that the VWK used in previous works [54] includes
terms with the coefficients ak only. In this work, we add the
delay terms with the coefficients bk with D = 2500 because
the magnetization dynamics is affected by the feedback effect
with the feedback time τ = Dt = 250 ns. The expansion
coefficients ak and bk are determined through a Gram-Schmidt
procedure [54]. The error is defined as

ε2 =
∑N

n=1 (yc,n − yn)2

∑N
n=1 (yn − ȳ)2

, (B2)

where N is the number of data, and ȳ is the average of yn. In
our study, we used N = 5000 points of data. We investigated
the truncated VWK series which minimized the information
criterion, C = log ε + (r/N ), where r is the number of terms
in the truncated VWK series.

The noise limit corresponds to the strength of noise nec-
essary to neutralize (or obscure) the nonlinear character in
the output data. To evaluate the noise limit, we replaced yn

on the right side of Eq. (B1) with yn + ασyξn, where σy is
the standard deviation of yn, whereas ξn is white noise with
unit standard deviation. The dimensionless parameter α deter-
mines the ratio of the standard deviation of the added noise
to σy. Using the redefined yc,n, the best linear and nonlinear
VWK series minimizing the information criterion were inves-
tigated again. We repeated the procedure by increasing the
value of α until the best nonlinear VWK series provided a
significantly better fit to the data yn than the best linear VWK
series by using parametric (F-test) statistics at the 1% signifi-
cance level. In other words, the procedure was repeated until
the errors, ε2

L and ε2
NL, of the linear and nonlinear VWK series

satisfied ε2
L/ε2

NL > F . The standard for the F test was deter-
mined from the number of data points N as F = 1.068. The
noise limit was the minimum value of α at which the relation
ε2

L/ε2
NL > F was no longer satisfied. To obtain a reliable value

of the noise limit, we repeated the above procedure ten times
by changing set of 5000 points in the original experimental
data. The bars in Fig. 4 represent the range of minimum and
maximum values of these ten trials.

We note that noise limit is zero when the dynamical tra-
jectory saturates to a fixed point or limit cycle. Noise limit
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often shows good correspondence with the Lyapunov expo-
nent [55], although it cannot distinguish negative and zero
Lyapunov exponent. We should, however, be careful that the
value of noise limit slightly depends on the choice of data. For
example, at the feedback gain of 10 dB, some of ten trials of
the evaluation from 5000 points data imply that noise limit
is zero; see the bar in Fig. 4. The result indicates that, if
we chose a particular 5000 points data the dynamics would

be identified as nonchaotic. To avoid such a case and make
our analysis accurate as much as possible, we had used ten
sets of different 5000 points data. As can be seen in this
example, it is difficult to identify chaos near parameters in
which noise limit is finite but close to zero. Therefore, we
mentioned that the dynamics is either periodic or weak chaos
when noise limit is less than 10%, according to the previous
work [28].
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