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Formation and quench of homonuclear and heteronuclear quantum droplets in one dimension
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We study the impact of beyond Lee-Huang-Yang (LHY) physics, especially due to intercomponent corre-
lations, in the ground state and the quench dynamics of one-dimensional quantum droplets with an ab initio
nonperturbative approach. It is found that the droplet Gaussian-shaped configuration arising for intercomponent
attractive couplings becomes narrower for stronger intracomponent repulsion and transits towards a flat-top
structure either for larger particle numbers or weaker intercomponent attraction. Additionally, a harmonic
trap prevents the flat-top formation. At the balance point where mean-field interactions cancel out, we show
that a correlation hole is present in the few-particle limit of LHY fluids as well as for flat-top droplets.
Introducing mass imbalance, droplets experience intercomponent mixing and excitation signatures are identified
for larger masses. Monitoring the droplet expansion (breathing motion) upon considering interaction quenches to
stronger (weaker) attractions, we explicate that beyond LHY correlations result in a reduced velocity (breathing
frequency). Strikingly, the droplets feature two-body anticorrelations (correlations) at the same position (longer
distances). Our findings pave the way for probing correlation-induced phenomena of droplet dynamics in current
ultracold-atom experiments.
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I. INTRODUCTION

Quantum droplets, self-bound many-body (MB) states of
matter which emerge when strong attraction is present, are
a prominent manifestation of beyond mean-field (MF) ef-
fects among ultradilute weakly interacting systems [1–4].
They form in the presence of quantum fluctuations [5,6]
which stabilize an atomic gas, otherwise prone, per its
mean-field interactions, to collapse. Droplets have seen re-
cent experimental demonstrations in homonuclear [7–9] and
heteronunclear [10,11] two- and three-dimensional ultracold
bosonic mixtures as well as in dipolar condensates [12,13]
where signatures of supersolidity have been reported. On
the theoretical side, for two-component Bose mixtures with
zero-range intracomponent repulsion and intercomponent
attraction, droplets realized in models with next-to-leading-
order Lee-Huang-Yang (LHY) [14] corrections have been
described by a modified Gross-Pitaevskii (MGP) equation
[5,6]; see also the recent review [15]. Quantum droplets
have been intensively studied in two and three dimensions
for their topological properties in the presence of vortices
[15,16]. Their self-evaporation due to lossy inelastic collisions
[7,9] that prevent droplet observation at long timescales has
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also been considered. This is a process that can be delayed
using heteronuclear mixtures [10,17] or suppressed using one-
dimensional (1D) settings [18,19]. These recent developments
clearly underscore the relevance of such structures in a wide
range of theoretical and experimental studies and their interest
in quantifying the interplay between mean-field and quantum
effects.

In this vein, it is of particular interest to examine the va-
lidity of the MGP framework in different interaction regimes
using either higher-order quantum corrections [20–22] or
nonperturbative approaches [23–25]. 1D settings constitute
promising platforms for probing beyond LHY physics since
this is where strongly correlated regimes can be easily reached
[26,27]. A particularly relevant feature that has been an
explicit target of experimental [8] and theoretical [15] stud-
ies is the droplet ground state. The latter in homogeneous
bosonic mixtures is known to exhibit a crossover from a
flat-top (FT) to a Gaussian-shaped configuration avoiding col-
lapse due to quantum fluctuations despite the strong attractive
interactions [28].

Recently, there have been a number of further devel-
opments regarding the physics of quantum droplets. More
specifically, the excitation of the droplets has been exam-
ined [29] and it has been found that the breathing mode
therein is always a bound state independently of the inter-
action. Moreover, thermal instabilities driving the liquid to
gas transition in the evaporation of 1D liquids have been
analyzed [30,31]. Quantum Monte Carlo approaches [24,25]
revealed that only close to the balance point of MF repul-
sion and attraction beyond LHY correlations are appreciable.
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Additionally, the droplet phase diagram in 1D optical lattices
has been discussed within a density matrix renormalization
group method explicating a transition from a Mott insulator to
a pair superfluid [32,33].

Interestingly, a major focus has been placed on the impact
of intercomponent attraction when intracomponent repulsion
is held fixed. However, the interplay between the two, that
provides an additional knob for droplet deformation, remains
unexplored at the many-body level. In the same spirit, espe-
cially interesting aspects of this competition can take place
in 1D LHY fluids which occur at the balance point where
MF interactions are canceled out [34–36]. Additionally, the
properties of 1D droplets and their consequent deformations
in mass-imbalanced mixtures are not yet studied. It is impor-
tant to highlight here that much of the current understanding
regarding the dynamics of 1D droplets is presently limited
to MGP predictions. Notable examples are droplet inelastic
collisions [28] and their merging into breathers [37], droplet
nucleation triggered by modulational instability mechanism
[38], among others; see, e.g., [15] for a recent review. In
view of the above, it is essential to further study both the
static properties and the nonequilibrium dynamics of droplets
to reveal the necessity of beyond LHY corrections in order
to adequately capture the inevitable buildup of interparticle
many-body correlations.

In this work, we consider a particle-balanced two-
component 1D bosonic mixture with intracomponent repul-
sion and intercomponent attraction. To address the ground
state and the nonequilibrium quantum dynamics of the en-
suing droplet states we use the ab initio nonperturbative
multilayer multiconfiguration time-dependent Hartree method
for atomic mixtures (ML-MCTDHX) [39,40]. Within this
approach, it is possible to encapsulate all the emergent in-
tracomponent and intercomponent correlations of the mixture
[41–43]. To expose the role and degree of correlations on
the droplet formation and dynamics, we compare the vari-
ational results with the MF (absence of LHY corrections)
and MGP (incorporating LHY corrections) models but also
with a species mean-field (SMF) approach which naturally ac-
counts for intracomponent correlations. Operating at distinct
correlation levels we explain the observed alterations of the
droplet profiles, stemming from intercomponent correlations
(entanglement) and showcase that they are more prominent
for stronger intercomponent attraction or the presence of a
harmonic trap.

At the ground-state level, a transition from a spatially
delocalized to a strongly localized Gaussian-shaped droplet
is revealed upon increasing the intracomponent repulsion.
Additionally, the droplet’s shape deforms from a Gaussian
type towards a FT structure for either fixed interactions
and larger particle numbers [28] or by solely considering
smaller intercomponent attractions [24]. Droplets exhibiting
a FT experience a correlation hole which diminishes when
they morph into Gaussian-type structures. For LHY fluids,
a gradual reshaping to a narrower density distribution is re-
alized for increasing atom numbers. Few-atom liquids are
characterized by a correlation hole while for larger particle
numbers a tendency for long-range two-body correlations
is observed. Imposing a harmonic trap, FT signatures fade
away. Again, the droplets transition from a delocalized to a

localized configuration for stronger attraction. Similar struc-
tural droplet deformations take place for weakly mass-
imbalanced mixtures [10,11] where the components show an
enhanced mixing, while for larger mass differences excitation
patterns are identified.

Next, we monitor the nonequilibrium droplet dynamics
within an ab initio approach. Particularly, we exemplify the
droplet expansion [44] which deforms in the course of the evo-
lution featuring FT signatures following quenches to stronger
intercomponent attractions. In the reverse case, a breathing
motion is initiated. The importance of the intercomponent
attraction manifests itself in the slower expansion velocity
and breathing frequency of the droplet, contrary to the MGP
predictions. The inclusion of a harmonic trap results in a
breathing motion irrespective of the postquench value with a
larger predicted frequency in the MGP approach. Therefore,
both the expansion and the breathing dynamics of the droplet
can be considered as sensitive experimental probes for expos-
ing beyond LHY physics. Importantly, two-body correlations
develop during the evolution with two bosons featuring an
anticorrelation (antibunching) at the same location and a cor-
relation tendency when being further apart. Such correlation
droplet patterns are yet to be monitored experimentally.

This work is organized as follows. Section II presents
the considered droplet setting and the various methodologies
employed to describe the ensuing droplet configurations. The
ground-state correlation properties of droplets focusing on the
impact of the participating interactions and particle number
are analyzed for symmetric (mass-balanced) and asymmetric
(mass-imbalanced) bosonic mixtures in Secs. III and IV, re-
spectively. The emergent interaction quench dynamics of both
symmetric and asymmetric mixtures after a sudden change of
the intercomponent coupling is discussed in Sec. V. A sum-
mary of our findings and some relevant future perspectives
are provided in Sec. VI.

II. DROPLET SETTING AND
THEORETICAL APPROACHES

A. Interacting Hamiltonian

To realize droplet structures, we consider a particle-
balanced bosonic mixture with NA = NB atoms residing in
a box potential. Below, we mainly focus on the cases of
both equal (MA = MB) and different (MA ≈ 2.12MB) masses
which experimentally correspond to a homonuclear mixture of
distinct 39K hyperfine states [7,8,45] (e.g., |F = 1, mF = −1〉
and |F = 1, mF = 0〉) and heteronuclear setups consisting of
41K and 87Rb (e.g., in the |F = 1, mF = 1〉 state) isotopes
[10,11], respectively. The generic MB Hamiltonian of these
mixtures reads as

H =
∑

σ=A,B

Nσ∑
i=1

− h̄2

2Mσ

(
∂

∂xσ
i

)2

+
∑

σ=A,B

gσσ

×
∑
i� j

δ
(
xσ

i − xσ
j

) + gAB

NA∑
i=1

NB∑
j=1

δ
(
xA

i − xB
j

)
. (1)

Since we operate within the zero-temperature limit, s-wave
scattering is the dominant interaction process [46]. As such,
the intracomponent and the intercomponent interactions are
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modeled by a contact potential characterized by the effective
coupling constants gAA, gBB, and gAB. The latter acquire the

form gσσ ′ = 2h̄2as
σσ ′

μa2
⊥

[1 − |ζ (1/2)|as
σσ ′/

√
2a⊥]−1 [46]. In this

expression, μ = Mσ Mσ ′/(Mσ + Mσ ′ ) is the reduced mass, ζ

denotes the Riemann zeta function, a⊥ is the transverse length
scale, and as

σσ ′ refers to the three-dimensional s-wave intra-
component (σ = σ ′) or intercomponent (σ �= σ ′) scattering
length. Experimentally, gσσ ′ is tunable either through as

σσ ′
utilizing Feshbach resonances [47,48] or by adjusting a⊥ by
means of confinement-induced resonances [46].

For the MB calculations, to be presented below, a box
potential [49] of finite length L is considered by imposing
hard-wall boundary conditions at x± = ±50. The impact of
finite-size effects, whenever present, is discussed in the main
text. In the following, we rescale our Hamiltonian in terms of
h̄2/(MAL2). The length, time, and interactions are measured in
terms of L, (MAL2)/h̄, and h̄2/(MAL). Our 1D setting can be
experimentally addressed, e.g., when considering a 39K gas
of N = 40 bosons with gAA = gBB = 0.1h̄2/(MAL) ≈ 3.4 ×
10−39 Jm in a box potential of length L = 5 μm. Temperature
effects are negligible for T � k−1

B h̄2N2/(MAL2) ≈ 1.5 μK
[50], with kB being the Boltzmann constant and T is the tem-
perature of the bosonic cloud. Also, typical evolution times of
the order of 103 correspond approximately to ∼0.6 s.

To elaborate on the correlation patterns of 1D droplet con-
figurations, we study the ground state of the above-described
bosonic mixture characterized by the same intracomponent re-
pulsive interactions, i.e., gAA = gBB > 0, and intercomponent
attraction gAB < 0. In order to facilitate the discussion, we first
define the parameters g = √

gAAgBB and δg = g − |gAB| with
the latter quantifying the balance point of MF attraction and
intracomponent repulsion occurring when δg = 0 (see also
Sec. II C). A basic condition for the formation of quantum
droplets is |δg|/g � 1 [5,6]. Concretely, we shall unravel the
impact of the involved interactions by varying g while keeping
fixed the balance point δg/g and vice versa, i.e., tuning δg/g
with g constant. This will allow us to realize a transition
from Gaussian to FT droplet structures. Notice that since a
mesoscopic number of atoms is considered, it is not possible
to create pronounced FT profiles. Interestingly, two differ-
ent settings will be analyzed, namely, the SU(2)-symmetric
mass-balanced (MA = MB) bosonic mixture (Sec. III) and
the asymmetric mass-imbalanced (MA �= MB) one (Sec. IV).
It can be readily deduced that in the former case the two
components behave identically and therefore it is sufficient
to examine only one of them, while in the latter scenario the
mass imbalance renders the involved species distinguishable,
exhibiting a different configuration and hence requiring a gen-
uinely two-component description.

After investigating the emergent structural shape of the
droplets, we shall proceed to study their interaction quench
dynamics following sudden changes of the control parame-
ter δg/g with g fixed and thus adjusting solely gAB. More
specifically, for increasing δg/g we will probe the dynamical
transition from a Gaussian to a FT profile while the droplet
expands. For the reverse quench scenario a collective breath-
ing motion of the droplet is excited. In all cases, careful
comparisons between variational and different mean-field-
type approaches (see Secs. II B and II C) including quantum

fluctuations at different levels, reveal the crucial role of the
underlying correlations and in particular the intercomponent
ones.

B. Variational method and wave-function reductions

To address the ground-state correlation properties and most
importantly the interaction quench dynamics of the droplet
setting described by Eq. (1) we solve the time-dependent
MB Schrödinger equation. For this we mainly rely on the
variational ML-MCTDHX method [39,40]. A key facet of
this approach is that the total MB wave function of the un-
derlying multicomponent system is expanded in terms of a
time-dependent and variationally optimized basis set [51].
The latter enables us to capture all the emergent intracom-
ponent and intercomponent correlations [41,52] as well as
adjusting our MB ansatz to operate at specific correlation
orders, a procedure that we explicate below.

In particular, the intercomponent correlations (entangle-
ment) are taken into account by expressing the MB wave
function |�(t )〉, according to a truncated Schmidt decomposi-
tion [53] consisting of D different species functions |�σ

k (t )〉,
for each component σ = A, B, as follows:

|�(t )〉 =
D∑

k=1

√
λk (t )

∣∣�A
k (t )

〉∣∣�B
k (t )

〉
. (2)

The time-dependent expansion coefficients λk (t ) are the cor-
responding Schmidt weights and are also known as the natural
populations of the kth species function. Subsequently, the
system is referred to as intercomponent correlated (entan-
gled) [53,54] if at least two distinct λk (t ) exhibit a nonzero
population; otherwise, when λ1(t ) = 1 and λk>1(t ) = 0, it is
nonentangled. In the latter case, intercomponent entanglement
is ignored and the total wave function acquires the following
tensor product form of two states

|�SMF(t )〉 = ∣∣�A
1 (t )

〉 ⊗ ∣∣�B
1 (t )

〉
. (3)

This situation constitutes a reduction of the MB ansatz be-
ing commonly referred to as the species mean-field (SMF)
approximation [39,55]. Within this framework, only the intra-
component correlations are considered by further expanding
the individual species wave functions with respect to a time-
dependent basis set.

Next, in order to incorporate intracomponent correlations,
each species function appearing either in Eq. (2) or (3) is
written as a linear superposition of time-dependent number
states |�nσ (t )〉, namely,

∣∣�σ
k (t )

〉 =
∑

�n
Cσ

k;�n(t )|�nσ (t )〉. (4)

Here, Cσ
k;�n(t ) denote the time-dependent expansion coef-

ficients. The number state |�nσ (t )〉 corresponds to a per-
manent building upon dσ time-dependent variationally op-
timized single-particle functions (SPFs) |φσ

i (t )〉, with i =
1, 2, . . . , dσ , and occupation numbers �n = (n1, . . . , ndσ

). Fi-
nally, these SPFs are expanded on a time-independent
primitive basis which in our case corresponds to an M-
dimensional discrete variable representation with M = 1500
grid points. Another interesting feature of the ML-MCTDHX
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ansatz is that it can be naturally reduced to the usual MF one
when all correlations of the multicomponent setup are absent
[50]. This is accomplished by assuming a single Schmidt co-
efficient and one SPF per species, thereby D = dA = dB = 1.
Then, all particles of a particular species solely occupy a
single wave function

|�MF(t )〉 =
NA∏
i=1

∣∣φA
i (t )

〉 NB∏
i=1

∣∣φB
i (t )

〉
. (5)

It yields a coupled set of Gross-Pitaevskii equations for the
bosonic mixture [50,56]. A comparison of the predictions of
this approach to the MB one will shed light onto the impact of
interparticle correlations on the droplet formation.

Having at hand the desired form of the wave-function
ansatz as described above by Eqs. (2)–(4) we determine the
respective ML-MCTDHX equations of motion [39] aiming to
numerically solve the underlying Schrödinger equation and
thus calculate the (NA + NB)-body wave function satisfying
the Hamiltonian of Eq. (1). This is achieved by following a
variational principle, e.g., the Dirac-Frenkel one [57,58] for
the above-introduced generalized ansatz. It leads to a set of
D2 linear differential equations of motion for the λk (t ) coeffi-
cients being coupled to D( (NA+dA−1)!

NA!(dA−1)! + (NB+dB−1)!
NB!(dB−1)! ) nonlinear

integrodifferential equations for the species functions and
dA + dB nonlinear integrodifferential equations for the SPFs.
For instance, applying the Dirac-Frenkel variational principle
to Eq. (3) the resulting equations of motion within the SMF
method read as

ih̄
∂�A(x)

∂t
− 	B(t )�A(x) = HA�A(x) + gABρ

(1)
B (x)�A(x),

ih̄
∂�B(x)

∂t
− 	A(t )�B(x) = HB�B(x) + gABρ

(1)
A (x)�B(x).

(6)

Here, 	σ (t ) = ∫
dx �∗

σ (x)[Hσ�σ (x) − ih̄∂t�σ (x)] with
Hσ = −[h̄2/(2Mσ )]

∑Nσ

i=1 ∂2
xi

+ gσσ

∑
i< j δ(xi − x j ) and

�σ (x; t ) ≡ �σ (x). Further details regarding the SMF wave
function and equations are discussed in Refs. [39,55].

The time dependence of the basis states allows us to
efficiently truncate the Hilbert space while accounting for
all relevant intracomponent and inter-component correlations.
This way, the number of the involved equations of motion that
are numerically solved remains tractable even for mesoscopic
particle numbers. The Hilbert space truncation is designated
by the employed orbital configuration space C = (D; dA; dB)
being for the systems to be considered below C = (15; 6; 6)
[C = (15; 5; 5)] for NA = NB < 20 (NA = NB > 20).

C. Modified Gross-Pitaevskii approach

A commonly used framework to describe the stationary
and dynamical aspects of quantum droplets is the so-called
MGP method [5,6]. It includes the effect of quantum fluctua-
tions to leading order within the local density approximation.
Indeed, it has been argued [38,59] that 1D bosonic droplet
configurations in particle-balanced mixtures with different
intracomponent interactions gAA �= gBB but equal masses
(MA = MB ≡ M) are described by the following set of cou-

pled MGP equations of motion:

ih̄
∂�A

∂t
= − h̄2

2M

∂2�A

∂x2
+ (gAA + GgBB)|�A|2�A

− (1 − G)g|�B|2�A − gAA

√
M

π h̄

×
√

gAA|�A|2 + gBB|�B|2�A,

ih̄
∂�B

∂t
= − h̄2

2M

∂2�B

∂x2
+ (gBB + GgAA)|�B|2�B

− (1 − G)g|�A|2�B − gBB

√
M

π h̄

×
√

gAA|�A|2 + gBB|�B|2�B. (7)

Here, G = 2gδg/(gAA + gBB)2 quantifies deviations with re-
spect to the threshold of MF repulsion and attraction which
corresponds to δg = g − |gAB| = 0 where g = √

gAAgBB. Im-
portantly, the creation of quantum droplets is ensured for
repulsive intracomponent interactions (gAA > 0, gBB > 0) and
attractive intercomponent ones (gAB < 0) which satisfy the
condition δg/g � 1 [6]. Notice also that δg/g is experimen-
tally tunable with the aid of Feshbach resonances [7,8], thus
further motivating the relevance of considering quenches of
this parameter to induce nonequilibrium droplet dynamics.

It is also worth mentioning that in the case of a per-
fectly symmetric mixture, assuming MA = MB, gAA = gBB,
and NA = NB, the above coupled set of MGP Eq. (7) reduces
to a single-component equation [6,28]. The latter depending
on the sign of δg/g assumes different solutions. Particularly,
for δg/g > 0 there is a localized Gaussian-shaped solution for
small-particle numbers turning into a FT profile for increasing
N . These configurations represent a quantum droplet gener-
ated by the balance of (dispersion with) the effective cubic
self-repulsion and quadratic attraction. This is the regime
that our analysis is based on. We remark, however, that if
δg/g < 0 there are various solitonic solutions (see for a more
detailed discussion Ref. [38]). Concluding, let us emphasize
that a particular focus of our study will be the comparison
of the above-mentioned approaches, namely, the ab initio
one [Eqs. (2) and (4)] the SMF [Eq. (6)], the common MF
[Eq. (5)], and the MGP [Eq. (7)].

Another important point is that the MGP is known to pro-
vide an adequate description of droplets in the limit of large
systems associated with high-particle densities, smooth spa-
tial variation, and in the weakly interacting case. The latter is
quantified via the Lieb-Liniger parameter γ = mg/(h̄2ρ0) �
1 where ρ0 is the peak density of the gas. In our case where we
operate with mesoscopic atom numbers typically NA = NB =
20 and NA = NB = 50 while g = 0.1 we have γ ≈ 0.25 and
γ ≈ 0.1, respectively. Also, owing to the considered relatively
low-particle number, the gas density is not homogeneously
extended in space. Therefore, the used parameter regime lies
beyond the validity of the MGP approach. However, as we
shall argue below, even in this case the MGP provides valu-
able insights on the stationary and dynamical properties of
mesoscopic droplets. For increasing atom numbers, and as
ρ0 increases/γ decreases, the MGP description becomes a
progressively more adequate one.
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FIG. 1. Ground-state densities ρ (1)(x) of a symmetric bosonic mixture for varying intracomponent interaction strength g and particle
number N (see legends) representing various droplet configurations. (a), (b) ρ (1)(x) for different g while keeping δg/g = 0.05 fixed as obtained
in the MB approach. The droplet profile features a gradual shrinking for larger g and shows FT signatures around g = 0.1. Comparison of
ρ (1)(x) for (c) N = 40 and (d) N = 10 between different approaches (see legend) explicating the impact of beyond LHY correlations as
imprinted in the density of the droplet. ρ (1)(x) for increasing particle number N of (e) an LHY fluid (δg = 0) and (f) a droplet for fixed g = 0.5
and δg/g = 0.05. The fluid experiences a gradual localization for increasing N . The system consists of NA = NB ≡ N/2 bosons of equal mass
and intracomponent interactions gAA = gBB ≡ g trapped in a box potential of length L.

III. SYMMETRIC DROPLET CONFIGURATIONS

We now discuss the role of MB effects on the formation of
1D droplet structures in the ground state of symmetric bosonic
mixtures, namely, when the components are characterized by
the same mass (MA = MB ≡ M), particle number (NA = NB),
and repulsive intracomponent interactions (gAA = gBB > 0).
The development of droplets is achieved by tuning the inter-
component coupling to attractive values and especially close
to the balance point of MF attraction and repulsion being
δg = √

gAAgBB − |gAB| = 0 [5,6]. A main objective of our in-
vestigation is to elucidate the interplay of the intracomponent
and intercomponent interactions on the structural shape and
correlation patterns of the emergent droplet configurations
probing also the transition from Gaussian-type distributions
to a FT. Additionally, we shall expose the role of correlations
at different orders for the adequate description of droplets
by directly comparing the predictions of different approxima-
tions, namely, the MF and SMF methods, the MGP and the
MB approaches. To shed light into the crossover from few-
to many-atom bound states we study bosonic mixtures close
(δg/g � 1) and at the threshold (δg = 0) of the MF attraction
and repulsion giving rise to droplet phases and LHY fluids,
respectively [35].

To characterize the stationary and dynamical spatially re-
solved features of the droplet configurations we resort to the
single-particle reduced density matrix of each σ component
[41,60]:

ρ (1)
σ (x, x′; t ) = 〈�(t )|�̂†

σ (x)�̂σ (x′)|�(t )〉. (8)

The bosonic field operator �̂σ (x) of the σ component acts at
position x [50]. In the following, we will in particular moni-
tor the diagonal part of this observable, namely, ρ (1)

σ (x; t ) ≡

ρ (1)
σ (x, x′ = x; t ), known as the one-body density of the σ

component which we consider as normalized to unity. It is
experimentally tractable through an average over a sample of
single-shot images [41,61]. Notice that for symmetric mix-
tures ρ

(1)
A (x; t ) = ρ

(1)
B (x; t ) ≡ ρ (1)(x; t ).

A. Interplay of intracomponent and
intercomponent interactions

As a first step we investigate the impact of the intra-
component and intercomponent interaction coefficients on the
structural shape of ρ (1)(x). To this end, focusing on a par-
ticular particle number, e.g., N = 40, we inspect ρ (1)(x) for
increasing g while keeping δg/g fixed [see Figs. 1(a) and 1(b)].
Evidently, ρ (1)(x) features a delocalized shape for adequately
weak g, it possesses FT signatures for intermediate couplings
(e.g., g = 0.1), and finally for larger values of g > 0.5 it
shrinks further forming a localized Gaussian. This behavior
is attributed to the fact that a constant δg/g but increasing g
is associated to larger intercomponent attractions which are
responsible for this gradual reshaping of ρ (1)(x) from a more
delocalized to a progressively localized Gaussian distribution.
Note that a similar transition behavior in ρ (1)(x) occurs as
well for other particle numbers, e.g., N = 10, 20. However,
the signatures of the FT are suppressed especially for N < 10
(not shown).

This deformation of ρ (1)(x) can also be observed within the
MGP framework but showing qualitative deviations from the
MB case (see below). In the MGP limit, the modified healing
length [29] of the mixture reads as

ξ = π h̄2

M

√|δg|
g
√

2g
. (9)

043128-5



S. I. MISTAKIDIS et al. PHYSICAL REVIEW RESEARCH 3, 043128 (2021)
x

1
(u

ni
ts

of
L
)

−50 −25 0 25 50
−50

−25

0

25

50

−50 −25 0 25 50
−50

−25

0

25

50

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

0.04

0.08

0.12

0.1

0.2

0.3

2

4

6

0

5

10

15

20

25

x2 (units of L)

x
1

(u
ni

ts
of

L
)

−10 −5 0 5 10
−10

−5

0

5

10

x2 (units of L)
−10 −5 0 5 10

−10

−5

0

5

10

x2 (units of L)
−5 0 5

−5

0

5

x2 (units of L)
−5 0 5

−5

0

5

0

0.01

0.02

0.03

0

0.2

0.4

0.6

0

5

10

15

20

0

20

40

60

80

100

g = 0.02 g = 0.1 g = 0.5 g = 1

N = 4 N = 10 N = 40 N = 80

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Two-body density distributions of a symmetric bosonic mixture within the MB approach for different (a)–(d) intracomponent
interactions g while δg/g = 0.05 and N = 40. The distributions become spatially localized for increasing g and a correlation hole emerges [(b),
(c)] at interaction regimes where FT signatures appear in the density profile [see Figs. 1(a) and 1(b)]. (e)–(h) The same as in (a)–(d) but for a
varying particle number N of an LHY fluid with g = 0.5 and δg = 0. The two-body correlation hole fades away for N > 10.

According to this expression, when δg/g is held constant and g
is varied to larger values, then ξ decreases which explains the
above-described deformation of ρ (1)(x). Notably, within the
MGP the above phenomenology ceases to exist for N > 800
and ρ (1)(x) acquires a pronounced FT profile as g increases.
This suggests the involvement of finite-size effects, to be
investigated in future studies. We also remark that the above-
discussed FT signatures of ρ (1)(x) at intermediate interactions
are not present within MGP. Therefore, they constitute an
intriguing prospect to identify beyond LHY physics for meso-
scopic particle numbers.

To track the related two-body spatially resolved correla-
tion patterns characterizing the ground state of the droplet
structures we determine the diagonal of the intracomponent
two-body reduced density matrix

ρ (2)
σσ (x1, x2; t ) = 〈�(t )|�̂†

σ (x2)�̂†
σ (x1)�̂σ (x1)�̂σ (x2)|�(t )〉.

(10)
This represents the probability to simultaneously detect two
σ -component bosons at positions x1 and x2, respectively,
and for symmetric mixtures ρ

(2)
AA (x1, x2; t ) = ρ

(2)
BB (x1, x2; t ) ≡

ρ (2)(x1, x2; t ). A variety of two-body configurations are pre-
sented in Figs. 2(a)–(d) for specific values of g [see also
Figs. 1(a) and 1(b)]. It becomes apparent that at the two-body
level the aforementioned transition is characterized by a de-
localized circularly symmetric two-body density distribution,
e.g., for weak g = 0.02 [Fig. 2(a)] which gradually shrinks in
space for a larger g [see Figs. 2(b)–(d)]. Notice also that for
interactions where ρ (1)(x) exhibits signatures of a FT profile
we observe a tendency for the formation of a correlation hole
[62,63] along the diagonal of ρ (2)(x1, x2) [Figs. 2(b) and 2(c)].
This implies that two bosons avoid to reside together in the
region of the FT, i.e., the latter experiences an anticorrelated
behavior.

To understand the role of correlations in the formation of
the ensuing droplet structures we contrast the predictions of
different approaches, namely, the MB, the MGP, the SMF, and

the MF methods. They operate at different correlation orders
as explained in Secs. II B and II C. As a characteristic exam-
ple, we concentrate on the case of g = 0.1 and δg/g = 0.05
for N = 40 [Fig. 1(c)] and N = 10 [Fig. 1(d)]. Overall, the
MB result differs significantly from the one obtained within
the aforementioned MF-type approaches.1 It can be readily
seen that in both cases, the MF outcome significantly de-
viates from the actual density configuration of the droplet
showing a delocalization when compared to the MB case.
This evinces the necessity of quantum fluctuations in this
interaction regime. Recall that in 1D, quantum fluctuations are
attractive [6]. Interestingly, while capturing the overall shape
of the droplet configuration, the MGP always overestimates
its amplitude exhibiting accordingly a smaller width. This
deviation explicates the presence of residual higher-order cor-
relation effects, an observation that has also been exemplified
in terms of quantum Monte Carlo [24]. Recall that due to the
considered mesoscopic atom number the MGP prediction is
not expected to be a priori valid. On the other hand, the SMF
method predicts a wider distribution than the MB, implying
that intercomponent entanglement plays indeed a crucial role.
The latter becomes more prominent for larger values of g and
δg/g constant rendering the MGP predictions less accurate.

Moreover, we study the behavior of ρ (1)(x) at the balance
point of MF attraction and repulsion, i.e., δg = 0, for increas-
ing particle number [Fig. 1(e)]. Recall that in this limit the MF
interactions cancel and the bosonic mixture is governed by the
LHY correction term [see also Eq. (7)]. This way, we are able
to explicitly visualize the crossover from few to many atoms
at threshold where the so-called LHY fluid forms [34]. The
recent realization of an LHY fluid [35] in the hyperfine states

1The mean-field interaction parameter Ng increases for larger N
while keeping g fixed, thus rendering the gas stronger interacting.
This explains the more prominent deviation between the MB and the
MF approaches [compare Figs. 1(c) and 1(d)].
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FIG. 3. Ground-state densities ρ (1)(x) of a symmetric bosonic mixture for fixed g = 0.05 and varying δg/g (see legend) for (a) N = 10
and (b) N = 40 within the MB approach. A transition from a Gaussian-shaped to a FT profile occurs for increasing δg/g. This transition is
realized for smaller δg/g values when N is larger. Comparison of ρ (1)(x) for N = 40 between different methods (see legend) for g = 0.05
while (c) δg/g = 0.02, and (d) δg/g = 0.2. It becomes clear that beyond LHY correlations are suppressed for larger δg/g since then gAB → 0.
(e) ρ (1)(x) as predicted by the MGP for varying N with g = 0.05 and δg/g = 0.2. The droplet profile becomes delocalized for increasing N
acquiring a FT profile which saturates for N > 500. The symmetric bosonic mixture comprises of NA = NB ≡ N/2 bosons with the same mass
and intracomponent interactions gAA = gBB ≡ g while it experiences a box potential of length L.

|F = 1, mF = −1〉 and F = 1, mF = 0 of 39K with Feshbach
resonances offers an approach to the threshold, δg = 0 [7,45].
It can be deduced that the density of the mixture becomes
narrower for increasing N and in particular ρ (1)(x) tends to
a more localized Gaussian distribution. A similar crossover
takes place also within the MGP approach, at least up to
N ∼ 106 atoms that we have checked, but having a relatively
smaller width of the density profile. This is in sharp contrast
to the behavior exhibited for δg/g � 1 where an increasing
particle number with g and δg/g constant leads to a defor-
mation from a Gaussian-type configuration first to a narrower
one and then to a wider profile showing signatures of a FT for
N > 50 [see Fig. 1(f)]. The occurrence of such a FT in this
regime of N has also been reported using a quantum Monte
Carlo approach in Ref. [24]. This phenomenon is equally
captured by the MGP framework where a pronounced FT
builds upon ρ (1)(x) for N > 400 within the parameter region
that we operate, a particle number that is not easily tractable
in the MB approach.

Inspecting the corresponding two-body reduced density
configurations of the LHY fluids for small particle numbers
[Figs. 2(e) and 2(f)] we observe the formation of a correlation
hole across the diagonal and a two-hump structure along the
antidiagonal. This implies that two bosons avoid to reside
in the same position but rather prefer to lie symmetrically
with respect to x = 0. Interestingly, the correlation hole is
suppressed for larger particle numbers [Figs. 2(g) and 2(h)]
meaning that there is a finite probability for two atoms to
approach one another around x = 0. Additionally, a noticeable
elongation of ρ (2)(x1, x2) with respect to x1 = 0 and x2 = 0
takes place which suggests the presence of long-range two-
body correlations in the system.

B. Tunability in terms of intercomponent attraction
and finite size

Subsequently, we examine the structural deformations of
droplets due to deviations from the MF balance point (δg =
0) but retaining the condition δg/g > 0. In this sense we
fix g = 0.05 and vary the intercomponent coupling gAB or
equivalently δg/g. Notice that in this context an increasing
δg/g parameter corresponds to a decreasing magnitude of
gAB. Characteristic density profiles of the mixture in the MB
approach are presented in Figs. 3(a) and 3(b) for small (N =
10) and larger (N = 40) particle numbers, respectively. In
both cases, a transition from a highly delocalized Gaussian-
shaped (for weak δg/g) to a more prominent FT density
profile [24,28] (for larger δg/g) takes place. The relevant
transition occurs for larger values of δg/g when few atomic
ensembles (e.g., N = 10) are considered and in this latter
case the FT structure is arguably less pronounced. Notice that
for N < 10 the FT configuration is basically absent. Actu-
ally, it can be shown that for increasing δg/g and constant g
the FT configuration experiences a saturation tendency. This
behavior is explained within the MGP framework since the
corresponding energy functional exhibits a minimum [24] at a
density

n0 = M

Nπ2 h̄2

[(2g − δg)3/2 + (δg)3/2]2

(δg)2
. (11)

It can be readily seen that in the limit of δg → g, it
holds that n0 = 4Mg/(Nπ2 h̄2). We remark that close to
the aforementioned transition boundary finite-size effects
come into play in our system; otherwise, they are neg-
ligible. This means that by employing periodic boundary
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FIG. 4. Density maximum of the ground-state droplet with respect to δg/g within the MB and the MGP frameworks as well as for different
particle numbers, i.e., (a) N = 40 and (b) N = 10. Deviations caused by beyond LHY correlations range from ∼25% (∼11%) to ∼4% (∼5%)
for N = 40 (N = 10). The mass-balanced bosonic mixture has intracomponent interactions gAA = gBB ≡ g = 0.05.

conditions or a larger length of the box potential the FT
shape of the corresponding configurations becomes more
pronounced.

To appreciate the role of correlations in the formation
of the above-described structures, we explore ρ (1)(x) in the
case of N = 40 for weak δg/g = 0.02 [Fig. 3(c)] and strong
δg/g = 0.2 [Fig. 3(d)] within different approaches. Focus-
ing on δg/g = 0.02, we observe that the MGP predicts a
prominently more localized density distribution than the MB
scenario [see also Fig. 4(a)]. Interestingly, both the MF and the
SMF methods capture better (in comparison to the MGP case)
the overall shape of ρ (1)(x) as can be seen in Figs. 3(c) and
3(d). However, they underestimate the value of the respective
density maximum evincing that intercomponent entanglement
plays indeed a role. Turning to δg/g = 0.2, it can be easily
seen that the predictions of the MF and the SMF methods
are indeed in good agreement with the MB while the MGP
result shows a slightly larger density peak. The fact that the
droplet peak density is lower in the MB than in the MGP
case holds independently of the particle number while the
relevant deviation diminishes for increasing δg/g with g fixed
since gAB becomes less attractive (see Fig. 4). The obser-
vation that the deviations of the SMF approach to the MB
one are reduced for a larger δg/g is corroborated by the fact
that in this case a weaker, and in particular close to zero,
intercomponent interaction is involved and thus entangle-
ment vanishes. Apparently, in this case also intracomponent
correlations are weak since the MF prediction lies close to
the MB.

Additionally, we should mention that for δg/g < 0.4 the
density peak of the MGP approach is larger from the one
obtained in the MB framework, while this situation is reversed
for δg/g > 0.4 (not shown). This behavior has been observed
also within the realm of quantum Monte Carlo [24]. Interest-
ingly, the MGP starts to underestimate ρ (1)(x) for larger values
of δg/g as the particle number is decreased. Herein, this crit-
ical value is δg/g ≈ 0.4 for N = 40 and δg/g ≈ 0.5 for N =
10. Moreover, independently of the value of δg/g an increas-
ing atom number leads to a transition from a Gaussian-type
to a FT profile and then to an almost homogeneous den-
sity distribution within the MGP method. The homogeneous
density peak is determined in the box potential by
max[N/L, n0] [see also Eq. (11)]. The relevant atom number
to realize such drastic deformations is relatively large and thus

is out of reach of the MB approach. For instance, considering
a box potential of length L = 800, in the case of δg/g = 0.2
we observe a FT for N > 80 while a homogeneous profile
is attained for N > 500 [Fig. 3(e)]. We note that for smaller
interactions, e.g., δg/g = 0.02 the corresponding FT (homo-
geneous) behavior is achieved for N > 2000 (N > 50 000).2

C. Effect of the harmonic trap

Having exemplified the properties and interaction depen-
dence of the droplet configurations emerging in symmetric
mixtures which experience a box potential we next briefly
study their formation in the presence of an external har-
monic trap. In this case, the MB Hamiltonian of the system
is described by Eq. (1) with the addition of the external
confinement V (x) = (1/2)Mω2x2. The latter naturally sets
an additional length scale into the system, namely, the har-
monic oscillator length aho = √

h̄/Mω ≈ 3.16 with ω = 0.1
corresponding to a trap of strength 2π × 20 Hz being an
experimentally customary [64,65] trap frequency in the lon-
gitudinal direction. As a consequence, the corresponding
density distributions shrink as compared to the case of a
box potential [8,66]. As such, the underlying densities fea-
ture mainly a Gaussian-shaped configuration whose width
becomes narrower for increasing (decreasing) g (δg/g) and
keeping δg/g (g) constant [see Figs. 5(a) and 5(b)] when N =
40. The deviations between the MGP and MB approaches in
this trapped case become substantial as shown exemplarily
in Fig. 5(c). Indeed, the density as estimated through MGP
is narrower compared to the MB case which also shows
FT signatures. This difference is more pronounced for ei-
ther increasing trapping frequency or interaction parameter g
where trap effects are more transparent. This is an expected
result since MGP is constructed within the local density
approximation [6].

2The crossover behavior from a Gaussian-shaped to a FT and then
to a homogeneous profile for a specific δg/g and increasing atom
number occurs independently of the finite size of the system, i.e., the
length of the box potential. In particular, the relevant particle number
to realize this transition is smaller for decreasing L. For example,
within MGP, if L = 100 and g = 0.05 then for δg/g = 0.02 (δg/g =
0.2) we achieve a FT when N > 2000 (N > 100) and a homogeneous
distribution for N > 105 (N > 5000).

043128-8



FORMATION AND QUENCH OF HOMONUCLEAR AND … PHYSICAL REVIEW RESEARCH 3, 043128 (2021)

FIG. 5. Ground-state densities ρ (1)(x) of a harmonically trapped bosonic mixture with N = 40 for different (a) g with fixed δg/g = 0.05
and (b) δg/g with constant g = 0.1 in the MB approach. The trap leads to localized density distributions experiencing a decreasing width for
larger (smaller) values of g (δg/g). (c) ρ (1)(x) for various frequencies ω of the harmonic trap (see legend) while g = 0.5 and δg/g = 0.05 are
kept fixed. Evidently, a tighter trap results in the spatial localization of the droplet density distribution. (d) ρ (1)(x) for different particle numbers
when g = 0.1 and δg/g = 0.5. The density profiles become wider for larger atom numbers. The dashed lines in (c) and (d) showcase specific
MGP predictions which exemplify significant deviations from the MB case. The symmetric mixture comprises of NA = NB ≡ N/2 bosons of
the same mass and intracomponent interactions gAA = gBB ≡ g in a harmonic trap of frequency ω.

The effect of the trap frequency for a specific g and δg/g
is depicted in Fig. 5(c). As anticipated, ρ (1)(x) is wider for
a smaller ω since aho becomes larger. Relying on the MGP
approach and for large particle numbers, e.g., N ∼ 103 we
are able to realize an arguably flattened configuration, e.g.,
for δg/g = 0.05, g = 0.5, and ω = 0.05. A further increase of
the atom number, e.g., N ∼ 104, results in a gradual delocal-
ization of the density being reminiscent of a FT profile (not
shown). For smaller trap frequencies, i.e., ω < 0.01, where
trap effects are minimized droplets with a FT shape can be
formed. In this way, it would be intriguing in the future to
carefully inspect the interplay of the interaction coefficients,
the particle number, and the external confinement strength as
well as to describe the transition from solitonic configurations
to droplets in the region δg/g < 0 as was recently discussed
in Ref. [66] in a quasi-1D geometry. A similar delocalization
tendency occurs upon considering an increasing atom num-
ber N while all other system parameters are kept fixed [see
Fig. 5(d)].

IV. DROPLETS IN MASS-IMBALANCED MIXTURES

Another far less investigated situation is the formation of
droplets in mass-imbalanced mixtures. This is a characteristic
case example where the participating components are not
identical and thus complicated mixed phases characterized
by different degrees of miscibility may emerge [67]. Recall
that the reduction of the full two-component system to an
effectively single-component one at the MGP level is no
longer valid for mass-imbalanced setups. Relevant extensions
of the MGP approach have been explored in three dimensions
[11,68] containing a more complex LHY correction than the
symmetric case.

To elaborate on the impact of the mass ratio among the
components, we employ the experimentally realized [10,11]
heteronuclear mixture of 41K and 87Rb. Generally, the re-
sponse of the mixture (at least on the single-particle level)
to variations of the involved interaction strengths is qualita-
tively similar to the mass-balanced case [see Figs. 6(a)–(c)].
However, the two components become discernible and for
either increasing g and keeping δg/g fixed or vice versa their
differentiation is less pronounced with the heavier component
(immobile) exhibiting a narrower distribution than the lighter
one [69]. More concretely, for increasing g while δg/g is held
constant the density distributions of both components become
gradually narrower [Figs. 6(a) and 6(b)]. In the reverse case,
where δg/g is increased (while g remains fixed), both ρ

(1)
A (x)

and ρ
(1)
B (x) are slightly flattened [compare Figs. 6(a) and

6(c)]. The mixed character of the components can be readily
enhanced by considering a larger mass ratio as depicted in
Fig. 6(d) regarding a mixture of 39K and 134Cs. Interestingly,
ρ

(1)
B (x) of the 134Cs component shows a two-hump structure

signaling the excited nature of this subsystem and thus of
the ensuing droplet configuration. This is a manifestation
of the participation of higher-order correlations associated
with the non-negligible population of higher-lying orbitals
[Eq. (4)] where such two-hump structures build upon. In this
sense the excited nature of the system essentially refers to
the admixing or otherwise fragmented character of the total
MB state. Similar effects can also be observed for 174Yb
(not shown). In that light, an interesting prospect for future
studies is to carefully unveil possible excitation mechanisms
of droplets arising in strongly mass-imbalanced mixtures and
the further impact of such imbalance in direct numerical
simulations.
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FIG. 6. Ground-state densities ρ (1)
σ (x) of a mass-imbalanced mixture (MB ≈ 2.12MA) for (a), (b) distinct intracomponent coefficients g and

fixed δg/g = 0.05 (see legends) and (c) δg/g = 0.02, g = 0.05. The density profiles become narrower (flattened) for an increasing g (δg/g).
(d) ρ (1)

σ (x) for a strongly mass-imbalanced setting with MB ≈ 19MA while δg/g = 0.02 and g = 0.05. Excitation signatures are captured in the
distribution of the heavy component being identified by the deformations of its respective density. Due to the mass imbalance, the components
are discernible (mixed). The mixture has NA = NB = 20 bosons residing in a box trap of length L.

V. INTERACTION QUENCH DYNAMICS OF DROPLETS

After analyzing in detail the ground state of symmetric
and asymmetric droplets, a natural next step is to investigate
their dynamical behavior aiming in particular to elucidate
their inherent buildup of correlations. To trigger the time
evolution of these structures we rely on an intercomponent
interaction quench protocol associated with a sudden change
of the δg/g parameter while letting g intact. Concretely, below,
we consider quenches from small to larger values of δg/g
and vice versa for both homogeneously and harmonically
trapped symmetric mixtures. Afterwards, we briefly com-
ment on the dynamics of mass-imbalanced settings in a box
potential.

A. Box potential

It can be easily deduced that upon quenching to a larger
(δg/g)f , as compared to the initial one (δg/g)in, leads to rel-
atively weaker postquench intercomponent attractions. Thus,
a dynamical expansion of the bosonic cloud is anticipated.
The resulting single-particle density of the mixture in the
course of the evolution is provided in Figs. 7(a) and 7(b)
within the MB and the MGP approaches, respectively, for a
quench characterized by (δg/g)in = 0.02 and (δg/g)f = 0.8.
As it can be seen, the initial (t = 0) Gaussian-shape profile
of ρ (1)(x) due to (δg/g)in = 0.02 undergoes an expansion
towards the box edges. In the process (around t ∼ 60), it
acquires a shape reminiscent of a FT [see the inset of Fig. 7(a)]
and upon hitting the edges of the box potential (t ∼ 200) it is
reflected back to the center (x = 0) while splitting into two
parts. Namely, an inner portion and two outer humps close
to the edges with the former traveling faster to x = 0 and
featuring later on several interference fringes after colliding
with the latter humps. The above-described overall dynamical
deformation of ρ (1)(x) takes place both in the MB and the
MGP approaches, but in the latter case the expansion strength
and velocity of the bosonic cloud are substantially larger. As
a result also the interference wave phenomenon appearing
for long evolution times is more pronounced in the MGP
dynamics.

To estimate the deviation in the quench-induced expansion
of the mixture between the MB and the MGP methods we

resort to the position variance of the bosonic cloud in the
course of the evolution given by〈

X 2
σ (t )

〉 = 〈�(t )|x̂2
σ |�(t )〉 . (12)

Here, we have taken into account that 〈�(t )|x̂σ |�(t )〉 = 0.
For symmetric mixtures it holds that 〈X 2

A (t )〉 = 〈X 2
B (t )〉 ≡

〈X 2(t )〉. Monitoring 〈X 2(t )〉 / 〈X 2(0)〉 for quenches from
(δg/g)in = 0.02 to various values of (δg/g)f [Fig. 8(a)], we
observe that it exhibits an increasing behavior quantifying
expansion independently of (δg/g)f . Furthermore, the expan-
sion amplitude and velocity [∼δ 〈X 2(t )〉 /δt] become more
enhanced for a larger (δg/g)f . Importantly, a comparison of
〈X 2(t )〉 / 〈X 2(0)〉 for fixed (δg/g)f among the different ap-
proaches reveals that both the strength and the velocity of
the expansion are overestimated in the MGP dynamics. This
is a signature of substantial beyond LHY correlations that
build up during the time evolution. Since this observable
is experimentally tractable via in situ absorption imaging
[70,71], it can be used as a probe for the presence of beyond
LHY correlations during the expansion dynamics of droplet
structures.

Additionally, a measure that has been so far elusive for
droplets concerns their degree of entanglement (intercompo-
nent correlations) which cannot be taken into account, at least
properly, within the widely used MGP approach [Eq. (7)]. In
order to quantify the amount of entanglement we herein rely
on the von Neumann entropy [53] which is defined as

SVN(t ) = −
D∑

k=1

λk (t ) ln[λk (t )] (13)

with λk (t ) being the Schmidt coefficients intro-
duced in Eq. (2). They are the eigenvalues of the
σ component reduced density matrix ρNσ

σ (�x, �x′; t ) =
〈�(t )| ∏Nσ

i=1 �†
σ (xi )

∏Nσ

i=1 �σ (x′
i )|�(t )〉, where �x =

(x1, . . . , xNσ
). Evidently, if SVN(t ) �= 0 implies that more

than one Schmidt coefficient contributes to the MB wave
function of Eq. (2) and hence the mixture is entangled.
The time evolution of SVN(t ) following a quench from
(δg/g)in = 0.02 to different but larger (δg/g)f is showcased in
Fig. 7(e). Notice that SVN(0) is finite implying that the initial
state (ground-state droplet) is already entangled. Moreover,
SVN(t ) reduces as time evolves and in particular when the
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FIG. 7. Time evolution of the single-particle density ρ (1)(x; t ) of a box trapped symmetric bosonic mixture upon considering an interaction
quench from (δg/g)in = 0.02 to (δg/g)f = 0.8 within (a) the MB and (b) the MGP framework. An expansion of the droplet, due to the
reduction of the intercomponent attraction caused by the quench, towards the box edges occurs and is found to be less pronounced in the
MB scenario. Inset in (a) presents density profiles at t = 50 (blue line) and t = 150 (red line) where FT signatures are evident. (c) The
same as (a) but for a quench from (δg/g)in = 0.2 to (δg/g)f = 0.01. The mixture tends towards an LHY fluid due to the quench and it
undergoes a breathing motion. The postquench intercomponent attraction is larger compared to its prequench value. (d) Same as (a) but for a
harmonically trapped mixture. Breathing of the droplet is observed due to the existence of the external trap. The inset in (d) shows characteristic
instantaneous density profiles depicting expansion t = 53 (blue line), contraction t = 68 (red line), and FT formation in-between t = 60 (black
line). Dynamics of the von Neumann entropy for different postquench interaction strengths (see legend) starting from (e) (δg/g)in = 0.02 and
(f) (δg/g)in = 0.2. A dynamical reduction (enhancement) of the intercomponent entanglement is triggered for larger (smaller) postquench
values of δg/g. The mixture consists of N = 40 bosons of the same mass and intracomponent interactions gAA = gBB ≡ g = 0.05 for the box
while gAA = gBB ≡ g = 0.1 for the trap.

cloud expands and after the collision with the box edges, it
tends to saturate towards a (δg/g)f -dependent finite value.
We remark that the reduction of SVN(t ) is caused by the

mere fact that the postquench values refer to smaller |gAB|
couplings [32] while SVN(t ) is constant for (δg/g)f = 1 since
then gAB = 0.
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In the reverse quench scenario, where (δg/g)f is smaller
than (δg/g)in, the postquench gAB becomes more attractive
and the gas approaches dynamically an LHY fluid. This pro-
tocol results in the dynamical contraction of ρ (1)(x; t ) and
ultimately triggers the breathing motion of the cloud [28]
[see for instance Fig. 7(c)] corresponding to (δg/g)f = 0.01.
The emergent breathing dynamics can be readily captured
by 〈X 2(t )〉 / 〈X 2(0)〉 performing oscillations [Fig. 8(b)] and
thus materializing the underlying expansion and contraction
of the droplet. The oscillation amplitude is enhanced for
(δg/g)f → 0, while it is always slightly reduced in the MB
case as compared to the MGP evolution. The deviation in the
oscillation amplitude between the two approaches is typically
of the order of ∼3.2%. Furthermore, the oscillation frequency
of 〈X 2(t )〉 / 〈X 2(0)〉 which refers to the breathing frequency
of the system is smaller in the MB dynamics as compared
to the MGP one. For instance, ωbr ≈ 0.0036 in the MB case
and ωbr ≈ 0.004 within the MGP framework, a result that
holds irrespectively of (δg/g)f .3. Interestingly, a dephasing of
〈X 2(t )〉 / 〈X 2(0)〉 occurs within the MB scenario being absent
in the MGP approach.4 This phenomenon constitutes another
imprint of beyond LHY contributions in the course of the
evolution. To further support this argument, we provide SVN(t )
in Fig. 7(f). At the initial stages of the dynamics it features
an overall increasing tendency associated with the buildup
of intercomponent entanglement during contraction. Later on,
it exhibits a multifrequency oscillatory behavior without any
clear hierarchy in terms of (δg/g)f .

B. Harmonic trap

In the presence of a harmonic trap the quench, indepen-
dently of being performed to weaker or stronger (δg/g)f , leads
inevitably to a collective breathing motion of the droplet.
A characteristic case example of the ensuing density evo-
lution is illustrated in Fig. 7(d) following a quench from
(δg/g)in = 0.02 to (δg/g)f = 0.8. Interestingly, during the dy-
namics ρ (1)(x; t ) shows signatures of a flattened distribution
between full expansion and contraction while it exhibits a
clear Gaussian shape being wider at the expansion than the
contraction points [see also the inset of Fig. 7(d)]. As ex-
pected, this breathing motion is captured by the oscillatory
motion of 〈X 2(t )〉 / 〈X 2(0)〉 whose amplitude is larger for
increasing postquench parameter. The MGP approach de-
scribes adequately both the density shape and the breathing
frequency of the cloud [see, e.g., Fig. 8(c)]. It predicts a
slightly narrower ρ (1)(x; t ) and larger breathing frequency.
The latter being ωbr ≈ 1.84ω in the MB case and ωbr ≈ 1.85ω

in the MGP scenario when (δg/g)f = 0.8. We note that ωbr

appears to be almost insensitive to the value of (δg/g)f .

3The breathing frequency for fixed δg/g and g shows a weakly
decreasing tendency for a smaller particle number in accordance to
the observations made in Refs. [24,28].

4Notice that we do not observe any appreciable signatures of
dephasing in the dynamics of 〈X 2(t )〉 within the MGP approach
at least for total evolution times T � 20 000. This statement holds
irrespectively of the postquench value, e.g., (δg/g)f = 0, 0.01, 0.05
and particle numbers N = 10, 20, 40, 100.

For instance, regarding quenches to weaker interactions, e.g.,
from (δg/g)in = 0.15 to (δg/g)f = 0.01, that we have found
that it changes slightly having a value ωbr ≈ 2ω (ωbr ≈ 2.1ω)
in the MB (MGP) scenario.

C. Mass-imbalanced mixture in the box

Next, we briefly analyze the quench dynamics of a mass-
imbalanced mixture following an abrupt change to stronger
intercomponent attractions such that we approach the MF
balance point (δg = 0) where an LHY fluid [34,35] forms (see
Fig. 9). As explicated for the mass-balanced case [Fig. 7(c)]
the quench causes the two-component gas to perform a breath-
ing motion. However, in this mass-imbalanced scenario due to
the initial miscible nature of the system [Fig. 6(c)], the com-
ponents oscillate with a phase difference between them which
results into their slightly distinct breathing frequency. The
latter is naturally smaller for the heavier component while the
interspecies miscibility is retained throughout the evolution
[see ρ

(1)
A (x; t ) and ρ

(1)
B (x; t ) in Figs. 9(a) and 9(b)]. This ob-

servation is corroborated also by inspecting 〈X 2
σ (t )〉 / 〈X 2

σ (0)〉
[Fig. 9(c)] whose oscillatory behavior reflects the expansion
and contraction of the clouds. Distortions that are present
in the oscillation of 〈X 2

σ (t )〉 / 〈X 2
σ (0)〉 stem from the mixed-

ness of the subsystems and their intercomponent interaction.
As for mass-balanced mixtures the oscillation amplitude of
〈X 2

σ (t )〉 / 〈X 2
σ (0)〉 is larger when (δg/g)f → 0. It is also worth

mentioning that applying quenches to weaker gAB the clouds
experience an expansion trend with a velocity smaller for the
heavy component (not shown).

D. Correlation patterns of droplets

As argued above, an important ingredient of the droplet
formation is the presence of correlations which are ex-
pected to be especially enhanced during the nonequilibrium
dynamics of such structures. Focusing on intercomponent
entanglement we have indicated that aside from being finite
already in the ground state it is enhanced (reduced) after
quenching to a weaker (stronger) (δg/g)f . Next, we aim at
unveiling the emergent intracomponent dynamical correlation
patterns of droplets. For this reason, we monitor the normal-
ized spatially resolved two-body intracomponent correlation
function [41]

G(2)
σσ (x1, x2; t ) = ρ (2)

σσ (x1, x2; t )

ρ
(1)
σ (x1; t )ρ (1)

σ (x2; t )
. (14)

Importantly, it holds that if G(2)
σσ (x1, x2; t ) > 1

[G(2)
σσ (x1, x2; t ) < 1] the MB state is termed correlated

(anticorrelated), while for G(2)
σσ (x1, x2; t ) = 1 it is fully

second-order coherent [41]. This observable can be
experimentally attained via in situ density-density
fluctuation measurements [72]. Subsequently, we shall
focus on the dynamics of symmetric mixtures and thus it
holds that G(2)

AA(x1, x2; t ) = G(2)
BB(x1, x2; t ) ≡ G(2)(x1, x2; t ).

Also, we analyze G(2)(x1, x2; t ) utilizing a quench
from (δg/g)in = 0.02 towards (δg/g)f = 0.8 in a box
potential [Figs. 10(a)–(e)] and in the presence of a trap
[Figs. 10(f)–(j)].
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FIG. 9. Quenched σ -component density ρ (1)
σ (x) of a mass-imbalanced mixture after a change from (δg/g)in = 0.15 to (δg/g)f = 0.01

within the MB approach. (c) Time evolution of the corresponding variances. The components perform a breathing dynamics showing a phase
difference with the heavy component being delayed. The box trapped mass-imbalanced mixture has N = 40 bosons with MB = 2.1MA and
interactions gAA = gBB ≡ g = 0.05.

Referring to a box potential and for this quench sce-
nario, the bosonic cloud experiences an overall expansion [see
Fig. 7(a)]. The corresponding G(2)(x1, x2; t ) is showcased in
Figs. 10(a)–(e) at different time instants of the evolution. As
can be seen, two bosons of the same component feature an
anticorrelated behavior at the same position [see the diago-
nal of G(2)(x1, x2 = x1) < 1] while they exhibit a correlation
tendency when being far apart [G(2)(x1, x2 �= x1) > 1]. This
pattern is maintained as time evolves and it is particularly
enhanced as the cloud expands further.

Turning to the dynamics in the presence of a harmonic trap,
we observe the buildup of similar to the above-described cor-
relation patterns [see Figs. 10(f)–(j)]. Recall that in this case
the bosons perform a collective breathing motion [Fig. 7(d)]
and characteristic snapshots of G(2)(x1, x2; t ) are provided
as examples herein during expansion [Figs. 10(g) and 10(i)]
and contraction [Figs. 10(h) and 10(j)]. It can be readily
deduced that two-body correlations exist for bosons that lie
apart [G(2)(x1, x2 �= x1; t ) > 1] and anticorrelations persist in
the same location [G(2)(x1, x2 = x1; t ) < 1]. Interestingly, two
bosons show an anticorrelated tendency in the vicinity of the
spatial region of their contraction [see, e.g., G(2)(−3 < x1 <

3,−3 < x2 < 3; t ) ≈ 0 in Figs. 10(h) and 10(j).

VI. SUMMARY AND OUTLOOK

We have investigated the impact of correlations on the
ground-state formation and quantum dynamics of droplet
configurations arising in two-component one-dimensional
particle-balanced bosonic settings experiencing either a box
potential or a harmonic trap (for both mass-balanced and
mass-imbalanced settings). The mixtures are characterized by
the same intracomponent repulsion and an intercomponent
attraction ensuring the generation of droplets. A particular
focus is placed on the emergent droplet correlation patterns,
the crossover from few to many atoms, and the effect of
the intracomponent and intercomponent interactions. We thus
explore the most-general two-component setting even for the
symmetric cases where according to the MGP framework
the mixture reduces to a single-component setup. The im-
pact of the particle number in LHY fluids is also addressed.
Importantly, the quench dynamics of droplets within a nonper-
turbative approach is analyzed and deviations from the MGP
predictions are exposed. Indeed, for the low number of atoms
where the MGP and MB approaches were compared, nontriv-
ial differences in features such as the width and amplitude of
the formed droplets were observed.
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FIG. 10. Snapshots of the two-body correlation function following an interaction quench from (δg/g)in = 0.02 to (δg/g)f = 0.8 in (a)–(e)
box potential of length L and (f)–(j) harmonic trap with ω = 0.1. Anticorrelations develop at the same location of the droplet and a correlated
behavior appears at distinct places. The symmetric mixture consists of N = 40 mass-balanced bosons and intracomponent interactions (a)–(e)
gAA = gBB ≡ g = 0.05 while (f)–(j) gAA = gBB ≡ g = 0.1.
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For the ground state of droplets, we initially investigate the
impact of an increasing intracomponent repulsion while ad-
justing the intercomponent attraction such that a suitable ratio
remains constant. A transition from a spatially delocalized to
a highly localized Gaussian density distribution takes place
for stronger attractions irrespectively of the atom number.
Signatures of a flattened density maximum are identified for
intermediate interactions. Moreover, a larger particle number
for fixed interactions results in the deformation of the droplet
shape from a Gaussian-type towards a wider FT density pro-
file. In sharp contrast, for suppressed MF interactions, LHY
fluids are realized experiencing a gradually shrinked config-
uration as the atom number increases. Simultaneously, on
the two-body level a correlation hole appears for few-atom
droplets, being suppressed for larger atom numbers giving
its place to a tendency for two-body correlations at longer
distances. Furthermore, by considering a fixed intracompo-
nent repulsion and a decreasing intercomponent attraction,
a deformation from a Gaussian shape to a pronounced FT
distribution occurs. Remarkably, droplets with a FT exhibit
a correlation hole which vanishes for localized ones.

In the presence of a harmonic trap, a crossover behavior
from a delocalized to a strongly localized droplet shape oc-
curs for either increasing intercomponent attraction or larger
intracomponent repulsions. A tighter trap results into the sup-
pression of any FT signature. In all cases, careful comparisons
between the MB and other MF-type approaches operating at
different correlation orders are performed. This way, we ex-
pose deviations in the droplet profile ultimately caused by the
presence of intercomponent entanglement. These differences
are maximized for stronger attractions among the species and
also in the presence of a harmonic trap where the MGP is less
adequate due to the local density approximation.

For weakly mass-imbalanced mixtures, a similar structural
deformation takes place upon varying the individual interac-
tion parameters. Here, the components are mixed with respect
to each other with the heavier one having a narrower distri-
bution. Strikingly, an adequately heavy component signals the
formation of a multihumped droplet structure.

Next, we study the nonequilibrium dynamics of droplets
upon applying intercomponent interaction quenches to either
weaker or stronger attractions. In the former case, the droplet
expands reshaping from a Gaussian type to a configuration

that bears FT characteristics, while for quenches towards the
MF balance point, it performs a breathing motion. Naturally,
an accompanying buildup (reduction) of the intercomponent
entanglement occurs for quenches to larger (smaller) attrac-
tions. In both cases, deviations of the MB from the MGP
dynamics manifest in a reduced expansion velocity of the
droplet within the MB approach and also a smaller breathing
frequency as compared to the MGP prediction. In the presence
of a harmonic trap, the quench leads to a collective breathing
dynamics whose frequency is overestimated in the MGP case.
Monitoring the development of two-body correlations during
the droplet evolution we exemplify that irrespectively of the
quench, two bosons feature an anticorrelation at the same
position while being correlated when residing far apart.

There are several intriguing research directions that can
be pursued in future endeavors, further extending the present
findings. Indeed, a detailed investigation of the different col-
lective excitations of droplets emerging in mass- as well as
interaction-imbalanced mixtures and the comparison with the
MGP predictions is of direct interest. Moreover, the study
of correlated pattern formation and associated defect scaling,
e.g., in the context of the Kibble-Zurek mechanism when
crossing the threshold of MF repulsion and attraction utiliz-
ing a time-dependent protocol would be intriguing. Certainly,
engineering the magnetic properties of droplet structures
constitutes another exciting perspective. Moreover, we have
limited our considerations herein to one-dimensional set-
tings and the most prototypical of coherent structures within
this system. However, much of the recent work has focused
on two and three dimensions [16,73,74] and excited states,
including droplet clusters, vortices, etc. It will be partic-
ularly relevant to extend the MB considerations herein to
such higher-dimensional settings and some of the associated
states.
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