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Accurate knowledge of phase coexistence regions, i.e., solubility gaps (SGs), is key to the development of
mixed transition metal oxides for various applications, such as thermochemical energy storage, or catalysis.
However, predicting a SG from first principles in these materials is particularly challenging due to the complex
interplay between several sources of entropy, the large configuration space, and the computational expense of
ab initio calculations. We present an approach that yields an accurate prediction of the experimental
Hausmannite-spinel SG in the case of (CoxMn1−x )3O4. The method uses machine learning to extend an ab initio
dataset of hundreds of structures, and it includes many different entropic contributions to the free energy. We
demonstrate and quantify the crucial roles of phonon and paramagnetic entropy, and the importance of sampling
higher-energy configurations, and correcting for finite-size limitations in the ab initio supercell configurations.
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I. INTRODUCTION

Reversible redox reactions of transition metal (TM) ox-
ides are a promising route to high-density thermochemical
solar energy storage at the high operating temperatures of
next-generation concentrated solar power plants [1]. Another
application envisaged for TM oxides is in catalyzing the
oxygen reduction reaction in anion exchange membrane fuel
cells [2]. To make a sustainable use of these technologies,
the material’s storage capacity and cyclability needs to be
balanced against its embodied energy cost [3]. Determining
the optimal material for this application in terms of cost, toxi-
city, cyclability, and energy storage density is an ongoing area
of research [1,4–9]. Of the candidate metal oxides that have
already been considered for thermochemical energy storage,
the Co3O4/CoO redox pair stands out for superior energy stor-
age density, reaction kinetics, and cycling stability while the
Mn2O3/Mn3O4 pair is not hindered by the cost and toxicity
issues of the Co compound, but suffers from slow oxidation
kinetics and poor reversibility. CuO/Cu2O and Fe2O3/Fe3O4

have also been considered but are known to suffer from sin-
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tering issues, which reduces the cycling stability of the system
[1].

Solid solutions of TM oxides have been suggested as a
means to mitigate the shortcomings of each binary compound
[1,4]. Among the many factors to be taken into account, it has
been noted that the reaction reversibility of all these systems
is hindered if the cubic spinel structure (S) in the reaction
coexists with a tetragonally distorted spinel phase, Hausman-
nite (H) [1,10]. Thus, to theoretically assess the potential of
new mixed TM oxide systems it is important to be able to
predict the coexistence region of these two phases in the phase
diagram.

Despite the promising qualities of (CoxMn1−x )3O4, no first
principles calculation of high-temperature phase diagrams for
the Co-Mn-O system appears to have been published [1].
Reference [4] has provided zero kelvin formation energy
ab initio data for hundreds of supercell configurations of
(CoxMn1−x )3O4. In principle, this data can be used to obtain
the free energy and the corresponding phase diagram for this
system, including the phase coexistence region, also referred
to as the solubility gap (SG). Therefore, the main question we
want to answer is whether the SG at high temperatures can
be reliably predicted from first principles. And if so, what are
the relevant physical mechanisms contributing to it? Often,
calculations of phase diagrams employ the Calphad method
[11] based on a database of thermochemical information for
the relevant phases and minimization of the Gibbs free energy.
Other approaches use ab initio calculations combined with
cluster expansion and Monte Carlo methods for sampling
configuration space [12–14], and another work has developed
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a method to augment the standard cluster expansion approach
with machine learning [15]. Here we have used the ab initio
data of Ref. [4] to train a machine learning model to fill in
the configuration space of the mixed phase and then consider
various other entropic contributions to the free energy.

In what follows, we show that the temperature and com-
position dependence of the SG can be predicted, but this
requires including vibrational entropy and sampling configu-
rations with energies several eV per supercell higher than the
actual ground state at each composition (which were absent
from Ref. [4] data). We also show that, when employing finite
supercells for ab initio calculations, it is essential to correct the
values of the configurational entropies near the composition
edges. Furthermore, we quantify the relative importance of
the different contributions to the free energy in the case of
(CoxMn1−x )3O4, which one would need to consider when
screening materials for sustainable thermochemical energy
storage.

II. (CoxMn1−x)3O4

The ground-state crystal structure of the pure end members
of the (CoxMn1−x )3O4 solid solution are cubic spinel in the
case of Co3O4 and a tetragonally distorted spinel for Mn3O4,
where in each case transition metal (TM) ions occupy either
tetrahedral (td) or octahedral (oh) lattice sites. Visualizations
of the crystal structures are given in the Appendix (Fig. 6).
There is a tetragonal (H) to cubic (S) phase transition for
Mn3O4 at a critical temperature TC = 1443 K [16]. Symmetry
arguments indicate that the H-S transition of Mn3O4 is a
first-order transition [17]. Many of the TM ions in the end
members of the solid solution have nonzero spin magnetic
moments. At very low temperatures (below 40 K and 42 K,
respectively), Co3O4 exhibits antiferromagnetic ordering of
the atomic spins while Mn3O4 exhibits ferrimagnetic order-
ing with a small net magnetization [18]. All (CoxMn1−x )3O4

compositions have also been found to be ferrimagnetic with
measured magnetizations between 0 and 1.5μB per formula
unit and a paramagnetic transition at very low temperatures,
comparable to those of the pure end members [19].

Density-functional theory (DFT) data for (CoxMn1−x )3O4

from Ref. [4] contain the ground state total energies of relaxed
56-atom (8 formula unit) supercells. This T = 0 K data shows
a composition-dependent transition from a cubic to tetragonal
ground-state structure with increasing Mn content, in good
agreement with experimental measurements [18,20]. The plot
of formation energy against composition from Ref. [4] shows
that all formation energies across the composition range 0 <

x < 1 are greater than zero. Therefore, within this theoretical
framework, any concentration would phase separate into a
mixture of the two pure oxides. As these solid solutions have
been synthesized in various studies [1,4], it is clear that a
zero-kelvin ab initio model is not sufficient to reproduce the
key characteristics of this system. Therefore, we now go on to
describe how this data can be used to build a model to predict
the SG for (CoxMn1−x )3O4.

III. MODEL FOR SOLUBILITY GAP PREDICTION

The SG (or phase coexistence region) of a solid solu-
tion can be calculated from its Helmholtz free-energy curve,

F (T, x), as a function of the concentration x [21,22]. This pro-
cess is described in Appendix B. The method to compute free
energies is well described in many references [12–14,23,24].
In brief, F (T, x) is obtained from

F = −kBT ln Q, (1)

where Q is the configurational partition function given by

Q(T, x) =
∑

n

e−En (x)/kBT , (2)

where En(x) are the total energies of the different microstates
of the system, indexed by n. In the following sections, we
systematically include more possible microstates in our cal-
culation of F from various entropy sources and quantify their
impact on the accuracy of the prediction for the H-S SG of
(CoxMn1−x )3O4.

A. Configurational entropy

When considering configurational entropy (from the var-
ious possible atomic arrangements in the system), the
ideal-solution approximation is sometimes applied to simplify
the computation of Q [22,25]. This approximation disregards
energy differences between inequivalent configurations. How-
ever, DFT data for (CoxMn1−x )3O4 from Ref. [4] displays
a clear energy difference at most compositions between the
two different substitution schemes considered in the study,
with the energy difference exceeding 0.4 eV per formula
unit at certain compositions. With large energy differences
between different configurations in comparison to kBT , the
ideal-solution model is not unsuitable in this case (see a com-
parison of the configurational entropy from our final model
to that predicted by the ideal-solution approximation in the
Appendix, Fig. 10). To obtain En(x) for all possible atomic
configurations of the supercell in the computation of the par-
tition function in Eq. (2), we have used the data from Ref. [4]
to build a machine-learning model based on moment tensor
potentials [26,27] and predict the total energies for the remain-
ing supercell configurations. Details of this procedure will be
presented elsewhere [28].

It has been suggested that metastable configurations
slightly higher in energy than the ground state may be re-
sponsible for the stability of (CoxMn1−x )3O4 [4]. As T rises,
and more of these higher-energy states become accessible, the
increasing configurational entropy will lower the free-energy
curve in the mid-range of x, allowing concentrations other
than 0 and 1 to be stable, and progressively closing the SG.
F (T, x) calculated considering only additional microstates
from different atomic configurations is shown by dashed lines
in Fig. 1(a) and the corresponding SG is shown in purple
in Fig. 1(b). The figure also shows the experimental phase
equilibria diagram for this system taken from Ref. [20] in gray
for H, S, and rocksalt (R) CoxMn1−xO phases. In this work
we consider only the H and S phases (and their coexistence
region) because our initial dataset did not contain any R struc-
tures. It can be seen from Fig. 1(b) that the current model does
not reproduce the H + S coexistence region because other
important entropy contributions are currently neglected.
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FIG. 1. (a) Free energy of (CoxMn1−x )3O4 vs concentration x of
Co at various temperatures computed by considering only configu-
rational entropy contributions (dashed lines) or configurational and
paramagnetic entropy (solid lines). (b) Corresponding H (Hausman-
nite) + S (cubic spinel) solubility gap calculated by including only
configurational (purple) or configurational and paramagnetic (blue)
entropy with experimental data from Ref. [20] shown in gray for the
H and S phases and also for the S + R phase coexistence region,
where R is the CoxMn1−xO rocksalt phase.

B. Magnetic entropy

Each atomic configuration considered in the previous sec-
tion also has associated with it a certain number of microstates
due to magnetic degrees of freedom. With the low param-
agnetic transition temperatures of (CoxMn1−x )3O4, there will
be orientational disorder of localized magnetic moments. At
temperatures far above the typical magnetic ordering temper-
atures, such as the 1200–1443 K temperature range of interest
in this study, we assume that the system is in a completely
paramagnetic phase where all of the atomic spins can assume
any possible arrangement. In this scenario, every atom has
associated with it (2S + 1) degrees of freedom, where S here
denotes the spin quantum number, related to the atomic mag-
netic moment by μ = MμB = 2SμB [12,29,30]. It is possible
that certain frustration effects (especially in defective or in-
homogeneous systems) limit the magnetic degrees of freedom
even above the critical temperature [31]. However, we assume
here that the temperatures are sufficiently far above the typical
ordering temperatures that this is unlikely to result in much (if
any) overestimation of the magnetic entropy contribution.

Taking the theoretical atomic magnetic moments of the end
members of the mixed phase [18], this gives values for M of

±5μB for td-coordinated Mn, ±4μB for oh-coordinated Mn,
±3μB for td-coordinated Co, and 0μB for oh-coordinated Co,
which to one significant figure are the same as those obtained
for the mixed phases in Ref. [4]. Therefore, the total number
of magnetic degrees of freedom for a configuration of the
mixed phase depends on the number of Co ions, and also
strongly depends on the number of them that occupy oh sites,
because this results in replacing a high-spin state atom with a
zero-spin state atom. Many works have postulated a possible
thermally induced partial low-to-high spin-state transition of
oh-coordinated Co in Co3O4 [32–35]. However, here we have
neglected this possibility and consider the spin state of this
species to always be zero. First, because we are interested in
the lower Co-concentration side of the phase diagram for the
H + S SG and second because it is unclear if the same effect
should be expected in the mixed phases.

The magnetic entropy Smag in the paramagnetic state can be
obtained for the supercells from all of the atoms with nonzero
M by the mean-field term [12,29,36]

Smag = kBln

(∏
i

(Mi + 1)itot

)
, (3)

where i is each TM species [distinguishing when they are
on an oh or td site as this impacts the value of Mi in the
case of (CoxMn1−x )3O4] and itot is the total number of a
particular species on a particular type of crystallographic site.
To account for all possible magnetic states associated with
each configuration, we make the assumption that the spin
arrangements of the same configuration are close enough in
energy that we can multiply each configuration by its number
of magnetic states to determine the total number of states for
this configuration at this particular energy.

Including magnetic entropy in the free-energy calculation
modifies the free-energy curve very noticeably, as can be seen
by comparing the dashed and solid curves in Fig. 1(a). How-
ever, it does not make the SG resemble the experimental one
any more closely, as can be seen from the blue shaded region
in Fig. 1(b). There are clearly important components of the
model that are still missing, with other possible entropic con-
tributions including electronic and vibrational entropy [12].

C. Electronic entropy

For an insulator or sufficiently-wide-gap semiconductor,
we could expect the contributions to entropy from thermally
induced electronic excitations to be negligible. There are mea-
surements in the literature for two different compositions of
(CoxMn1−x )3O4 which indicate that the compounds are semi-
conductors with band gaps of around 1.5 e V [37], which
is a large reduction relative to Co3O4 and Mn3O4, but still
sufficiently large that we could justify the neglect of elec-
tronic excitations. However, first principles calculations of
the electronic density of states (EDOS) across the full com-
position range of (CoxMn1−x )3O4 in Ref. [18] have shown
the appearance of intermediate states in the band gap and
much-reduced fundamental band gaps, which were also very
variable depending on the level of theory used.

To determine the impact of electronic entropy on the F of
(CoxMn1−x )3O4, we have calculated the EDOS of the lowest
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and second lowest energy structure at each composition in the
dataset from Ref. [4] and checked for cases with significant
DOS close to the Fermi level. We use the calculated EDOS to
obtain an over-estimated upper limit for the number of acces-
sible electronic states for all compositions of (CoxMn1−x )3O4

which allows us to determine a maximum range for the elec-
tronic entropy we could expect across the full composition
range. Further details are included in the Appendix, but, in
brief, we obtain a maximum range of accessible electronic
states of 0 to 207 per supercell. To put this range into con-
text, the minimum and maximum number of magnetic states
per supercell across all possible configurations are 5 764 801
and 3.972 × 1023, respectively. The number of accessible
electronic states (and any variation between different configu-
rations) will clearly be a much smaller contribution compared
with magnetic states in the case of (CoxMn1−x )3O4. However,
for other mixed compounds without magnetic atomic mo-
ments or with a stronger metallic character, electronic entropy
might be a more dominant contribution that should not be
neglected.

D. Vibrational entropy

In the absence of contributions from electronic entropy for
even the mixed phases with the narrowest band gaps, it is
necessary to look to contributions from vibrational entropy.
Phonon entropy effects are sometimes disregarded in phase
stability calculations because they are difficult to calculate
from first principles. However, it has been demonstrated that
their effect can be large [38–41]. The configurations sampled
by Zaki et al. in Ref. [4] contain both cubic and tetragonal
structures, with formation energies in the range 0–2 eV per
formula unit. In principle, one would not think it necessary
to include any configurations lying higher in energy, since
their occupation probability may seem negligible at the tem-
peratures of interest. However, consideration of vibrational
degrees of freedom, or phonon entropy, reveal the need to
sample over cubic systems with considerably higher forma-
tion energies. This is due to the larger vibrational entropy of
the cubic phases, as compared with the tetragonal ones, in
the Mn-rich side of the phase diagram. Because of this, the
original cubic data in Ref. [4] are not sufficient to describe
the thermodynamically stable phases of the system at high
temperature.

Insights for the vibrational entropy of (CoxMn1−x )3O4 can
be gained from the behavior of the pure Mn3O4 compound.
It is sometimes the case that the spectral differences across
compositions for a given crystallographic phase are smaller
than the differences between two crystallographic phases of
the same composition [42]. At the cubic-tetragonal phase
transition temperature TC of pure Mn3O4, the free energy of
the cubic phase should equal that of the tetragonal phase and
cross below it upon further temperature increase. Since there
is no species disorder in these pure phases and electronic
entropy can be considered negligible for electrical insulators,
this crossover can only be driven by differences in vibrational
and/or magnetic entropy between the two phases. To see how
this happens, let us consider the different vibrational spectra
of the cubic and tetragonal phases of Mn3O4.

As we show below, the tetragonal-cubic transition of
Mn3O4 is most likely caused by the different vibrational en-
tropy of the two phases, although we cannot discard a possible
additional influence from the different magnetic entropy of the
two phases. To quantify the vibrational free energy of the two
phases, we need the phonon density of states for each of them.
This is done via the calculation of phonon frequencies. A stan-
dard approach is to compute the interatomic force constants
(IFCs) of a large-enough supercell using finite displacements,
generate the dynamical matrix, and solve the eigenvalue prob-
lem for a grid of phonon wave vectors in the Brillouin zone.
The density of states is then obtained from the collection of
frequencies in this grid by using a variety of approaches such
as Gaussian smearing or the tetrahedron method. We used
phonopy [43] to perform this task for the tetragonal phase,
using the IFCs as calculated for the magnetic system. It is
not strictly correct to use the 0 K ordered magnetic solution
to represent a paramagnetic system at ≈1400 K. However,
proper inclusion of magnetism at high temperatures in DFT
is a highly specialized task and is beyond the scope of this
article [36]. The tetragonal phase vibrational DOS is given in
Sec. 1 of the Supplemental Material (SM) [44]. Its calculated
vibrational free energy at 1440 K is −2046.3 k J − mol, and
the vibrational entropy is 2838.8 J K−1 mol−1.

When trying to perform the same finite-displacement cal-
culation for the cubic phase, which is unstable at 0 K, the
resulting spectrum yields unphysical imaginary frequencies.
To calculate the high-temperature vibrational DOS of a phase
that is not stable at 0 K, we first need to obtain its effec-
tive high-temperature force constants using a self-consistent
stochastic approach via the QSCAILD code (for more details
see Refs. [45–47]). In brief, the method consists of calculating
the energies and forces of randomly displaced atomic config-
urations u(n) generated according to their thermal probability
distribution at that temperature. Then the effective IFCs of the
system are chosen so as to minimize the sum of the squared
differences between the DFT forces and those predicted from
the adjusted IFCs �,

∑
n∈configs

∣∣∣∣∣F (n),DFT
i −

∑
j

�i, ju
(n)
j

∣∣∣∣∣
2

, (4)

where i and j run over the degrees of freedom in the supercell.
A new set of displaced configurations is then generated by
using the IFC-predicted frequencies to obtain the new thermal
probability distribution. The forces of the new configurations
are again computed by DFT and the approach is repeated in
a loop with a mixing algorithm, until the effective IFCs no
longer change.

Using this approach we are able to obtain a converged
vibrational DOS for the cubic phase at 1500 K. This
calculation is orders of magnitude more expensive than
those using finite displacements. Therefore, we take these
self-consistent high-temperature IFCs to be approximately
valid for high temperatures around the transition temperature.
The corresponding vibrational free energy at 1400 K is
−2415.0 k J − mol, and the vibrational entropy is
3089.7 J K−1 mol−1. We also tried to perform a self-consistent
high-temperature calculation for the tetragonal phase at
1500 K, but this systematically yielded imaginary frequencies
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FIG. 2. Vibrational free energy, Fvib, versus temperature for the
tetragonal (tet) and cubic (cub) phases (solid lines) and their entropic
contributions, T Svib (dashed lines), as a function of temperature.

and did not reach a converged solution. The tetragonal phase
is unstable at high temperature, so there is in principle no
guarantee that the self-consistent approach should reach
convergence, because the system may be trying to transition
to the more stable cubic phase but it is not able to reach it due
to the unit cell being forced to remain tetragonal.

Figure 2 shows the vibrational free energies of the cubic,
F cub

vib , and tetragonal, F tet
vib , phases of Mn3O4, with that of the

cubic being always lower than that of the tetragonal and this
difference increasing with temperature. From the calculated
values of the vibrational free energies at the experimental
transition temperature, we obtain a vibrational energy dif-
ference between the two phases of F cub

vib (TC) − F tet
vib (TC) �

−368.6 kJ/mol � −3.82 eV/supercell. Our DFT-calculated
difference in total formation energy between the cubic and
tetragonal phases is 3.80 eV/supercell. So this amount of
vibrational free energy is able to bring down the total free
energy of the cubic phase to coincide with the tetragonal one.

Such good agreement would indicate that any effect com-
ing from differences in the magnetic entropy of the two
systems must be small. However, this is difficult to ascer-
tain since the typical errors of phase-transition temperatures
predicted by self-consistent ab initio lattice dynamics cal-
culations can be as large as 100 K [48,49]. Looking at the
calculated temperature-dependent free-energy difference, a
100 K miscalculation of the transition temperature would be
associated with an additional 0.14 eV/supercell that would
have to be supplemented by differences in magnetic free
energy. This is still less than 4% of the total free-energy
difference leading the phase transition, which is therefore
overwhelmingly due to phonon entropy.

From Fig. 3, the temperature dependence of the free-energy
difference that we include in our model is approximately

�F (T ) � �E

(
1 − T

TC

)
, (5)

where �E is the energy difference between the cubic and
tetragonal phases of Mn3O4. The same relationship can also
be derived from an analytical approximation which is included
in Sec. 2 of the SM [44].

A main obstacle to obtaining the SG from the dataset of
Ref. [4] is its lack of data for the cubic configurations with

FIG. 3. Vibrational free-energy difference (�Fvib) between the
tetragonal and cubic phases, compared with its entropic contribution
(T �Svib), as a function of temperature. The 3.8 eV/supercell marked
by the horizontal dashed line corresponds to the DFT-calculated for-
mation energy difference between the two phases at 0 K. This energy
is almost perfectly compensated by the vibrational free-energy dif-
ference at the phase-transition temperature (1443 K, vertical dashed
line).

x < 1/3. These are missing because standard total-energy
minimization algorithms in DFT codes aim at finding a global
minimum, so high-energy structures that are metastable at
0 K are typically not found. But without these high-energy
cubic structures it is not possible to predict the SG. As an
approximation, we can assume that every calculated tetrag-
onal configuration has a corresponding cubic one, with a
higher formation energy, but which is still correlated with
the formation energy of the tetragonal configuration. So, as
the simplest approximation, we consider all the energies of
the cubic systems with x < 1/3 to be shifted upwards with
respect to the tetragonal ones by �E , plus an additional shift
depending linearly on the configuration’s Co concentration
only. In other words,

E cub
n = E tet

n + �E + cxn, (6)

where E cub
n is the formation energy of a specific configuration

n in the cubic phase, E tet
n is the formation energy of the

corresponding configuration in the tetragonal phase, and c
is the only adjustable parameter in the model. This parame-
ter would not be necessary if sufficient ab initio data were
available for the cubic phase. Also, it is possible that a slight
composition-dependence of the vibrational free energy may
be accounted for by this term. We find that c = 0.021 eV
per formula unit per Co ion in the supercell is a suitable
value. Since the formation energy of the cubic structure be-
comes zero on the Co3O4 side of the phase diagram, its
variation across the supercell’s Co-composition range of 0–
24 Co atoms is expected to be of the order of �E/24. Using
�E = 3.8 eV/supercell = 0.475 eV/(formula unit), implies
a rough estimate of c ≈ 0.02 eV per formula unit per Co. In
the Appendix we show the sensitivity of the fit on the value of
this parameter.

Therefore, from Eqs. (5) and (6),

F cub(T, x) � F tet (T, x) + �E

{
1 − T

TC

}
− cx. (7)
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FIG. 4. (a) Free energy of (CoxMn1−x )3O4 vs Co concentration
x calculated when including configurational, paramagnetic, and vi-
brational entropy after correcting the configurational entropy with
tangents indicated by black lines. (b) Corresponding solubility gap
before correcting the configurational entropy (dashed lines) and after
(solid lines), with experimental data indicated by the shaded region.

The resulting SG in the 0 < x < 1/3 composition range (close
to the H + S phase coexistence region), is shown in Fig. 4(b)
(dashed lines, labeled “Uncorrected model”). The predicted
SG is now beginning to resemble much more closely the
experimental SG, demonstrating the importance of phonon
contributions when calculating phase diagrams, which has
also been noted in other works [50,51]. However, we still
see substantial disagreement as x → 0. Due to the incorrect
temperature dependence, as the left-hand side tends to x = 0
too early, the algorithm fails to find a solution of Eq. (B3) for
the right-hand side of the gap above T = 1420 K.

IV. CORRECTION FOR THE LOW-CONCENTRATION
EXTREME

The free energy calculated directly by the current model
yields an unphysical SG behavior that does not end in a single
point at x = 0, T = TC, as in the experimental data also shown
in Fig. 4(b). This is due to the use of finite supercells in the
model, because it is not possible to represent systems with
these very low concentrations of the substituting species or
to represent all possible configurations at a given low con-
centration. This problem is inherent to the direct calculation
of the partition function from ab initio configuration ener-
gies, and it would not appear if the configurational entropy
is approximated as an analytical nonideal solution model,
as often done in Calphad methods and some ab initio-based
approaches [52,53]. We therefore proceed to develop an ana-

lytical correction to the configurational free energy from our
finite-supercell model, Smodel

configT , in the dilute limit.
To determine an analytical correction we return to the

ideal-solution model, which we initially disregarded as unsuit-
able for this system, just as a starting point. The advantage of
using the ideal-solution model is that we can easily consider
very large system sizes, much more easily than performing
ab initio calculations for infeasibly large supercells. In the
dilute limit we can consider substituting species as being
sufficiently separated such that they do not interact with each
other and that the configurations are energetically equivalent,
the only difference being if the substituting species occupies
an oh- or td-coordinated lattice site.

To begin with, we write the general expression for the
configurational entropy from the ideal-solution approximation
in terms of the concentration of Co, x = nCo

Ntot
, for the 56-atom

supercell,

Sideal
supercell = kBln

(
Ntot!

(xNtot )!(Ntot − xNtot )!

)
, (8)

where Ntot is the total number of TM lattice sites that the
substituting species can occupy. In the 56-atom supercell, Ntot

is 24 sites, of which 8 are td- and 16 are oh-coordinated. For
the case of large Ntot , Eq. (8) can be rewritten using the Stirling
approximation as [22]

Sideal
Stirling = −NtotkB[(1 − x)ln(1 − x) + xlnx]. (9)

When considering Sideal
Stirling per site, the expression is inde-

pendent of Ntot and we show in the SM (Sec. 3) that, when
increasing Ntot in Eq. (8), this tends towards the value obtained
with Eq. (9). We therefore use Eq. (9) in our analytical correc-
tion to obtain an approximation to the configurational entropy
for an infinite supercell [44].

The ideal-solution model expression, as it stands, assumes
that all Ntot TM sites are energetically equivalent and hence all
are accessible. However, from the ab initio data of Ref. [4],
we know that, at T = 0 K, the ground state in the low-
concentration limit is to occupy the td sites with Co first,
because these are the lower-energy structures. This would
suggest that the number of accessible sites in the supercell
should be eight, but at finite temperatures there will be some
occupation probability of the oh sites. Across the temperature
range of interest for this study (1200–1443 K), the number of
accessible sites in the supercell should lie somewhere between
these two extreme cases, i.e., between 8 and 24.

To obtain a suitable “modified-ideal-solution” expression
for the model, we replace Ntot in Eq. (8) by αNtot , where α

is an adjustable parameter between 1
3 and 1, which would

scale the total number of accessible sites in the supercell to
be between 8 and 24. To determine a suitable value of α,
we compare Sideal

config to the true expression for Strue
config which

we obtained by explicitly calculating the partition function Q
and using Eq. (1) to compute Fconfig. We then calculate the
configurational entropy term via [24],

Sconfig = −
(

∂Fconfig

∂T

)
V

. (10)
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From comparing the curves for Sideal
configT and Strue

configT against
T , we find that a value of α = 0.6 (which is the equivalent of
14.4 accessible sites in the 24-atom supercell) results in good
agreement over the temperature range of interest in this study.
Further details of this procedure are provided in Secs. 3 of the
SM along with a plot showing the sensitivity of the calculated
SG on the α parameter [44].

Thus, the correction to Smodel
config , �S(T, x) is

�S(T, x) =
(

Sideal
Stirling(x, α)

Sideal
supercell (x, α, Ntot )

− 1

)
Smodel

config (T, x), (11)

where Ntot has been replaced by αNtot in Sideal
supercell. We then

correct the total free energy from our model, F model
tot (which

considered not only configurational but also magnetic and
vibrational entropy) as

F corr
tot (T, x) = F model

tot (T, x) − T �S(T, x). (12)

A plot of F corr
tot as a function of x at various temperatures is

shown in Fig. 4(a). This corrected free energy yields the SG
shown by the solid line in Fig. 4(b). The extremal dependence
has been altered the most noticeably with the intermediate x
range less impacted by the correction (see details in Sec. 3
of the SM). After applying this correction the predicted SG
now resembles much more closely the experimental data, in
particular, the spindle shape as x → 0. This shows that it is
possible to predictively calculate the SG for the mixed TM
oxides.

V. IMPACT OF MAGNETISM REVISITED

After having developed the methods to account for
vibrational entropy in the model and for correcting the con-
figurational entropy as x → 0, it is worth reexamining the
role of paramagnetic entropy in the final model. As shown
in Fig. 1, the magnetic degrees of freedom had a dramatic
effect on the free-energy curve but the predicted SG was still
far from that measured experimentally. Now, if we only take
into account configurational entropy, vibrational entropy and
the correction to the configurational entropy, but completely
neglect magnetism, we obtain the F curve shown in Fig. 5(a),
which results in the calculated SG shown in Fig. 5(b). The c
parameter used in the vibrational entropy calculation here was
chosen to be the one that minimized the root mean squared
error (RMSE) of the predicted SG relative to the experimen-
tal data, which in this case was 0.014. The sensitivity of
the model prediction on the c parameter is discussed in the
Appendix.

The minimum RMSE for the SG calculated without mag-
netism is 0.0338, compared with 0.0096 for the corrected
curve shown in Fig. 4(b). Furthermore, without including
paramagnetic entropy in the model we are only able to find
solutions for the SG in the temperature range of 1320 to
1440 K. Upon comparing Fig. 4 with Fig. 5, it is clear
that the shape of the F curve has changed dramatically by
the inclusion of paramagnetic entropy. The contribution of
paramagnetic entropy lowers the free energy across the full
composition range but lowers it the most dramatically at lower
Co concentrations due to the larger atomic magnetic moments
of Mn ions. The influence of paramagnetic entropy produces a

FIG. 5. (a) The Helmholtz free energy F calculated with a model
neglecting paramagnetic entropy but including configurational en-
tropy, vibrational entropy, and a correction to the configurational
entropy at the composition extreme at temperatures ranging from
1320 to 1440 K. (b) The solubility gap (SG) calculated with F from
panel (a).

much more convex F curve. The crucial role of paramagnetic
entropy was less clear in Fig. 1, but with our final model we
see that inclusion of this contribution to the entropy is vital to
accurately predict the SG for this system.

VI. CONCLUSIONS

In summary, we have shown how to accurately predict
the SG of TM oxides, and systematically demonstrated the
relative importance of different contributions to the free en-
ergy in the case of (CoxMn1−x )3O4 when calculating its SG
from ab initio data. First, vibrational entropy plays a central
role in determining the SG. If it is neglected, the calculated
SG is unable to achieve even qualitative agreement with ex-
perimental measurements. Second, for a spindle-shaped SG,
it is necessary to correct for finite-size limitations when the
model is derived from ab initio calculations employing finite
supercells. Not doing this leads to a wrong prediction of the
temperature dependence of the SG for compositions close to
those of the pure phases. Lastly, for this system the inclusion
of paramagnetic entropy is crucial to obtain the SG in the
right range of temperatures and compositions. The neglect of
this contribution produces a SG in an incorrect position and
with an incorrect width. The effect of paramagnetic entropy
is particularly pronounced for (CoxMn1−x )3O4. This is due
to the composition dependence of the number of magnetic
degrees of freedom in this system, where the type of TM
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occupying a particular type of crystallographic site influences
the atomic magnetic moment.

Software developed in this work for calculating the solubil-
ity gap of (CoxMn1−x )3O4 is available under a BSD 3-Clause
license [55].
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APPENDIX A: Crystal STRUCTURES OF Co3O4 AND Mn3O4

Visualizations of the crystal structures are given in Fig. 6.

APPENDIX B: CALCULATION OF A SOLUBILITY GAP

For solids at atmospheric pressure the product PV is gen-
erally negligible [56], therefore the Gibbs free energy G of
each phase can be approximated by the Helmholtz free energy
F at its minimizing volume [42]. At a given temperature T ,

FIG. 6. (a), (c) Mn3O4 and (b), (d) Co3O4 with O in red, Co
in blue, and Mn in purple. Tetrahedrally coordinated (td) and oc-
tahedrally coordinated (oh) sites are indicated in panel (c). Figures
generated using VESTA [54].

FIG. 7. Illustration of the tangent rule to determine the phase
coexistence region between Hausmannite (H) and cubic spinel (S)
phases. The dashed blue line is tangent to the free-energy curves of
the cubic, Fcub, and tetragonal, Ftet , phases at concentrations xl (T )
and xr (T ), respectively. These concentrations mark the limits of the
phase coexistence region as a function of T (1260 K in the figure). As
T increases, the cubic free energy (pink line) gets lower with respect
to the tetragonal one (orange line), eventually making the coexistence
region vanish at T = 1443 K.

a homogeneous system of single concentration x0 can lower
its free energy by separating into domains of two different
concentrations if there exist two temperature-dependent com-
positions xl < x0 and xr > x0, where subscripts l and r denote
left and right sides of the SG, respectively, such that

F (T, x0) > crF (T, xr ) + clF (T, xl ), (B1)

where

cr = x0 − xl

xr − xl
and cl = xr − x0

xr − xl
(B2)

are the relative fractions of material with concentration xr

and xl respectively. As demonstrated graphically in Fig. 7,
this means that the line tangent to F (T, x) at xl and xr is
below F (T, x) for x = x0. The SG at a given T is the range
of concentrations between xl and xr . These two points can be
obtained by numerically solving the two coupled differential
equations,

∂F

∂x

∣∣∣∣∣
xl

= ∂F

∂x

∣∣∣∣∣
xr

= F (xl ) − F (xr )

xl − xr
. (B3)
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FIG. 8. (a) Solubility gap (SG) calculated by models including configurational, paramagnetic, and vibrational entropy with a correction
to the configurational entropy at the composition extreme with different values for the c parameter when calculating the vibrational entropy.
(b)–(d) Corresponding Helmholtz free energies calculated with different values of c across a temperature range of 1200–1440 K at every 1 K
increment.

APPENDIX C: SENSITIVITY OF MODEL PREDICTIONS
TO THE c PARAMETER

As discussed in the main text, we approximate the free
energy of the cubic phase of (CoxMn1−x )3O4, F cub, using the
difference in the formation energy of the cubic and tetragonal
phases of Mn3O4, �E , and the free energy of the tetragonal
phase of the corresponding configuration of (CoxMn1−x )3O4,
F tet, using Eq. (7). Here we discuss the sensitivity of our
model on the choice of the parameter c in Eq. (7).

We found that c = 0.021 reproduces well the experimental
solubility gap (SG) for (CoxMn1−x )3O4. Figure 8(a) shows the
SGs calculated using models accounting for configurational,
paramagnetic, and vibrational entropy with a correction to
the configurational entropy at the composition extreme but
with different values for the c parameter when calculating the
vibrational entropy. Figure 8(a) shows that a larger c shifts
the SG to the left and broadens the gap. Figures 8(b)–8(d)
show the corresponding free-energy curves calculated at tem-
peratures 1200 to 1440 K at every 1 K increment. The dark
regions in each plot indicate the tangent of each curve used to
calculate the SG. Here it can also be seen that the dark region
shifts to the left and broadens as c increases. We can also see
in the free-energy curves that the kink in the curve, due to
the transition between the tetragonal and cubic phase, is more
pronounced with a larger c.

The observations discussed above can be understood
using Fig. 9. The figure shows that the crossover point be-
tween the tetragonal and cubic phase occurs furthest to the
left (at the lowest number of Co atoms in the supercell) when
c is the largest value (crossovers between the solid and dotted
lines). We can also see that the kink is more pronounced and

narrow at this crossover than that when c is the lowest value
(crossovers between the solid and dashed lines).

APPENDIX D: CONFIGURATIONAL ENTROPY
EXTRACTED FROM THE MODEL VS IDEAL-

SOLUTION APPROXIMATION

Figure 10 shows the configurational entropy for the
56-atom (24 substitutional TM sites) supercell from the ideal-
solution model against that extracted from the DFT-based
model at various temperatures. At the intermediate concen-
trations the ideal-solution approximation overestimates the

FIG. 9. Helmholtz free energy F of (CoxMn1−x )3O4 calculated at
T = 1300 K (blue lines) and T = 1400 K (orange lines) where solid
lines are for the tetragonal phase, and the dotted and dashed lines are
for the cubic phase with free energy calculated using different values
of the parameter c.
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FIG. 10. Configurational entropy as a function of concentration
of Co in (CoxMn1−x )3O4 extracted from our model at various tem-
peratures plotted against the ideal-solution approximation for an
equivalent supercell.

configurational entropy relative to the DFT-based model and
that the overestimation is not systematic. There are regions
where configurations are closer in energy (the tempera-
ture dependence of the configurational entropy is reduced)
and regions where this is more pronounced. This is likely
to be due to composition-dependent energetic variations in
the configurations which are likely to be related to site
occupations (oh or td sites) and to chemical interactions,
both of which are not accounted for in the ideal-solution
approximation.

APPENDIX E: JUSTIFICATION FOR NEGLECTING THE
ELECTRONIC ENTROPY OF (CoxMn1−x)3O4

The EDOS for various relaxed configurations of
(CoxMn1−x )3O4 from the dataset of Ref. [4] are calculated
using VASP [57,58], a 12 × 12 × 12 k grid, and the SCAN
meta-GGA functional [59], which has been demonstrated to
give better band-gap predictions than GGA and overcomes
the issue of subjectivity when selecting the value of U
for GGA + U . However, this method does still typically
underestimate experimental band gaps [60]. The calculated
EDOS shows variable fundamental band gaps ranging
from clearly semiconducting or insulating (with band
gaps in excess of 1.5 e V) to semimetallic. Noting that
we can still expect some underestimation of the band
gap with the SCAN meta-GGA functional and further
reduction in electronic conductivity may arise from electronic
correlations, which are not accounted for in our predictions.
Plots of all calculated EDOS are included in Sec. 4 of the
SI [44].

In all cases the DOS close to the Fermi level was typically
low. Of all the calculated EDOS, Fig. 11 shows the case with
the highest number of states close the Fermi level. The peak
number of states close to the Fermi level can be read off
from Fig. 11 as approximately 80 states per eV per supercell.
This value is used to approximate an overestimated value
for the electronic entropy for all compositions of the mixed
phase.

The electronic entropy Selec defined from the occupation
probabilities of single electron states [12],

f (E ) = 1

1 + e
E−EF
kBT

, (E1)

FIG. 11. Calculated electronic density of states for
(CoxMn1−x )3O4. In this case, the second minimum-energy
structure from the training data of all structures with 20 Co in the
supercell.

is given by

Selec = −kB

∫
D(E ){ f (E )ln f (E )

+ [1 − f (E )]ln[1 − f (E )]}dE , (E2)

where D(E ) is the electronic density of states and EF is
the Fermi level. The function inside the curly parentheses in
Eq. (E2) is only significantly greater than zero in an interval
of less than EF − 10kBT < E < EF + 10kBT . A plot of this
function is shown in Fig. 12.

Taking this as the relevant energy interval around EF, an
upper bound for the number of accessible electronic states is
calculated at the highest temperature considered in this work
(T = 1400 K) and by assuming an infinitely dense D(E ) as a
rectangle of height 80 states per eV per supercell (the maxi-
mum number close to EF for all calculated EDOS) and width
of 2 × 10kBT eV. This gives a maximum range of electronic
states that could contribute to electronic entropy as 0 to 207

FIG. 12. Function taken from the expression for electronic en-
tropy Selec in Eq. (E2) (y axis) to show the range of energies above
or below the Fermi energy EF in units of kBT where the value of the
function is significantly larger than zero.
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per supercell. To put this range into context, the minimum and
maximum number of magnetic states per supercell [obtained
using Eq. (3)] across all possible configurations are 5 764 801
and 3.972 × 1023, respectively. Expressing entropy in terms
of accessible states of the system, w,

S = kBln(w), (E3)

and considering all possible accessible states contribut-
ing to the total w, the electronic states (and any varia-
tion in the number between different configurations) will
clearly be a much smaller contribution compared with
magnetic states and variations in the number of mag-
netic states between different compositions in the case of
(CoxMn1−x )3O4.
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