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Nernst and Ettingshausen effects in the Laughlin geometry
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The ideal reversible thermodynamic cycle visualization of the Nernst effect in Laughlin geometry, excluding
the kinetic contribution, is proposed. The Ettingshausen effect is also treated in the fashion using the reverse
cycle. The corresponding values of the off-diagonal thermoelectric coefficients are expressed through the ratio
of the entropy budget per magnetic flux. Our approach enlightens the profound thermodynamic origin of the
relation between the Nernst effect and magnetization currents.
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I. INTRODUCTION

Two centuries ago Carnot introduced the notion of the ideal
heat engine with molecular gas as the working body [1]. The
molecular gas changes its state performing the closed cycle,
which consists of two adiabatic and two isothermic curves in
the restricting area between the four points in the pressure P
and volume V plane.

At the same time Seebeck discovered the appearance of the
potential difference across a hot and cold end for two dissim-
ilar metals, which allowed the creation of the thermoelectric
generators afterward. It was demonstrated much later that the
operation of the thermoelectric couple can be described (see,
e.g., the textbooks in Refs. [2,3]) in complete analogy with the
Carnot heat engine: it is enough to replace the molecular gas
by the degenerated Fermi gas as the working body and notice
that the role of pressure in this case plays the electrochem-
ical potential [4] μ̃ = μ + eϕ (here μ is chemical potential
and e = −|e| is electron charge), while instead volume one
implies the number of particles N . Accordingly, the role of
work −PdV is played by the energy of the mass transfer part
of the first law of thermodynamics μdN (the “mass action”
as formulated in the classical textbook of Ref. [5]), see also
Ref. [6]. Here and in the following we set ϕ = 0, unless stated
explicitly otherwise.

The fact that the Carnot cycle realizes the maximum
possible efficiency of the heat engine is considered as its
remarkable feature. This theoretical statement provides the
crucial criterion in search for the new materials for realiza-
tion of the effective thermoelectric generator characterized by
low heat losses. These losses occur due to the dissipation
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processes taking place in the working body related to its
electrical resistivity and thermal conductivity.

In this article we propose a new type of a gedanken heat
engine based on the Nernst effect realized in the Laughlin ge-
ometry [7] (see Fig. 1). We assume that the cylinder surface is
an effective insulator, so that no longitudinal charge transport
occurs along the cylinder generatrix. Nevertheless, the edges
remain conducting and the nondissipative diamagnetic edge
currents flow [8]. The Laughlin geometry allows to visualize
these currents making the charged particles flowing along the
closed loops in the opposite directions. Note that the mag-
netic field direction fully determines the chirality of the edge
currents. There are always two counterpropagating currents at
the two edges of the cylinder. One cannot separate them even
if cutting the cylinder in two.

Once the edges of the cylinder are put in contact with
thermal bathes characterized by the temperatures T1 and T2,
the heat current along cylinder generatrix is induced. We ne-
glect the dissipation of energy during the heat transfer. The
magnitude of the diamagnetic edge currents is temperature
dependent, which is why it turns out to be different at the
cold and hot edges of the cylinder. For this reason, a total
nonzero tangential circular current flows in the system if the
temperatures at two edges are different. One can consider
the generation of this current as the response of the system
to the magnetic field and the temperature difference applied
that constitutes a manifestation of the Nernst effect (see, e.g.,
Ref. [9]) in the Laughlin geometry. One can also consider
the model system discussed here as the heat engine where
the current is generated due to the difference of chemical
potentials μ(T1) and μ(T2).

II. EDGE CURRENTS

Let us consider the geometry proposed by Laughlin for the
interpretation of the quantum Hall effect [7] that is modified
here to address the Nernst effect. We assume that electrons are
confined on a conducting cylindrical surface in the presence
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FIG. 1. The Nernst heat engine in the cylindrical Laughlin’s
geometry. Electrons are confined on the cylindrical surface in the
presence of a magnetic field H applied perpendicularly to the surface.
The upper (I) and lower (II) edges are kept at the temperatures T1 and
T2. The heat flow is entering through the upper edge Q̇1 and it leaves
the system via the lower edge Q̇2 as shown by the green arrows. The
red and blue arrows correspond to the diamagnetic edge currents J1,2

that for T1 �= T2 do not compensate each other and result in finite
tangential net Nernst current.

of a magnetic field H applied perpendicular to the surface in
each of its point (see Fig. 1). We assume that the edges of
the cylinder are kept at equilibrium with the thermal baths of
the temperatures T1 > T2. Under these conditions the working
fluid, which consists of an electron gas, is thermalized at both
ends at two different temperatures.

We are interested here in the regime of classically strong
magnetic fields, where the energy separation between the
neighboring Landau levels exceeds their broadening, yet re-
main small with respect to the Fermi energy: � � kT �
h̄ωc � EF , where T is temperature, � is the impurity level
smearing, ωc is the cyclotron frequency, and EF is the Fermi
energy. In what concerns the requirements to the cylinder
geometry, we assume that its circumference L and width W
greatly exceed the magnetic length lB = √

h̄c/|e|B.
As follows from the numerous considerations of the rel-

evant problem done in the Hall-bar geometry [8,10–13] the
currents flow along the edges of the conducting layer within
the depth of the order of ỹ0 ∼ lB

√
EF /(h̄ωc). We assume that

the temperature gradient is small enough so that on the scale
of ỹ0 the temperature remains constant.

The value of the edge current can be related to the grand
thermodynamical potential �L per unit area

J (T, μ, H ) = c

H
�L(T, μ, H ), (1)

where

�L(T, μ, H ) = −2kT
|e|H
2π h̄c

∞∑
n=0

ln

×
[

1 + exp

(
μ(T ) − h̄ωc(n + 1/2)

kT

)]
. (2)

Let us stress that in spite of the specifics of the spectrum of the
edge states of electrons the summation in Eq. (2) can be done
over the spectrum of Landau levels calculated for the infinite
system [10–13]. The spin degeneracy of the electron gas under
study is postulated, which results in the appearance of the
factor of 2 in Eq. (2). Note that the sign in Eq. (1) is the matter
of convention: In the chosen form it corresponds the direction
of the current flowing along the upper edge of the cylinder.

In the limit of low temperatures kT � μ(T ), the exponen-
tial term in the argument of the logarithm dominates over 1 in
Eq. (2), so that the expression for the current reduces to [13]

J2DEG(T, μ, H ) = − |e|
π h̄2

μ2(T )

2ωc
. (3)

If in the material of the cylinder electrons are characterized
by a Dirac spectrum as it happens in graphene, the energy
spectrum of Landau levels differs from the equidistant ladder
(En = ±

√
2nh̄|e|Bv2

F /c), and the summation in �L results in
Jgr (T, μ, H ) = −(c/H )|μ(T )|3/(3π h̄2v2

F ), where vF is the
Fermi velocity.

If the temperatures of the edges are equal, T1 = T2, the
currents compensate each other, yet jointly they create a dia-
magnetic response to the magnetic field applied.

If the temperatures of the edges are different, a full tangen-
tial circular current (Nernst current) flows in the cylinder. Its
value is determined by the difference of two edge currents

Jtot = J (T1) − J (T2). (4)

As follows from Eq. (3) the direction of the total current
depends on the relative values of the chemical potentials μ(T1)
and μ(T2). Both of them oscillate as functions of the magnetic
field H [14,15] (for the experimental observation of this effect
see Ref. [16]). Thus the direction of the total current may be
switched by changing the value of H . In Figs. 1 and 2 we
assume that μ(T1) < μ(T2).

It is striking to note that these oscillations represent
a perfect illustration of the Le Chatelier-Braun principle,
characterized by the coupling effects between the intensive
parameters of the system. In the present case we observe the
direct coupling between two of them, temperature and chem-
ical potential, which are themselves modified by the presence
of the magnetic field. It has been shown that under given
conditions these couplings can lead to spontaneous oscilla-
tions [17]. It is sufficient that such oscillations to be governed
by only two parameters for many systems. Yet all suggests
that increasing the number of these parameters makes the
spontaneous oscillations more likely.

We stress that our argumentation only applies to the bal-
listic transport regime where electron-phonon scattering is
negligible. In a high temperature limit, the scattering would
eventually suppress dissipationless edge currents. A hotter
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FIG. 2. A scheme of the gedanken Nernst heat engine based on a Laughlin cylinder whose edges are immersed in thermal baths of different
temperatures. Panel (a) shows the broken circuit regime, were no work is produced, panel (b) shows the active regime, where the work is
produced by a current flowing through the bulb. This current is given by the difference of two edge currents. It is compensated by a thermal
current flowing through the cylinder in the opposite direction. Panel (c) shows the Ettingshausen heater based on the inverse effect: The current
produced by the generator introduces the imbalance of edge currents that is compensated due to the induced temperature imbalance between
the two edges. If the lower edge is kept at a constant temperature of a bath, the temperature at the upper edge increases. Panel (d) shows the
μ–N diagram for the Nernst heat engine cycle. α → β (isothermal process): the entering heat flow Q1 from the higher edge kept at the constant
temperature T1 to the electronic system at the upper edge results in the increase of the kinetic energy of the electrons at the upper edge and the
increase of their entropy, so that Q1 = T1S1 = μ1(−δN ). β → γ: the work is produced while electrons pass through the load situated between
the edges. As the process is adiabatic and reversible, the incoming and outgoing entropy rates Ṡ1 = Ṡ2 = Ṡ [see Eq. (5)]. γ → δ (isothermal
process): the cooler absorbs the heat flow coming from the lower edge Q2 = T2S2 = μ2(−δN ). δ→ α: corresponds to the adiabatic return to
the initial state. The entropy flow −Ṡ1 = −Ṡ2 = Ṡ.

side would be characterized by a lower current magnitude in
this case.

Let us also note that the numerical simulations of the
Nersnt effect in a fluctuating superconductor in the Laughlin
geometry [18] shows indeed that the total circular current
appears when the edges are kept at the different temperatures.

As it was mentioned above, the edge currents are formed by
the skipping electrons located within the stripes of the width
ỹ0 near the edges, while the electrons at the surface of the
cylinder far from the edges are confined to their cyclotron or-
bits and do not contribute to the electric current [10–13]. The
positions of the centres of cyclotron orbits at the generatrix are
determined by the momentum quantum number px, and they
are fixed. Due to the nonzero temperature kT � h̄ωc several
quantum states with the Landau levels close to the Fermi level
may be available for the electron transport. Electron-electron
or electron-phonon interaction can result in the transitions of
the electron, rotating around the same center, between the
Landau levels. As a result, the heat from the hot edge to the
cold one can flow by means of subsequent resonant transitions

of the electrons from higher to lower Landau levels without
their macroscopic displacements along the generatrix. In this
way, the heat transfer without the ballistic charge transfer
occurs. We also point out that the nontrivial topology of the
Laughlin cylinder results in the highly unusual diamagnetic
response: The nonequal circular currents along the edges in-
duce a magnetic field parallel to the axis of the cylinder and
perpendicular to the external magnetic field. We admit that the
considered geometry of the external magnetic field implies the
existence of magnetic monopoles and cannot be realized in
practice, strictly speaking.

III. THERMODYNAMIC TREATMENT
OF THE NERNST EFFECT

The diamagnetic tangential circular edge currents J (T1)
and J (T2) flow along the upper and lower loops, respectively
[see Eqs. (4) and (1)] (see Fig. 1). As discussed above, no
ballistic longitudinal charge transport occurs along the cylin-
der generatrix, while the thermal transport due to the resonant
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tunneling of electrons from the upper Landau levels in the
bottom part of the cylinder to the lower Landau levels in
the top part of the cylinder is possible in the presence of a
gradient of the electrostatic potential along the generatrix of
the cylinder. To extract the work done by the system let us set
up the gedanken experiment as it is shown in Fig. 2(a) (cf. the
spiral thermobattery [19]).

The extremes of the cylinder are immersed in thermal baths
kept at the temperatures T1 and T2. The heat budget at the
boundaries of the system is provided by the heat flow Q̇1

entering through upper edge and outgoing through the lower
edge Q̇2. The considered heat engine is supposed to be fully
reversible, which requires the heat transfer along the cylinder
generatrix to be nondissipative. This implies that the losses
occurring due to electrical and thermal conductivities are ne-
glected.

There is a profound analogy between the classic heat en-
gine that uses a molecular gas as the working body and
a thermoelectric generator, which employs the degenerated
Fermi gas instead Refs. [2,3]. Following the same logic and
based on the results presented in the previous sections we will
show how the ideal Nernst heat engine may work. The role of
the working body in this construction also plays a degenerated
Fermi gas localized at two extremes of the cylinder. The
different temperatures of the edges result in slightly different
values of the chemical potentials μ1 = μ(T1) and μ2 = μ(T2)
(contrary to strongly different electrochemical potentials of
two dissimilar metals of a thermoelectric couple) that leads
to the entropy transfer.

Although in a thermoelectric device there is no periodical
mechanical motion of the working body, it is instructive to
represent its operation process in terms of a “thermoelectric
cycle” in the μ–N diagram [6], with N being the number of
particles. A similar approach was used in Ref. [20], where
the thermoelectric chiller and generator cycles were consid-
ered using the temperature-entropy flux diagrams. Recently,
in Ref. [21], the photovoltaic conversion process in a solar
cell was also represented as a thermodynamic cycle. This
cycle leads to maintaining the electrochemical potential dif-
ference, which would otherwise be reduced to zero because
of the recombination. The constant supply of energy through
the device leads to the maintenance of this potential differ-
ence. Hence, for the description of our gedanken experiment
schematically illustrated in Figs. 2(a) and 2(b), we employ the
language of a “thermoelectric cycle” and present the corre-
sponding μ–N plot in Fig. 2(d).

In the case of a totally reversible Carnot cycle, the entering
and outgoing entropy rates related to the heat budget are equal

Ṡ = Ṡ1,2 = Q̇1

T1
= Q̇2

T2
. (5)

The “transported” entropies S1,2 are nothing else but the en-
tropies of the working substances, i.e., the electrons at the
edges. The heat budget difference then is given by

�Q̇ = Q̇1 − Q̇2 = Ṡ(T1 − T2) = ηCQ̇1, (6)

where ηC = 1 − T2/T1 is the Carnot efficiency.
The work of a traditional heat engine is determined by

the area restricted by the closed working cycle in the phase
space: pressure (P) and volume (V ). Following the arguments

developed in Ref. [3] one can replace P → μ and V → N and
express the work produced during one cycle as follows:

W = (μ2 − μ1)δN. (7)

Here δN is the number of particles that crosses the load during
one cycle, i.e.,

δN = −J1 − J2

|e| τ = −Jtot

|e| τ, (8)

where τ is the period of the cycle. Note that Eqs. (7) and (8)
can be easily reduced to the textbook formula for the work of
electric current represented as a product of current, voltage
and time keeping in mind that the difference of chemical
potentials between two edges of the cylinder is exactly com-
pensated by the difference of their electrostatic potentials, in
the stationary regime.

One finds from the energy conservation law W = �Q and
Eq. (6) that

S(T1 − T2) = (μ2 − μ1)δN. (9)

Here S is the budget of the total entropy that flows through the
system during one cycle. We stress that S is the entropy flow
through the system in contrast to the entropy of the system,
which is a state function that comes to its initial value after
every cycle.

The total persistent tangential current (4) in the case of a
two-dimensional electron gas [see Eq. (3)] can be written in
the form

Jtot = − |e|
π h̄2

μ2
1 − μ2

2

2ωc
= nc

H
(μ2 − μ1), (10)

where we identified (μ1 + μ2)/2 ≈ πnh̄2/m and n is the car-
riers concentration for a 2D system.

Comparing Eqs. (9) and (10) one finds that the expression
for the total current can be presented in a rather simple and
universal form:

Jtot = cn

H

( S

δN

)
(T1 − T2) = cS

H
(T1 − T2). (11)

Here S/δN is the entropy budget per carrier and S = (S/δN )n
is the entropy budget per unit area. Note that the ratio S/H in
front of the temperature difference in the second equality of
Eq. (11) is nothing else but the ratio of the full entropy budget
per magnetic flux penetrating the area. This parameter seems
to be as fundamental as the conventional filling factor [22].

For the specific case of graphene characterized by a linear
(Dirac) energy spectrum of electrons, the relationship between
carrier density (imbalance) and chemical potential reads as
n = μ2sgn(μ)/(π h̄2v2

F ). One can see that the above deriva-
tion of Eq. (11) remains valid.

The proposed scheme of a gedanken experiment allows to
directly measure both the diamagnetic currents and the Nernst
coefficient.

IV. REVERSE CYCLE: THE ETTINGSHAUSEN EFFECT

Another type of instructive gedanken experiment can be
proposed in the Laughlin geometry. In this case, an ideal
current generator replaces the load [see Fig. 2(c)]. Only the
lower edge of the cylinder is kept in a bath of a constant
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temperature, while the temperature of the upper edge can
vary. Once the circuit is closed and the ideal current generator
is switched on, the edge currents flowing along the upper
and lower edges start getting imbalanced. Indeed, if an ideal
current generator in the intermediate chain feeds the circuit by
the current J1 − J2, the current J2 is fixed in the lower circuit.
This last circuit stays at the same magnetic field as the upper
one, which is why the given value of the flowing edge current
requires the equilibrium temperature T2 < T1 (i.e., μ2 > μ1).
Hence, the entire system operates as a heater. One can easily
convert it to a refrigerator by inverting the direction of the
generated current. The work of the current generator is spent
to pump heat from the thermal bath to the upper edge of the
cylinder.

During one cycle the fraction of heat pumped to the bottom
reservoir is Q2 = T2(−S), where the entropy budget is the
same as above up to the sign. Thus the heat flow Q̇2 = Q2/τ

supplied to the bottom reservoir reads

Q̇2 = T2
cn

H

S

δN

μ2 − μ1

|e| = −T2
cS

(−H )

(μ2 − μ1

e

)
, (12)

where we used Eqs. (8) and (10) relating the cycle period
and the total current. As one can observe, the total electric
current (11) and heat current (12) are linked to each other by
the Onsager relation [23]

Jtot

T1 − T2
= − 1

T2

Q̇2

(μ1 − μ2)/e
= cS

H
. (13)

V. THERMODYNAMIC VERSUS
MICROSCOPIC APPROACHES

In the seminal paper [10] Obraztsov obtained the version
of Eq. (11). He studied a Hall-bar that corresponds to the
cut of the Laughlin cylinder in Fig. 1 along the generatrix.
The consideration in Ref. [10] is based on the requirements
of thermal equilibrium and electroneutrality of the charged
system, i.e., the constancy of the electrochemical potential
eϕ(r) + μ(r) = const. and temperature T (r) = const.

The electric current density in this approach appears as a
response to the perturbation

jx = σxy

(
Ey + 1

e
∇yμ

)
− βxy∇yT . (14)

Here Ey = −1/e∇xϕ, σxy is the Hall conductivity and βxy is
the off-diagonal part of the thermoelectric tensor [2]. Assum-
ing that the temperatures of the two edges are close to each
other, T2 = T1 + �T , and that the height of the sample is ly
Obraztsov obtained from Eq. (1) for the microscopic density
of electrical current

jx = J (T + �T ) − J (T )

ly
= c

H

(
d�L

dT

)
∇yT . (15)

Let us note that at this point the author simplified the model
assuming that the currents are not localized at the edges, but,
in contrast, are distributed over the entire sample.

Substituting Eq. (15) in Eq. (14) and using the condition
Ey = 0 one finds

βxy = σxy

e

dμ

dT
− c

H

d�L

dT
. (16)

Since the differential of the thermodynamic potential per
unit area d�L(T, μ, H ) = −SdT − ndμ − MdH, where S
and M are the entropy and magnetization per unit area,
one obtains d�L/dT = −ndμ/dT − S. From here, using the
classical expression for the Hall conductivity, σxy = −cen/H
the author arrived to the final result [10,11,24]

βxy = cS
H

, (17)

which connects the current density with the temperature
gradient, entropy per unit square, and magnetic field.
Comparing it with Eq. (11) one can see that both equations are
essentially similar, yet deriving Eq. (11) we did not use any
assumptions regarding the nature of the material (e.g., such
as an explicit formula for the classical Hall conductivity).
Due to the reversibility of the cycle the entropy of the system
remains constant and it coincides with the entropy budget
introduced above.

VI. CONCLUSION

We discussed the model of an ideal reversible thermo-
dynamic cycle for the visualization of the Nernst and Et-
tingshausen effects in the Laughlin geometry. This geometry
allows for eliminating the kinetic contribution to the Nernst
effect. We express the off-diagonal thermoelectric coefficients
through the ratio of the entropy budget per magnetic flux.

While the realization of the proposed gedanken experiment
in practice is challenging in the Laughlin cylinder geometry,
a similar phenomenology of the edge currents may be studied
in a Corbino disk whose inner and outer edges are immersed
in thermal baths of different temperatures as discussed in
Ref. [13]. In particular, the Nernst effect in the electron gas
with a parabolic carrier dispersion and in graphene was ana-
lyzed in that work, with the main focus on the experimentally
observable effect, such as oscillations of the magnetization.
Yet the analysis of the gedanken experiment discussed in the
present work would become more cumbersome due to the
mismatch in the radii of the two edges.

Our approach enlightens the profound thermodynamic
origin of the relation between the Nernst effect and magne-
tization currents, obtained in Ref. [10] in the framework of a
microscopic model for a specific fermionic system.

Let us stress, that the model behind Eq. (16) (see also
Eq. (26) in Ref. [10]) offers some significant advantages over
the frequently employed Kubo approach [10,24–33]. Indeed,
the off-diagonal components of the thermoelectric tensor cal-
culated in the kinetic approach and expressed in terms of
the correlator of electric current-heat current operators are
incomplete, which is why the calculations involving these
components often suffer from fundamental contradictions. For
example, the Nernst coefficient of a noninteracting electron
system subjected to the quantizing magnetic field calculated
in the Kubo approach does not satisfy the Onsager principle of
the symmetry of kinetic coefficients [25]. The corresponding
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diagrammatic calculations of the Nernst signal induced by
fluctuation Cooper pairs (see, e.g., Ref. [34]) close to the
second critical field and low temperatures demonstrates [30]
the unphysical divergence contradicting the third law of ther-
modynamics. The same divergence appears in the temperature
dependence of the spin Nernst effect in the vicinity of zero
temperature [35]. A convenient way to resolve these contra-
dictions was indicated by Obraztsov half a century ago in his
seminal paper [26]. A self-consistent and physically correct
description of a variety of thermomagnetic phenomena is
achieved accounting for the magnetization currents in addition
to the kinetic contributions following from the Kubo ap-
proach. Indeed, the proposed thermodynamic approach based
on Eqs. (11) and (16) is free of the above-mentioned internal
inconsistencies.

We do believe that the gedanken experiments considered
here will help to put a final point in the long discussion
[10,24–33] on the role of magnetization currents in the ther-
momagnetic phenomena.
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