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Nonequilibrium quantum critical steady state: Transport through a dissipative resonant level
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Nonequilibrium properties of correlated quantum matter are being intensively investigated because of the rich
interplay between external driving and the many-body correlations. Of particular interest is the nonequilibrium
behavior near a quantum critical point (QCP), where the system is delicately balanced between different ground
states. We present both an analytical calculation of the nonequilibrium steady-state current in a critical system
and experimental results to which the theory is compared. The system is a quantum dot coupled to resistive
leads: a spinless resonant level interacting with an Ohmic dissipative environment. A two-channel Kondo-like
QCP occurs when the level is on resonance and symmetrically coupled to the leads, conditions achieved by fine
tuning using electrostatic gates. We calculate and measure the nonlinear current as a function of bias (I-V curve)
at the critical values of the gate voltages corresponding to the QCP. The quantitative agreement between the
experimental data and the theory, with no fitting parameter, is excellent. As our system is fully accessible to
both theory and experiment, it provides an ideal setting for addressing nonequilibrium phenomena in correlated
quantum matter.
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I. INTRODUCTION

Quantum phase transitions (QPTs)—abrupt changes of
ground state due to quantum fluctuations—are of fundamental
importance in a wide variety of many-body systems ranging
from quantum materials to quantum magnets and nanostruc-
tures [1–3]. The quantum critical point (QCP) separating the
two competing ground states dominates physical properties
even at finite temperature where a quantum critical region
exists (see Fig. 1). By tuning parameters of the system to their
critical values, the system stays in the critical region down to
zero temperature, such as for path 1 in Fig. 1. In contrast, de-
tuning results in a crossover from quantum critical behavior to
one of the trivial phases (path 2). Along path 1, it is well estab-
lished that, at low temperature, thermodynamic observables
show universal scaling. Properties away from equilibrium,
such as when a bias is applied (a nonequilibrium steady state)
or a parameter suddenly changed (a quantum quench), are
much less well understood. Indeed, quantum nonequilibrium
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phenomena have been receiving increasing attention in recent
years [1,4–8]. Here we present a comprehensive theoretical
and experimental study of the nonequilibrium steady-state
current in a system tuned to criticality.

QPT occur not only in the bulk but also on the boundary of
interacting systems, as in quantum impurity models [3,7–12].
The two-channel Kondo model is a prototypical example: two
independent metallic channels each screen a localized spin, re-
sulting in frustration and a non-Fermi-liquid QCP. Nanoscale
systems are ideal for studying such impurity QPT because of
the exquisite control over parameters that they provide [7,12–
17]. Indeed, a growing number of QPT are being studied
in nanosystems, including, e.g., both spin and charge two-
channel Kondo systems [18–24]. These nanosystem QPTs
provide insight into more complex quantum impurity QPTs,
such as arise in strongly correlated materials [8–10,25].

Here we present both an analytical calculation and a direct
measurement of the steady-state current as a function of bias
voltage (I-V curve) with system parameters tuned exactly to
a QCP. The system is a spin-polarized carbon nanotube quan-
tum dot connected to resistive leads via tunable tunnel barriers
(Fig. 1). The resistance of the leads creates an Ohmic dissi-
pative environment [19,20,26], and the quantum dot serves
as the quantum impurity. The QCP occurs when both (i) a
level in the dot is resonant with the leads and (ii) the dot
is symmetrically coupled to them. Both of these properties
can be fine-tuned using gate voltages, enabling experimental
access to the QCP. At the QCP, which is of the two-channel
Kondo type [19], the conductance through the dot becomes
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FIG. 1. (a) Schematic of the system overlaid on a SEM image of
a sample. A quantum dot is formed in the carbon nanotube (CNT)
between the source and drain leads. These resistive leads create
a dissipative environment for electrons tunneling through the dot.
The tunneling barriers can be tuned with the side gates SG1 and
SG2. Applying a bias between the source and drain produces a
nonequilibrium steady state. (b) Diagram of a quantum critical region
as a function of a system parameter λ and temperature or voltage
bias. In our case, λ could be the dot-leads coupling asymmetry or
the dot detuning, tuned by electrostatic gates. When parameters of
the system are tuned to their critical values, the quantum critical
region extends down to zero temperature or bias (path 1), otherwise
a crossover to one of the trivial ground states occurs (path 2). (c) The
RG flow of source and drain coupling (tS , tD) when the system is
on resonance. For symmetric coupling, the flow is into the full-
transmission (strong-coupling) fixed point (1,1) (path 1) which is the
QCP. A slight detuning leads to a crossover to a trivial fixed point
(path 2). In this work, we focus exclusively on path 1, which ends at
the QCP.

perfect (e2/h when T →0), while otherwise it tends to zero.
We previously presented several scaling relations, including
non-Fermi-liquid scaling along path 1, measured as a function
of T for negligible bias, i.e., in the equilibrium regime [20].

We exploit a close connection between the system studied
here and resonant tunneling in an interacting one-dimensional
(1D) system, a Luttinger liquid (LL). 1D systems have, of
course, played a central role in contemporary condensed-
matter physics [27,28]. Such a connection, which seems
surprising at first since there is nothing one-dimensional in our
system, derives from the essentially 1D nature of all quantum
impurity problems. Indeed, tunneling in a resistive environ-
ment can be viewed as a quantum simulation of tunneling in
a LL with repulsive interactions [7,19,20,24,29–35]. In equi-
librium, resonant peaks of perfect conductance in a LL have
been extensively studied theoretically [36–45]. This system
has a similar two-channel Kondo-like QCP separating weak-
tunneling regimes dominated by one barrier, either source or
drain [37,39,42]. However, there are significant differences
(discussed below) near the QCP.

The interplay between nonequilibrium and many-body ef-
fects has been studied in a variety of nanosystems through
nonlinear I-V characteristics [13,46–50]. Experimental sys-
tems studied include the Kondo effect in quantum dots,
tunneling into edge channels, and dissipative tunneling. How-
ever, to our knowledge, the nonequilibrium I-V curve of a
system tuned exactly to the critical value of the QCP con-
trol parameter has not been measured previously, except for
preliminary indications in our own work [20,51]. Nonlinear
I-V curves in the critical regime of a QCP have certainly been
reported (see, for example, Refs. [18,21,52–54]), but these all
involved measurements through tunnel barriers that therefore
probe the density of states in the system in equilibrium. Such
a measurement is tunneling or transport spectroscopy [55],
in which no truly nonequilibrium effects are involved [56].
Theoretically, in the scaling regime in which I ∝ V α , the
exponent α has been frequently deduced from the scaling
dimension of the leading operators at the QCP (see, for ex-
ample, Refs. [57,58]). Nonequilibrium properties at the LL
resonant tunneling QCP, for instance, have been studied only
in this way, thus capturing only the exponent in the scal-
ing regime (see, e.g., Refs. [36,37]). A few full calculations
beyond the scaling exponent exist in the literature. First, ap-
proximate numerical treatments have been employed [59–64],
although not of the model we study. Second, analytical I-V
curves have been obtained for the crossover from a QCP
to a Fermi-liquid state for the two-impurity, two-channel,
and topological Kondo models [65–67]. In Fig. 1(c) these
correspond to properties along the vertical line from point
(1,1) to (1,0) in which one moves out of the quantum critical
region. In contrast, here we are interested in paths that end
at the QCP, such as path 1. We see, then, that the nonequi-
librium I-V characteristics of a system tuned to a QCP have
received surprisingly little attention, either experimentally or
theoretically.

In this work, we rectify this oversight. Experimentally, a
key feature of our samples is sufficient gates to allow tuning
of the system to have both resonant transmission and equal
tunneling barriers between the carbon nanotube quantum dot
and the leads (see Fig. 1). Theoretically, we approach the
problem using a field-theoretic description and bosonization
[27,28]. The key steps in our argument are to use universality
arguments to find the form of the effective Hamiltonian at
the QCP and then to incorporate the voltage bias into it. A
Keldysh calculation to second order in the deviation from the
QCP but to all orders in the coupling to the environment then
yields the I-V curve in the universal regime.

The paper is organized as follows: We start by defining
our model for the dissipative resonant-level problem (Sec. II)
and then indicate the key steps to obtain the effective Hamil-
tonian at the QCP, Eq. (10) (Secs. III-IV). We find the I-V
characteristics in the quantum critical regime beyond simple
scaling in Sec. V. The main theoretical result of the paper is
the analytical expression for the nonlinear I-V curve at finite
temperature, Eq. (13). Experimental results are then presented
and compared with the theory (Sec. VI): Figure 2 shows
excellent agreement between theory and experiment.

Section VII presents an alternative physical understanding
of the non-Fermi-liquid quantum critical state in terms of
tunneling in an environment (dynamical Coulomb blockade),
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FIG. 2. Conductance measured in the full bias range—from
much smaller to much larger than the temperature—presented as
the deviation from perfect conductance 1 − G(V, T ) scaled by 1 −
G(V = 0, T ) and plotted vs the rescaled bias eV/kBT . Here G(V, T )
is the differential conductance G = (h/e2) dI/dV and r = 0.5. Gate
voltages are tuned to their critical values; thus, for small V and T
the system approaches its QCP (see path 1 in Fig. 1). The symbols
are the experimental results at the color-coded temperatures. The red
line is the result of the nonequilibrium theory [Eq. (13)], in which
there are no free parameters. Note the excellent agreement between
the theory and data in both the crossover and power-law regimes. At
larger V/T , nonuniversal effects begin to set in due to 1 − G(V, T )
becoming non-negligible compared with 1.

and our conclusions are in Sec. VIII. Several Appendixes
(Appendix A–G) present the details of our argument.

II. MODEL AND HAMILTONIAN

The system is shown in Fig. 1: a spinless resonant level be-
tween two resistive leads. The Hamiltonian consists of several
parts,

H = HDot + HLeads + Hμ + HT + HEnv. (1)

HDot = εdd†d models the dot with single energy level εd

which may be tuned by a gate voltage. We focus on the
resonant condition εd = 0. HLeads = ∑

α=S,D

∑
k εkc†

kα
ckα rep-

resents noninteracting electrons in the source (S) and drain (D)
leads.

Tunneling in our system excites the resistive environment
through fluctuations of the voltage on the source and drain.
These require a quantum description of the tunnel junction
[68–71] via junction charge and phase fluctuation operators
that are conjugate to each other, ϕS/D and QS/D. A tunneling
event shifts the charge on the corresponding junction, such as,
for example, in this contribution to tunneling from the dot to
the source: c†

kSe−i
√

2πϕS d . We take the capacitance of the two
tunnel junctions to be the same and so it is natural to con-
sider the sum and difference variables ψ ≡ (ϕS + ϕD)/2 and
ϕ ≡ ϕS − ϕD. The fluctuations ϕ involve charge flow through
the system and so couple to the environment. In contrast,
because ψ involves the total dot charge, it is not coupled to

the environment [68,69,72], and we therefore drop it at this
point. We thus arrive at the tunnel Hamiltonian

HT =
∑

k

(
tSc†

kSe−i
√

π
2 ϕd + tDc†

kDei
√

π
2 ϕd + H.c.

)
. (2)

The barriers to tunneling are large in the experimental system
and so tS and tD are small—the system is in the “weak cou-
pling” regime. We focus on the symmetric case tS = tD.

The Ohmic environment of resistance R is modeled in the
usual way as a bath of harmonic oscillators to which the phase
fluctuations ϕ of the junction are coupled. The model must
produce the expected temporal correlations of the phase fluc-
tuations, namely 〈e−iϕ(t )eiϕ(0)〉 ∝ (1/t )2r , where the exponent
r is related to the resistance of the environment by r ≡ Re2/h
[68–71]. We choose to represent the environment by bosonic
fields ϕ(x) and its conjugate ϑ (x) with a transmission line
Hamiltonian

HEnv = 1

2

∫ ∞

0
dx

[
1

2r
(∂xϕ)2 + 2r(∂xϑ )2

]
. (3)

It is coupled to the junction by identifying ϕ(x = 0) as the
phase ϕ in the tunneling term (2).

Finally, the term driving the system out of equilibrium is

Hμ =
∑

α=S,D

∑
k

μαc†
kα

ckα, (4)

where the chemical potential is related to the applied bias,
μS/D = ±eV/2. It is often convenient to handle the bias
through a time-dependent gauge transformation [36,68] that
moves it to the tunneling term: physically, when an elec-
tron hops from a lead to the dot it acquires a phase factor
corresponding to the change in energy (drop in bias) across
that barrier. With symmetric tunneling and capacitance, the
bias voltage drops symmetrically, and so each tunneling term
acquires a phase factor e±ieV t/2.

III. QUANTUM FLUCTUATIONS
ENHANCE TRANSMISSION

A great deal is known about the equilibrium properties of
this system [19,20,72,73]. First, insight is gained by consider-
ing the effect of quantum fluctuations at high-energy scales
on low-energy properties. An efficient way to study such
effects is through a field-theoretic approach and bosonization.
A 1D description is possible because, for noninteracting leads,
the quantum dot couples only to an effectively 1D subset
of the lead states. Introducing fermionic fields for these 1D
electrons, we then proceed via phenomenological bosoniza-
tion to describe the system in terms of bosonic fields (see
Appendix A for more detail). A natural way to view the result
is that the dissipative environment mediates an interaction
between the tunneling electrons. We wish to find the renor-
malization effects caused by this interaction; such effects are
readily obtained for this model through the “Coulomb-gas”
renormalization group (RG) [36,74] technique.

We pause the main development at this point to make
some brief comments about our approach. While bosoniza-
tion tools have been extensively used to analyze electron
transport, a number of potential pitfalls have been explored
[75–81] involving, e.g., properties far from a stable fixed
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point, high-energy cutoffs, or nonuniversal properties. In this
work, we minimize these problematic issues by looking at
universal properties close to the QCP, which is tuned to be
stable. In addition, while bosonization does not provide an
exact description of fermionic quantum transport, there have
recently been careful comparisons between numerical lat-
tice and bosonized field-theoretic results for several simpler
systems, for both equilibrium [50,82,83] and nonequilibrium
[84,85] properties. Furthermore, a detailed comparison of
theory with experiment was carried out for the problem of
tunneling through a single barrier (nonresonant tunneling, in
contrast to our double-barrier resonant tunneling) in the pres-
ence of dissipation [24]. The very good agreement found in all
of these studies supports the use of these techniques, which we
apply here to study a system near its QCP.

Returning to the main argument, one finds that the re-
sult of the RG analysis [19,20,72] is that, when the dot
is symmetrically coupled to the leads and is exactly on
resonance, quantum fluctuations involving the dissipative
environment enhance transmission through the dot. In a phys-
ically picturesque but somewhat loose sense, the barriers to
transmission become effectively smaller as quantum fluctua-
tions on more energy scales are taken into account.

The root cause is frustration [37]. If the coupling is not
symmetric (tS 	= tD), transmission is suppressed by quantum
fluctuations involving the environment, as is normal for envi-
ronmental effects on quantum tunneling. Effectively in a RG
sense, the system is cut at the weaker link (larger barrier) and
the dot is incorporated into the other lead [see Fig. 1(c)]. In
contrast, when the coupling is symmetric, frustration between
incorporating the dot into the source versus the drain ensues.
As a result, the dot becomes strongly hybridized with both
leads. This is the quantum critical state.

The properties of this critical state are heavily constrained
because it is one of the two possible fixed points in the
corresponding conformal field theory, namely the “periodic”
fixed point [86]. The constrained nature of the critical state
leads to a broad universality: the I-V curve near the QCP can
be deduced from a variety of models that scale to the same
critical state.

IV. THE QUANTUM CRITICAL REGIME

For an explicit description of the strongly hybridized limit
that allows calculation of the I-V curve, and as a result of
the universality and enhanced transmission discussed in the
last section, a wire with two weak potential barriers is a good
model for the residual effect of the quantum dot [36,41]. Thus,
consider two symmetric δ-function barriers spaced by � in a
1D wire of fermions described by the fields ψR(x) and ψL(x)
for right and left movers. The fermions are then transformed

via bosonization in the standard way into bosonic fields θ

and φ, obeying the commutation relation [φ(x′), ∂xθ (x)] =
iπδ(x′ − x) [36]. These fields represent the fluctuations in the
density and phase of the fermions and for the moment are
noninteracting. We add the effect of the environment and the
bias below.

The Hamiltonian, then, is H0 + HT , where

H0 = 1

2

∫ ∞

−∞
dx [(∂xθ )2 + (∂xφ)2], (5)

HT = A
∑
±

cos[2
√

πθ (±�/2) ± kF �]. (6)

The form cos[2
√

πθ ] appears because it corresponds to 2kF

backscattering of the underlying fermions [36], ψ
†
RψL + H.c.,

as can be checked by using the bosonization relation for ψL,R

[following the convention Eq. (A1)]. Backscattering is the
most important effect of scattering from a potential. In writing
Eqs. (5) and (6), we have chosen the bosonization convention
near the strong-coupling fixed point (enhanced transmission
implies weak barriers). In the following calculation, effects
of HT are found to only leading order in A. In this way, the
subtle concerns of bosonization consistency under different
boundary conditions [75–77] are avoided.

It is convenient to form the sum and difference fields θc ≡
[θ (�/2) + θ (−�/2)]/2 and θ f ≡ [θ (�/2) − θ (−�/2)]/2.
When on resonance for a single level, one has kF � = π/2 at
strong coupling [27], so that the barrier terms become

HT = A cos(2
√

πθc) sin(2
√

πθ f ). (7)

A key step in our argument is to incorporate the ex-
ternal bias potential V and the fluctuating potential caused
by the environmental field ϕ in the strongly transmitting
state. The environmental potential fluctuations are given by√

2πϕ̇, which in a Hamiltonian formulation corresponds to
ir2

√
2π∂xϑ (0), where ∂xϑ (0) appears naturally as the charge

fluctuation operator conjugate to ϕ [see Eq. (3)]. The effective
fluctuating bias is, then,

eṼ ≡ eV + ir2
√

2π∂xϑ (0). (8)

It is important to consider how this bias is expressed near the
quantum dot. For large barriers (weak coupling), the potential
difference drops between the source and drain leads, Eq. (4).
In contrast, near full transmission (strong coupling) the po-
tential is applied between the right-moving fermions (those
coming from the source) and left-moving fermions (from the
drain). The fact that the potential drops in this way when a
system is near full transmission is well known, for instance,
in discussing the quantum Hall effect in terms of edge states
[55]. Thus, the bias and environmental coupling are

Hμ+Env = eṼ

2

[∫ −�/2

−∞
dx ψ

†
R(x)ψR(x) −

∫ ∞

�/2
dx ψ

†
L (x)ψL(x)

]
(9a)

= eṼ

4

1√
π

[∫ −�/2

−∞
dx[∂xθ (x) − ∂xφ(x)] −

∫ ∞

�/2
dx[∂xθ (x) + ∂xφ(x)]

]
(9b)

= −
[

eV

2
√

π
+ r

√
2 i∂xϑ (0)

] ∫ ∞

0
dx ∂xθc(x). (9c)
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The dependence on external bias, the first term in Eq. (9c),
is handled by performing a time-dependent gauge transforma-
tion that moves the bias into the barrier term HT, as mentioned
in connection with Eq. (4) [see also Eq. (A6)]. Thus, in Eq. (7)
cos(2

√
πθc) → cos(2

√
πθc + eV t ). Since the right-moving

particles (from the source) have chemical potential eV higher
than that of the left-moving particles (from the drain), the bias
appearing as a phase eV t in the backscattering operator is
quite natural.

The next step is to integrate out the environmental degrees
of freedom ϕ(x) and ϑ (x). The bilinear coupling to the lead
fermions, the second term in Eq. (9c), then generates an effec-
tive coupling that causes θc(x) as well as its conjugate field
denoted φ f (x) to be interacting fields. The integrating-out
procedure is best performed in a Lagrangian formulation; it
is straightforward using standard methods and given in Ap-
pendix B. Finally, to emphasize that they are interacting fields,
we relabel these fields θ ′

c(x) and φ′
f (x).

The effective description of the large transmission (strong-
coupling) regime thus obtained is [87]

H eff = 1

2

∫ ∞

0
dx

[
(∂xθ f )2 + (∂xφc)2 (10a)

+ (1 + r)(∂xθ
′
c)2 + 1

1 + r
(∂xφ

′
f )2

]
(10b)

+ A cos[2
√

πθ ′
c(0) + eV t] sin[2

√
πθ f (0)]. (10c)

We emphasize that the modes represented by fields θ f and φc

are free while those represented by θ ′
c and φ′

f are interacting.
The coupling between these two sets of modes is given

by the barrier term (10c). Recalling that a bosonic operator
of the form cos(2

√
πθ ) corresponds to backscattering of the

underlying fermions, we see that this coupling involves the
simultaneous backscattering of both sets of modes.

The form of the barrier term (10c) is convenient for cal-
culating the I-V curve. Physically, it is also consistent with
the form of the backscattering operator in resonant tunneling
through a LL at zero bias, namely cos[2

√
πθ ′(0)]∂xθ

′(0) [37]
where θ ′(x) is the interacting field describing the LL. We show
this explicitly in Appendix C. The link to LL physics is made
by identifying the LL interaction parameter as g ≡ 1/(1 + r),
the same expression [32] as for tunneling through a single
barrier in the presence of dissipation.

The strength of the barrier term, A, is not known micro-
scopically as it is the result of the RG flow from weak to
strong coupling. It is helpful to recall at this point the equilib-
rium flow to the full transmission point. The equilibrium RG
scaling equation for A coming from Eq. (10c) can be derived
by standard methods [28,88]; it is dA/d (ln D) = A/(1 + r),
where the energy cutoff D runs from D0 = 1 down to zero.
The scaling dimension of the backscattering operator is then
� ≡ 1 + 1/(1 + r), showing that the operator is irrelevant
and A → 0 at the QCP. Notice that the effect of the externally
applied bias V is through this irrelevant operator.

The linear-response conductance at zero temperature is
thus that of the system defined by only Eqs. (10a) and (10b).
By combining the charge and flavor fields, one obtains a

system that is explicitly translationally invariant [89], in which
one therefore has perfect transmission: G = e2/h [19].

From general considerations (see, e.g., Refs. [37,57,58])
one expects the deviation from perfect transmission at low
temperature or bias to be a power law related to the scaling
dimension of the leading irrelevant operator at the QCP. This
is precisely the operator in Eq. (10c). Using the scaling di-
mension � above, we expect |dI/dV − e2/h| ∝ T 2/(1+r) or
∝V 2/(1+r).

V. THE I-V CURVE

We now turn to an explicit calculation of the I-V curve: we
find the correction to perfect transmission caused by the joint
backscattering term (10c) using a Keldysh nonequilibrium
approach [90]. Because A is small, we work to leading order
in this term but the bosonic fields are kept to all orders. This
leads to a considerable simplification: a Keldysh calculation
for scattering by a local operator to second order shows that
the current is related to the backscattering rate �(V, T ) [91].

The backscattering matrix element needed is [31]

〈 f |HT|i〉 = A
〈
R f

1

∣∣ cos[2
√

πθ ′
c(0)]

∣∣Ri
1

〉
× 〈

R f
2

∣∣ sin[2
√

πθ f (0)]
∣∣Ri

2

〉
, (11)

where |R1〉 and |R2〉 represent the states of θ ′
c and θ f , respec-

tively, and i and f label the initial and final states. Recall that,
in time-dependent perturbation theory, an explicit oscillatory
time dependence such as eV t in Eq. (10c) factors out and
enters the energy conservation constraint. The rate is, then,
given by

�(V, T ) = A2 2π

h̄

∑
Ri

1R f
1

∑
Ri

2R f
2

∣∣∣〈R f
1

∣∣ cos[2
√

πθ ′
c(0)]

∣∣Ri
1

〉∣∣∣2
Pβ

(
Ri

1

)

×
∣∣∣〈R f

2

∣∣ sin[2
√

πθ f (0)]
∣∣Ri

2

〉∣∣∣2
Pβ

(
Ri

2

)
× δ

(
ERi

1
+ ERi

2
+ eV − ER f

1
− ER f

2

)
, (12)

where Pβ (Ri
1,2) = 〈Ri

1,2|ρβ |Ri
1,2〉 refers to the density matrices

of the fields (in equilibrium) and the subscript β is a reminder
of the effect of temperature. The δ-function at the end of
Eq. (12) guarantees energy conservation, where ERs

n
refers to

the energy of the reservoir Rs
n in the initial (s = i) or final

(s = f ) state. An explicit expression for this rate can be found
by changing to the Heisenberg picture and using standard
methods to evaluate the bosonic correlators, as outlined in
Appendix D.

The net current is related to the difference of this rate
and that in the opposite sense, namely �(−V, T ). Since the
energy associated with the bias in each backscattering event
is eV , we see that the charge carried by each quasiparticle
is e [92]. Consequently, the backscattering-related current is
�I (V, T ) = e[�(V, T ) − �(−V, T )]. Adding this to the per-
fect transmission when A = 0, we arrive at our final result for

013136-5



GU ZHANG et al. PHYSICAL REVIEW RESEARCH 3, 013136 (2021)

the I-V curve,

I (V, T ) = e2

h
V

{
1 − A2π2

h̄2ω2
R

1

�
(

2
1+r + 2

)(
2πkBT

h̄ωR

) 2
1+r

∣∣∣∣∣
�
(

1
1+r + 1 + i eV

2πkBT

)
�
(
1 + i eV

2πkBT

)
∣∣∣∣∣
2}

, (13)

where �(x) is the Gamma function.
Equation (13) is the main theoretical result of this paper: the

nonlinear I-V curve to leading order in the backscattering am-
plitude A in the critical regime of an interacting QCP (path 1
in Fig. 1). Properties of this QCP are observable by tuning the
system (described by the original microscopic Hamiltonian)
to be on resonance and to have symmetric source and drain
barriers. The renormalization caused by quantum fluctuations
of the dissipative environment (the flow to the QCP) is cut off
by the temperature. The applied bias V appearing in the irrel-
evant operator Eq. (10c) likewise limits the approach to the
QCP. At large bias, Eq. (13) yields a power-law dependence,
|dI/dV − e2/h| ∝ V 2/(1+r), as expected from the equilibrium
RG analysis above. A plot of the full result is shown in Fig. 2.

VI. COMPARISON TO EXPERIMENT

Experiments were performed on quantum dots fabricated
from carbon nanotubes contacted by Cr/Au electrodes. The
electrodes were further connected to the bonding pads by
Cr resistors that provided dissipation. For more information
on the fabrication and characteristics of the samples, see
Refs. [19,20]. Here we show data from a sample with r = 0.5
(for similar data for a sample with r = 0.75 see the sup-
plemental material [93]). The value of r is determined in
an independent equilibrium measurement of G(T ) off reso-
nance; in this case, the (co-)tunneling effectively reduces to
the single-barrier case and G ∝ T 2r [19]. Once r is fixed, we
check that the equilibrium (eV � kBT ) value of 1 − G on
resonance scales as T 2/(1+r), as demonstrated previously [20].
This confirms that the gate voltages controlling the level’s
energy and the symmetry of the barriers are tuned to their
critical values.

For these critical values, we consider the conductance in
the full range of applied bias—both smaller and larger than
kBT , corresponding to the equilibrium and nonequilibrium
regimes, respectively. Figure 2 shows the conductance G,
measured in units of e2/h and rescaled such that, at a given
temperature, 1 − G(V ) is divided by 1 − G(V = 0). The ex-
perimental results are compared with the theoretical result
Eq. (13) (solid line). (For other ways of plotting the data,
including without rescaling, see Appendix E and Ref. [93].)
Notably, A and ωR in Eq. (13) have been eliminated by taking
the ratio [1 − G(V )]/[1 − G(V = 0)]. We see that the theory
curve captures the experimental behavior remarkably well
without any fitting parameters.

Comparing closely the experimental and theoretical re-
sults, we see two striking features of the theory: first,
it captures the crossover regime eV ∼ kT very accurately,
and, second, it yields the correct prefactor of the universal
∝V 2/(1+r) dependence at high bias. Thus our theory goes well
beyond the frequently used scaling arguments that produce
only the exponent in the scaling regime (the slope on this log-
log plot). (As a contrast, a naive scaling argument is sketched

in Appendix F.) The excellent agreement between theory and
experiment in a wide range of eV/kBT is a striking confirmation
of our far-from-equilibrium calculation.

It is important to realize that, unlike measurements that
use a weakly coupled electrode as a tunnel probe that mea-
sures the equilibrium density of states at finite bias (see, for
example, Refs. [18,21,52–54]), here the two biased leads re-
main equally coupled to the quantum dot, creating genuinely
nonequilibrium conditions [56,94].

At high enough eV/kBT , the experimental curves deviate
from the theoretical prediction (Fig. 2). There are several
possible contributions to this deviation. Because 1 − G is no
longer small, irrelevant operators not included in our effec-
tive model of the QCP [Eq. (10)] may become significant.
An additional possible contribution is that our second-order
analysis is inadequate at high bias. At the same time, note that
the range of applicability of our analytical results is pushed to
higher and higher eV/kBT as the temperature is lowered.

VII. NON-FERMI-LIQUID STATE: TUNNELING
IN AN ENVIRONMENT

To enhance physical understanding of our main results,
we rewrite our description of the quantum critical regime,
Eq. (10), in terms of noninteracting fermions coupled to an
environment. An outline of the main features of the argument
is given here with the details provided in Appendix G.

To arrive at noninteracting fermions, we refermionize
the noninteracting bosonic fields (θ f , φc) by simply using
the bosonization relation in reverse. The free part of the
bosonic Hamiltonian (10a) maps to free right- and left-moving
fermions on a half-infinite 1D wire. The factor sin[2

√
πθ f (0)]

in the interaction (10c) represents backscattering between the
right and left fermions at the end of the wire (with a phase
shift). Writing the factor cos[2

√
πθ ′

c(0) + eV t] as two ex-
ponentials, we see that, to leading order, Eq. (10c) can be
viewed as an interaction with an environment given by the
interacting bosonic fields (θ ′

c, φ
′
f ) together with a bias applied

to the fermions. In the scattering process, the fermion can gain
or lose energy eV together with the corresponding excitation
of the bosonic field.

This is a surprisingly simple view of this nonequilibrium
non-Fermi-liquid! One of the first concrete examples of a
non-Fermi-liquid was, of course, an electron tunneling in the
presence of an environment [95]—the single-barrier version
of our starting model. Here we see that the physics of the
high transmission quantum critical state—one that involves
strong renormalization effects—can also be viewed as a par-
ticle scattering at a point coupled with an environment. It is
highly nontrivial that all the messy relaxation and dephasing
associated with exciting a non-Fermi-liquid can be neatly
summarized in such a compact and suggestive fashion.

More concretely, we can find the I-V curve from this
point of view: tunneling of noninteracting particles through
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a barrier in the presence of an environment [68–70], albeit
with a strange barrier and strange environment. The tunneling
through the barrier consists of backscattering between two
chiral fermion modes, and the environment θ ′

c involves a non-
linear combination of the original electrons and environment.
Nevertheless, the standard techniques of dynamical Coulomb
blockade theory [68–70] can be applied to obtain the nonlinear
I-V curve to second order in A. We perform this calculation
in Appendix G and demonstrate that the result [31,96] is
identical to that found from the bosonic description (13).

VIII. CONCLUSIONS

We have carried out an analytic calculation of a far-from-
equilibrium I-V curve for a system whose control parameters
are tuned to a QCP (path 1 in Fig. 1), and then presented
experimental results enabling a detailed theory-experiment
comparison. The calculation proceeds via an effective bosonic
description valid near the full-transmission (strong-coupling)
QCP. The comparison of the resulting I-V curve with the
experiment validates this approach. Indeed, as shown in Fig. 2,
the agreement with the experimental results throughout the
crossover and asymptotic regimes is excellent.

A simple physical interpretation is possible because only
one of the charge modes in the system couples to the resistive
environment, leaving the mode corresponding to fluctuations
of the total charge in the dot free. This feature is not present,
for instance, in the related problem of resonant tunneling in
a Luttinger liquid. It allows us to find the I-V curve, alter-
natively, from the problem of tunneling between left- and
right-moving noninteracting fermions in the presence of a
modified environment.

To our knowledge, this is the first direct comparison of
theory and experiment for a nonequilibrium I-V curve of
a system tuned to an interacting quantum critical point. A
remarkable aspect of this system is that it is fully acces-
sible to both calculation and measurement, allowing for a
detailed comparison. This accessibility is characteristic of
other nanoscale systems exhibiting boundary QPT, see, e.g.,
Refs. [7,12,17,21–24,50], one of the reasons for increasing
interest in this topic. As nonequilibrium results in quan-
tum critical states are exceedingly rare, our results provide
a valuable bench mark and test case for future studies of
nonequilibrium steady states.
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APPENDIX A: EFFECTIVE INTERACTIONS AT WEAK
TUNNELING THROUGH BOSONIZATION

In Sec. IV, we show that, by integrating out the envi-
ronmental field ϑ , the system at strong hybridization can be
described by the effective Hamiltonian (10), where a pair of
canonical fields (θ ′

c and φ′
f ) become interacting. This pair is

similar to fields in a LL. In this Appendix, we highlight that
the fact that these fields are interacting can also be understood
in the weak-tunneling regime [19,20,72]—the starting point of
any perturbative RG analysis because it corresponds to weak
coupling.

In the weak-tunneling regime, bosonization is possible be-
cause an impurity couples to only an effectively 1D subset
of lead states (for noninteracting electrons). We label these
semi-infinite 1D leads x∈ (−∞, 0) for the source lead (S)
and x∈ (0,+∞) for the drain (D). These leads are modeled
by using 1D fermionic fields c†

α,L/R(x, t ) with Fermi velocity
set equal to one, where α = S/D labels the leads and L/R
indicates left- or right-moving particles.

We proceed via phenomenological bosonization in the
standard way [27,36], choosing the conventions of Ref. [36]:

c†
α,L/R(x, t ) = e±ikF x Fα√

2πa0
ei

√
π [φα (x,t )±θα (x,t )], (A1)

where ± in the exponent corresponds to L/R. φα and θα

are conjugate bosonic operators that describe electronic states
in the semi-infinite leads, obeying the standard commutation
relation [φ(x′), ∂xθ (x)] = iπδ(x′ − x). a0 is a regularization
scale for short distance or time, and the Fα are Klein fac-
tors. These latter can be simply carried along in the present
problem, giving rise to no additional phases, and so we do not
discuss them further. In bosonic form, the electron density is

ρL/R(x) = [±∂xφ(x) + ∂xθ (x) + kF /
√

π ]/(2
√

π ). (A2)

It is convenient to form the charge and flavor fields [97],

φ f /c(x) ≡ 1
2 [φS (−x) ∓ φD(x) ± θS (−x) − θD(x)],

θc/ f (x) ≡ 1
2 [±φS (−x) + φD(x) + θS (−x) ± θD(x)]. (A3)

Note that φ f (x) is conjugate to θc(x) and likewise φc(x) to
θ f (x), as in the strong-hybridization limit.

The tunnel Hamiltonian (2) is the key term in which to use
the bosonization relation. Since the QCP occurs at symmetric
coupling, we take identical coupling to the source and drain
leads, tS = tD ≡ t . With symmetric tunneling and capacitance,
the bias voltage drops symmetrically as well. Remembering
the time-dependent gauge transformation from the end of
Sec. II, we find that the tunneling term becomes

HT+μ = t√
2πa0

[
FSdei

√
πφc ei(

√
πφ f −

√
π
2 ϕ+eV t/2)

+ FDdei
√

πφc e−i(
√

πφ f −
√

π
2 ϕ+eV t/2) + H.c.

]
. (A4)

All fields in Eq. (A4) are taken at x = 0, and we have used
θS/D(0) = 0 [36,98] due to the Dirichlet boundary condition
at the x = 0 end of the leads because of the large barrier (t is
small due to weak coupling).

Notice that the fields φ f (x = 0) and ϕ enter in the same
way in Eq. (A4), so it is natural to combine them via the
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transformation

φ′
f (x) = φ f (x) − 1√

2
ϕ(x), ϕ′(x) = √

rφ f (x) + 1√
2r

ϕ(x). (A5)

Since the field ϕ′ completely decouples from the problem, we drop it from further consideration. After carrying out all these
transformations on the free part of the Hamiltonian as well, the final expression for the Hamiltonian at weak tunneling is

HDot + H eff
Leads+Env = εdd†d + 1

2

∫ ∞

0
dx

[
(∂xθ f )2 + (∂xφc)2 + (1 + r)(∂xθ

′
c)2 + 1

1 + r
(∂xφ

′
f )2

]

HT+μ = t√
2πa0

{
FSdei

√
πφc ei(

√
πφ′

f +eV t/2) + FDdei
√

πφc e−i(
√

πφ′
f +eV t/2) + H.c.

}
. (A6)

Thus we see that the coupling of each tunneling electron to
the environment generates an effective interaction between
them. As in the quantum critical regime treated in Sec. IV,
one of the sets of lead fields, (φ′

f , θ
′
c), becomes interacting.

In contrast, in a LL, both sets of lead fields would be inter-
acting, an important distinction for interpreting our results in
terms of the dynamical Coulomb blockade (see Sec. VII and
Appendix G).

When the dot is symmetrically coupled to the leads and is
exactly on resonance (εd = 0), this weak-coupling description
renormalizes to a strong-coupling fixed point that marks the
QCP [19]. A “Coulomb-gas” RG [36,74] treatment shows that
t becomes larger, suggesting that the tunnel barrier disappears
and the system is effectively becoming increasingly uniform.
This occurs because of the presence of frustration (see Sec. III
for discussion). The strong-coupling point is described by the
effective Hamiltonian (10) [99]. Note that it contains the same
pair of interacting fields (φ′

f , θ
′
c), thus making the connection

between the weak tunneling and strongly hybridized limits.
In contrast, with any asymmetry present, the fixed point to

which the system flows corresponds to cutting the system at
the weaker link and incorporating the dot into the other lead
[see Fig. 1(c)]. In this limit, the system can flow from the
non-Fermi-liquid strong-coupling fixed point studied here to
a Fermi-liquid fixed point as one decreases the temperature or
source-drain voltage compared with the energy scale of the
asymmetry [100]. Such a crossover to Fermi-liquid ground
states has been analyzed previously in two impurity and two
channel Kondo systems [65,66].

APPENDIX B: INTEGRATING OUT THE DISSIPATION
NEAR FULL TRANSMISSION

We briefly show the final step in arriving at the effective
strong-hybridization model (10) by integrating out the envi-
ronment. We begin by rewriting the free lead and environment
Hamiltonian, Eqs. (3) and (5), in the form of an action,

S0 = SLeads + SEnv

= 1

2

∫∫
dτdx

[
(∂xθc)2 + (∂τ θc)2 + (∂xθ f )2 + (∂τ θ f )2

]
+ 1

2

∫∫
dτdx 2r

[
(∂xϑ )2 + (∂τϑ )2

]
. (B1)

Here we write the action in terms of the θ fields rather than
φ because of the boundary conditions connected to the very
weak barrier (strong hybridization) [36]. Since the action is

quadratic except for the backscattering occurring at the origin,
the x 	= 0 degrees of freedom can be integrated out. If the
backscattering is not too strong, the free action is minimized
when θ (x, ωn) = θ (x = 0, ωn) exp(−|ωnx|) and ϑ (x, ωn) =
ϑ (x = 0, ωn) exp(−|ωnx|), where ωn is the Matsubara fre-
quency [36]. We can thus integrate out the x 	= 0 part of the
system so that the free action becomes zero dimensional,

S0 = 1

β

∑
ωn

|ωn|
[
θ f (ωn)2 + θc(ωn)2 + 2rϑ (ωn)2

]
, (B2)

where all the fields are evaluated at x = 0 [101].
The coupling between the leads and the environment is

given by the second term in Eq. (9c), which corresponds to

Scoup. = −i2
√

2
∫

dτ r [∂xϑ (0)] θc(0)

= i
2
√

2 r

β

∑
ωn

|ωn|ϑ (ωn)θc(−ωn), (B3)

rewritten in Matsubara summation form. Since this term is a
quadratic product of ϑ and θc, we can easily integrate out the
environment ϑ with a Gaussian path integral. The integral is
done with the partition function,

Z =
∫∫∫

D[θc]D[θ f ]D[ϑ]e−S0[θc,θ f ,ϑ]−Scoup.[θc,ϑ]−ST[θc,θ f ],

(B4)

where ST is the contribution of the tunneling term, Eq. (7), to
the action. The effective partition function thus becomes

Zeff =
∫∫

D[θc]D[θ f ]e−S′
Leads−ST , (B5)

where

S′
Leads = 1

2

∫∫
dτdx

[
(∂xθ f )2 + (∂τ θ f )2

+ (1 + r)(∂xθc)2 + (1 + r)(∂τ θc)2
]
. (B6)

Here we have extended the fields back to their original
semi-infinite domains. Notice that the interaction between the
dissipative environment and the θc field has been effectively
incorporated into the free action of θc so that it becomes
effectively interacting with strength 1/(1 + r). Finally, we
convert to the Hamiltonian form and, to be consistent with
the notation of the main text, relabel (θc, φ f ) as (θ ′

c, φ
′
f ).

Strictly speaking, when the system is nonequilibrium, the
effective Hamiltonian (B6) is incomplete: we have ignored the
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applied bias term [the first term of Eq. (9c)] which is also
linear with respect to θc. When we include its effect, the bias
is modified to an effective value V/(1 + r), similar to the case
in a Luttinger liquid wire with interaction g = 1/(1 + r). This
factor 1/(1 + r), however, disappears when we take into con-
sideration the wire-reservoir boundary condition [102–105].
After realizing the above fact, the relabeling should also be
carried out, of course, in the backscattering term, Eq. (7),
HT → A cos(2

√
πθ ′

c + eV t ) sin(2
√

πθ f ). We thus arrive at
Eq. (10).

APPENDIX C: CONNECTION TO LUTTINGER LIQUID
BACKSCATTERING OPERATOR

As mentioned in the introduction, the problem of resonant
tunneling in a LL is similar in many respects to the problem of
dissipative resonant tunneling that we study here. In a LL, the
barrier term that arises in the strong hybridization regime—
the term analogous to (10c) in H eff—is cos[2

√
πθ ′(0)]∂xθ

′(0),
where θ ′(x) is the interacting field describing the LL [37].
Note that in a LL both the c and f modes are interacting
and related to θ ′(x). The connection between the LL barrier
term above and the operator in our dissipative system can be
obtained explicitly as follows:

To arrive at the LL expression from Eq. (10c), we expand
about the midpoint of the two barriers and call this point

x = 0. Then with the definition of the common and differ-
ence fields, we have θ ′

c ≈ θ ′(0) and θ ′
f ≈ ∂xθ

′(0)�/2. Since
∂xθ

′(0)�/2 is small and fluctuating, the sin[2
√

πθ f (0)] fac-
tor is simply expanded to yield π3/2∂xθ

′(0)/2kF , where we
have used the resonant requirement kF � = π/2. Combining
this with cos θ ′

c ≈ cos θ ′(0), we find the expression above for
the near-resonance backscattering from two barriers in a LL.
Thus, the operator that we use and the operator in the LL case
are physically consistent.

APPENDIX D: EVALUATION OF BOSONIC
CORRELATORS

In this section, we give an explicit expression for the tun-
neling rate (12). First, we introduce the δ-function identity

δ
(
Ei + Ei

R + eV − E f − E f
R

)
= 1

2π h̄

∫ ∞

−∞
dt exp

[ i

h̄

(
Ei + Ei

R + eV − E f − E f
R

)
t
]
.

(D1)

Notice that the factors exp(iERs
n
t/h̄) can be produced by acting

on the initial (s = i) or final (s = f ) state with exp(iHt/h̄).
Changing to the Heisenberg picture for the fields, we thus find

�(V, T ) = A2

h̄2

∫ ∞

−∞
dt

∑
Ri

1R f
1

〈
Ri

1

∣∣ cos[2
√

πθ ′
c(t )]

∣∣R f
1

〉〈
R f

1

∣∣ cos[2
√

πθ ′
c(t = 0)]

∣∣Ri
1

〉
Pβ

(
Ri

1

)

×
∑
Ri

2R f
2

〈
Ri

2

∣∣ sin[2
√

πθ f (t )]
∣∣R f

2

〉〈
R f

2

∣∣ sin[2
√

πθ f (t = 0)]
∣∣Ri

2

〉
Pβ

(
Ri

2

)
eieV t/h̄

= A2

h̄2

∫ ∞

−∞
dt eieV t/h̄

〈
cos[2

√
πθ ′

c(t )] cos[2
√

πθ ′
c(0)]

〉〈
sin[2

√
πθ f (t )] sin[2

√
πθ f (0)]

〉
, (D2)

where we have dropped the argument x = 0 for clarity. Evaluation of the bosonic correlation function is standard, see for example
Refs. [27,68]. In terms of the scaling dimension � = 1 + 1/(1 + r) of the backscattering operator, the result for the rate is

�(V, T ) = A2

4h̄2

∫ ∞

−∞
dt eieV t/h̄ exp

[
−2� ln sinh

(
πkBT |t |

h̄

)
+ 2� ln

πkBT

h̄ωR
− �iπSign(t ) − 2�γ

]

= A2

4h̄2

π

�(2�)

(
2πkBT

h̄ωR

)2�−1 1

ωR
exp

( eV

2kBT

)∣∣∣∣�(
� + i

eV

2πkBT

)∣∣∣∣
2

, (D3)

where ωR is the energy cutoff of the bosonic bath, γ is Eu-
ler’s constant, and �(x) is the Gamma function. Physically,
because this rate involves a gain of energy, it corresponds to
backscattering from the right-moving to left-moving channel
[using the convention of Eqs. (4) and (9)].

APPENDIX E: EXPERIMENTAL DATA REPLOTTED

To supplement the comparison between experimental data
and the theoretical results, we provide plots of the data from
Fig. 2 using different combinations of log and linear scales.
For the r = 0.5 case, in Fig. 3 we plot in four different ways
the deviation of the differential conductance from perfect

e2/h: [1 − G(V, T )]/ [1 − G(0, T )] vs eV/kBT is plotted on
log-log [Fig. 3(a)], semilog [Fig. 3(b)], linear-log [Fig. 3(c)],
and linear-linear [Fig. 3(d)] scales. Focusing on the crossover
regime, note the excellent agreement between the experimen-
tal data and the full theoretical results (red line).

APPENDIX F: APPROXIMATE
RENORMALIZATION-GROUP ARGUMENT

FOR I-V CURVE

It is interesting to compare the data and full theoretical
results to a much simpler but approximate treatment of the
I-V curve that can be developed starting from the equilibrium
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FIG. 3. Comparison between the experimental data and theoretical calculations with dissipation r = 0.5 (same data as in Fig. 2). Our
theoretical result, Eq. (13), is the red line; the approximate RG treatment of Appendix F is shown in black. We emphasize the excellent
agreement of the theoretical curve (red line) with the experimental data in the crossover regime.

RG equation, dA/d (ln D) = A/(1 + r). Note that A is thus
energy (ε) dependent, A(ε) = A0ε

1/(1+r) where A0 is a con-
stant. This power-law scaling is cut off below T , making A
temperature dependent as well, A(ε, T ). The differential con-
ductance G(V, T ) = dI/dV can be obtained approximately
by integrating the spectral function of the transmission prob-
ability T (ε, T ) = 1 − R(ε, T ) over ε with R ∝ A2. A more
accurate but technically much more complex RG treatment
would involve computing R(ε, T,V ) out of equilibrium at a
finite bias V . This has been done for the single-channel Kondo
model [106,107] and for a resonant level with gate dissipation
[108], for instance, but not for the more complex two-channel
Kondo-like model that we are dealing with here.

With the approximation R(ε, T,V ) ≈ R(ε, T,V = 0), the
nonlinear current therefore reads

I (V, T ) ≈ e

h

∫ D0

−D0

dε [1 − R(ε, T )][ fR(ε) − fL(ε)], (F1)

where fL(ε) and fR(ε) are the Fermi-Dirac distribution. The
normalized reflection probability R(V, T )/R(0, T ) from (F1)
exhibits a crossover from power-law behavior in V/T ,

R(V, T )/R(0, T ) ≈ (V/T )2/(1+r) for V/T > 1, (F2)

to the constant value 1 for V/T →0, as expected from general
considerations (see end of Sec. IV).

The result of solving (F1) is plotted in Fig. 3 (black line)
and compared with the full theory [Eq. (13), red line] as

well as with experimental data. (See Ref. [93] for comparison
to r = 0.75 data.) While the correct power-law behavior is
captured by this approximation, the magnitude of the conduc-
tance (i.e. the prefactor) and the crossover from weak to strong
bias are not. The explicit bias dependence of the reflection
probability R(ε, T,V ) [106,107] clearly would be essential in
moving the RG curve toward the experimental data and the
full theory.

APPENDIX G: INTERPRETATION AS DYNAMICAL
COULOMB BLOCKADE

To enhance the physical understanding of our main results,
Eq. (13) and Fig. 2, we rewrite our strong-hybridization effec-
tive system as a fermionic problem and thereby make a direct
connection to dynamical Coulomb blockade (DCB) theory.
To use noninteracting fermions, we choose to refermionize
the noninteracting bosonic fields (θ f , φc) in Eq. (10), using
the bosonization relation Eq. (A1) where α now denotes this
pair. It is also convenient to move the bias out of the barrier
term by undoing the time-dependent gauge transformation.
The backscattering term (10c) is, then, replaced by the two
terms

HT = πa0A cos[2
√

πθ ′
c(0)][ψ†

L (0)ψR(0) + H.c.],

Hμ = −eV θ ′
c(0)/

√
4π. (G1)
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The second equation here follows from the first term in
Eq. (9c) by carrying out the integral.

The fact that the bias couples to the interacting field θ ′
c is

a serious complication. However, note that we will calculate
the I-V curve only to leading order in A, as in the main text.
In the expression for the rate, the bias appears only in the
energy-conservation δ-function as the particle gains (or loses)
energy eV when it backscatters. Note that the excitations of
θ ′

c and θ f are tightly linked in the single term in Eq. (10c),
leading to a single connection between a given |i〉 and its
| f 〉. Thus, whether the energy eV comes from coupling to the
interacting or noninteracting field cannot be distinguished at
this order. We can, then, calculate the I-V curve using the bias
term

H ′
μ = −eV θ f (0)/

√
4π. (G2)

Refermionizing this term using relations analogous to those in
Eqs. (A1) and (9), we arrive at the auxiliary model

H ′ = 1

2

∫ ∞

−∞
dx[ψ†

R(x)∂xψR(x) − ψ
†
L (x)∂xψL(x)]

+ 1

2

∫ ∞

0
dx

[
(1 + r)(∂xθ

′
c)2 + 1

1 + r
(∂xφ

′
f )2

]

+ πa0A cos[2
√

πθ ′
c(0)]{ψ†

L (0)ψR(0) + H.c.}

+ eV

2

[∫ 0

−∞
dx ψ

†
R(x)ψR(x) −

∫ ∞

0
dx ψ

†
L (x)ψL(x)

]
.

(G3)

Each line of Eq. (G3) can be interpreted physically: the first
line is right- and left-moving noninteracting fermions, the
second line is an interacting bosonic environment, the third

line shows that backscattering of the fermions excites the
environment, and the fourth line accounts for the voltage bias
between the right- and left-moving fermions.

We thus recognize the form for tunneling of noninteracting
particles through a barrier in the presence of an environment
[68–70], albeit with a strange barrier and strange environ-
ment. Tunneling through the barrier consists of backscattering
between two chiral fermion modes, and the environment θ ′

c
involves a nonlinear combination of the original electrons and
environment. Nevertheless, the standard techniques of DCB
theory [68–70] can be applied to obtain the nonlinear I-V
curve to second order in A.

More specifically, with the Hamiltonian (G3), we calculate
the tunneling rate through the dynamical Coulomb blockade
method:

�(V, T )=2π

h̄

∫ +∞

−∞
dEidE f

∑
Ri

1R f
1

∣∣∣〈Ei|HF
r |E f 〉

∣∣∣2∣∣∣〈Ri|HB
r |R f 〉

∣∣∣2

× Pβ (Ri )Pβ (E )δ
(
Ei + Ei

R + eV − E f − E f
R

)
,

(G4)

where |Ei〉 represents the initial state of a quasiparticle (ψ†
R)

in the right-moving channel with energy Ei and |E f 〉 refers
to the left-moving final state. Their statistics is described by
the fermionic distribution Pβ (E ). On the other hand, θ ′

c now
functions as the dissipative environment, with its initial and
final states |Ri〉 and |R f 〉 and the initial bosonic distribution
function Pβ (Ri ) = 〈Ri|ρβ |Ri〉 (here β is a reminder that the
density of states is thermally dependent).

With the help of the δ function identity (D1), Eq. (G4)
becomes time dependent and can be separated into two parts:
one that involves the bosonic environment and the other the
fermionic particles. For the bosonic part, we find

∑
Ri,R f

∣∣∣〈R f | cos[2
√

πθ ′
c(0)]|Ri〉

∣∣∣2
e

i
h̄ (Ei

R−E f
R )t Pβ (Ri)

=
∑
Ri,R f

〈Ri| cos[2
√

πθ ′
c(t, 0)]|R f 〉〈R f | cos[2

√
πθ ′

c(0, 0)]|Ri〉Pβ (Ri )

= 〈cos[2
√

πθ ′
c(t, 0)] cos[2

√
πθ ′

c(0, 0)]〉 = 1

4

〈
ei2

√
πθ ′

c (t,0)e−i2
√

πθ ′
c (0,0)〉 = 1

4
eJ (t ), (G5)

where J (t ) ≡ 4π〈[θ ′
c(t ) − θ ′

c(0)]θ ′
c(0)〉 is the phase-phase

correlation function. [In obtaining Eq. (G5), we used the
relations [68] 〈eiθ (t )eiθ (0)〉 = 0 and 〈ei2

√
παθ (t )e−i2

√
παθ (0)〉 =

eα24π〈[θ (t )−θ (0)]θ (0)〉 = eα2J (t ).] Since the free bosonic action is
quadratic, we can calculate this correlation with a Gaussian
integral [31,68]:

J (t ) = − 2

1 + r
ln sinh

(
πkBT |t |

h̄

)
+ 2

1 + r
ln

πkBT

h̄ωR

− 2

1 + r

iπ

2
Sign(t ) − 2

1 + r
γ , (G6)

where ωR is the energy cutoff of the bosonic bath and γ is
Euler’s constant.

Next we deal with the fermionic part. In the DCB method
[68], the backscattering barrier is treated as an effective
backscattering resistance RT so that the fermionic matrix ele-
ment can rewritten as

|〈Ei|HF
r |E f 〉|2Pβ (E ) = h̄

2πe2RT
f (Ei )[1 − f (E f )], (G7)

where f (E ) represents the equilibrium Fermi-Dirac
distribution.

Combining the fermionic and bosonic parts and
including the phase factor exp[i(Ei − E f + eV )t/h̄],
we arrive at the expression for the backscattering
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rate

�(V, T ) = 1

2π h̄e2RT

∫ ∞

∞
dEidE f f (Ei )[1 − f (E f + eV )]

×
∫ +∞

−∞
dteJ (t )e

i
h̄ (Ei−E f )t

= h̄ωR

2πe2RT

e
eV

2kBT

�
(

2
1+r + 2

)(
2πkBT

h̄ωR

) 2
1+r +1

×
∣∣∣∣�

(
1

1 + r
+ 1 + i

eV

2πkBT

)∣∣∣∣
2

, (G8)

where �(x) is the Gamma function. Physically, this rate only
involves tunneling from the right- to left-moving channel. The
net tunneling rate is described by the difference �(V, T ) −
�(−V, T ). Since the energy associated with the bias in each
backscattering process is eV , we can reasonably argue that
the charge carried by each quasiparticle is e. Consequently,
the backscattering-related current is �I (V, T ) = e[�(V, T ) −
�(−V, T )].

As a limiting case, we know from Eq. (G3) that when A =
0 the two fermionic chiral channels are decoupled, and the
system conducts perfectly, G = e2/h. Thus we conclude that
the current is

I (V, T ) = e2

h
V − �I (V, T )

= e2

h
V − e[�(V, T ) − �(−V, T )]

= e2

h
V − V

RT

1

�
(

2
1+r + 2

)(
2πkBT

h̄ωR

) 2
1+r

×
∣∣�(

1
1+r + 1 + i eV

2πkBT

)∣∣2

∣∣�(
1 + i eV

2πkBT

)∣∣2 , (G9)

where we have used the identity sinh(πx) = πx|�(1 + ix)|2.
The result (G9) is the same as the current expression in

the main text, Eq. (13), with the coefficient of the correction
(Aπ/h̄ωR)2 replaced by (h/e2)/RT , where RT is the tunneling
resistance of the effective barrier in the absence of dissipation.

The absolute magnitude of the current in the power-law
scaling regime is a key prediction of weak-coupling (large
barrier) DCB theory. Here, because of the unknown amplitude
A in the effective strong-hybridization model (10) or (G3), we
do not have such a prediction. However, for the normalized
quantity plotted in the figures, DCB theory does give a definite
value of the prefactor because it is fixed by the way the theory
transitions from the crossover to the asymptotic regime. It
is exactly this prefactor and crossover that is missed in the
approximate RG theory outlined in Appendix F, thus high-
lighting the importance of additional dephasing processes not
included there but fully included in the calculation in Sec. V
as well as in the DCB calculation here.

The equivalence of these two coefficients is shown by con-
sidering the standard single-barrier tunneling Hamiltonian.
Denote the backscattering amplitude of the fermions by tk,q,
where q and k label the initial and final fermionic particle
states, HT = ∑

k,q tk,qc†
L,kcR,q + H.c. The standard result for

the conductance of a tunneling barrier when the amplitude
is momentum independent is 1/RT = (e2/h)|t |2[�N (0)]2,
where �N (0) is the number of states per unit energy and t is
the average matrix element. In our case, the number of states
is the size of the system L divided by the bosonization cutoff
a0, and the maximum energy for a particle excitation is h̄ωR,
the cutoff for the bosonic modes (−h̄ωR for a hole excitation).
The amplitude t follows from Eq. (G3), noting that a factor
of 1/L is introduced in the conversion from continuous x to
discrete k. Putting these elements together one finds

1

RT
= e2

h

(πa0A

L

)2(L/a0

h̄ωR

)2

= e2

h

( πA

h̄ωR

)2

. (G10)

Thus the I-V curve that results from a DCB theory treatment
of the auxiliary strong-hybridization model Eq. (G3) and that
found from the true effective bosonic description Eq. (10) are
identical.

This allows then the physically intuitive interpretation of
the I-V curve (13) as tunneling of noninteracting fermions
(between left-movers and right-movers) in the presence of an
environment.
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