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Characterization of helical Luttinger liquids in microwave stepped-impedance edge resonators
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Coulomb interaction has important consequences for the physics of quantum spin Hall edge states, weakening
the topological protection via two-particle scattering and renormalizing both the velocity and the charge of
collective plasmon modes compared to that of free electrons. Despite these effects, interactions remain difficult
to quantify. We propose here simple and robust edge resonator geometries to characterize Coulomb interaction
by means of high-frequency measurements. They rely on a transmission line approach and take advantage of the
impedance mismatch between the edge states and their microwave environment.
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The helical edge states of two-dimensional (2D) topolog-
ical insulators, which exhibit the quantum spin Hall (QSH)
effect [1], offer an exciting playground for exotic topolog-
ical physics such as spin-polarized edge transport [2–4] or
topological superconductivity [5,6]. Another point of interest
is the study of Coulomb interactions, which are particularly
prominent in one-dimensional systems. In 2D topological in-
sulators, one-particle scattering is, in principle, suppressed
by time-reversal symmetry. However two-particle interac-
tions are constrained, but not forbidden [7], and could have
important consequences. They could, for example, generate
back-scattering via diverse mechanisms [8–10]. In particular,
inter-channel interaction leads to a modification of the charge
but also to the spin polarization of the edge plasmons, thus
potentially degrading the performance of spin(orbi)tronics de-
vices [11,12] and obscuring the observation of topological
transport.

At a microscopic level, Coulomb interaction strongly alters
the dynamics of QSH helical edge states. First, the electron
Fermi velocity vF is renormalized to a larger value v under the
action of Coulomb repulsion. Second, as charges propagate
in one edge channel, interchannel interaction drags a small
amount of charge in the channel of opposite direction, leading
to a nontrivial effective charge of the plasmon modes, reduced
from that of the electron by a factor of

√
K ∈ [0, 1], where

K is called the Luttinger parameter. The two parameters K
and v fully characterize the dynamical properties of helical
edge channels, but remain experimentally hardly accessible.
In particular, K is quite elusive: the dc conductance of an
ohmically contacted 1D system does not depend on K [13,14],
which is thus primarily accessed via power law exponents
(tunneling density of states [15] and temperature dependence
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of the conductance [16,17]) or current correlations [18,19].
The ac conductance also inherits a K dependence, but studies
have concentrated mostly on the low-frequency regime [20],
which does not capture the velocity v, on more complex setups
[21], or on chiral edge modes [22,23].

High-frequency experiments have proven very adequate
in the context of the quantum Hall effect to investigate chi-
ral edge magnetoplasmons [24–35]. In the same spirit, we
establish in this paper that the scattering of microwaves
on capacitively coupled resonators offers a straightforward
characterization of both v and K . The high-impedance edge
channels are then confined between low-impedance input and
output circuitry. The impedance mismatch generates reflec-
tion at each interface, in a geometry analogous to so-called
stepped-impedance resonators, heavily used in acoustics or
microwave design. This geometry is advantageous for several
reasons: (i) the use of high-frequency (>10 GHz) transport
allows for using short devices (∼10 μm) in the ballistic limit;
(ii) the capacitive coupling circumvents complications due to
ohmic contacts and contact resistances which bring dissipa-
tion [36] and have a complex behavior in the GHz range [37];
and (iii) the geometry can be analyzed in terms of microwave
networks [38], combining simple experimental setups [39–41]
and straightforward interpretation.

I. EDGE CHANNELS AND EQUIVALENT
TRANSMISSION LINES

In this section we introduce the bosonized Luttinger repre-
sentation of the helical edge states and establish its relation to
a microwave transmission, following previous works [42,43].
For helical edge channels, the bosonized Hamiltonian is for-
mally identical to that of a spinless Luttinger liquid and reads
as follows [7,44]:

H = v

2π

∫
dx

[
1

K
(∂xφ)2 + K (∂xθ )2

]
− eU∂xφ, (1)

where the fields φ and θ are related to the right (φR) and left
(φL) bosonic fields representing right- and left-movers, with
φ = φR + φL and θ = φR − φL. U is an external potential,
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FIG. 1. Schematics of the setup. (a) Schematic view of inter- and
intrachannel Coulomb interaction in helical edge states (in red and
blue solid lines), with their respective coupling constants ḡ2 and ḡ4.
(b) Equivalent transmission line representation, with line inductance
Le and line capacitance Ce. (c) Schematic view of a gate coupling
capacitively to helical edge states. (d) Equivalent transmission line
representation, with geometric capacitance Cg and quantum capaci-
tance Ce.

in a minimal coupling approach. Coulomb interaction renor-
malizes the sound velocity of the collective excitation v and
defines the Luttinger parameter K , which are expressed as a
function of the Fermi velocity vF and the interchannel (re-
spectively, intrachannel) coupling constants ḡ2 (respectively,
ḡ4):

v = vF

√
(1 + ḡ4 + ḡ2)(1 + ḡ4 − ḡ2), (2)

K =
√

1 + ḡ4 − ḡ2√
1 + ḡ4 + ḡ2

. (3)

In the absence of external potential (U = 0), this Hamiltonian
is completely equivalent to that of an LC distributed transmis-
sion line [38] with line capacitance Ce and line inductance Le,
such as the one sketched in Fig. 1(b):

H = ρ2
e

2Ce
+ 1

2
LeI2

e , (4)

with Ce = 2K

RKv
, Le = RK

2Kv
, (5)

where ρe = e
π
∂xφ is the charge density, Ie = evK

π
∂xθ is the cur-

rent flowing on the edge, and RK is the quantum of resistance.
This identification establishes the equivalence between a heli-
cal Luttinger liquid and a transmission line with characteristic
impedance Ze and velocity v given by [45]

Ze =
√
Le

Ce
= RK

2K
, v = 1√

LeCe
. (6)

This transmission line hosts two modes with linear dispersion
and velocity v, propagating in opposite directions (denoted
±). Here, one can interpret the factor K as a reduced effec-
tive charge

√
Ke affecting Le and Ce and, in turn, the line

impedance Ze.

One can introduce the currents Ie(x, t ) and the voltages
Ve(x, t ) = ρe(x, t )/Ce [38,43]:

Ve(x, t ) =
∫

dω

2π

(
V −

e e jω(t+ ω
v

x) + V +
e e jω(t− ω

v
x)
)
, (7)

Ie(x, t ) =
∫

dω

2π

(−I−
e e jω(t+ ω

v
x) + I+

e e jω(t− ω
v

x)
)
, (8)

such that Ze = V ±
e

I±
e

.

In this framework, the currents I±
e carried by both modes ±

then simply acquire a phase factor of s± = e±i ω
v

(x−x′ ) as they
propagate from point x to x′.

II. CAPACITIVE COUPLING IN A TRANSMISSION
LINE APPROACH

This transmission line approach allows for a simple
description of elaborate geometries, in close analogy to
microwave network analysis. Here we start by describing
capacitive contacts. The latter are essentially dissipationless,
thus circumventing the dissipation inherent to the Landauer
contact resistance. Besides, such reactive contacts achieve a
simple capacitive coupling even at high frequencies, unlike
ohmic contacts which exhibit mixed capacitive and resistive
behaviors [37]. They have been heavily used in quantum Hall
high-frequency experiments [22,24,31,46] and have triggered
recent interest in Hall gyrators and circulators [34–36,47].
The capacitive contact is described as a three-port device
coupling at (x, y) = (0, 0) the edge states (seen as two semi-
infinite transmission lines of impedance Ze, for x > 0 and
x < 0) to the gate (seen as a semi-infinite transmission line
of impedance Zg = 50 � along the y > 0 axis), in the ge-
ometry shown in Fig. 1(d). The geometrical gate capacitance
is denoted as Cg, while the quantum capacitance effects are
accounted for by Ce. This pointlike description is inspired
by transmission line models, but similar results have been
obtained with a more elaborate plasmon distributed model,
adding some finite-size effects which are disregarded here (see
more in Sec. V, Experimental considerations).

Introducing the Fourier modes I±
g and V ±

g for the gate
transmission line, one obtains from Kirchhoff’s laws at the
coupling point (x, y) = (0, 0) the relations between input and
output currents in each of the arms:

I in
g − Iout

g =
∑
i=±

(
Iout
e,i − I in

e,i

)
, (9)

∀ i = ±, 	eIout
e,i − 	∗

e I in
e,i = Ce

Cg

(
	gIout

g − 	∗
gI in

g

)
, (10)

where I in/out
g = I±

g |y=0+ , I in
e,± = I±

e |x=0∓ , and Iout
e,± = I±

e |x=0±

[see Fig. 1(d)], and 	e(ω) = 1 + jωZeCe and 	g(ω) = 1 +
jωZgCg. Solving these three equations yields the scattering
matrix elements, relating outgoing to ingoing currents [48]:

Sgg =
1 + 2Ce

Cg

	∗
g (ω)

	e(ω)

1 + 2Ce
Cg

	g(ω)
	e(ω)

, (11)

Sg± =
2 jωZeCe

1
	e(ω)

1 + 2Ce
Cg

	g(ω)
	e(ω)

= Ze

Zg
S±g, (12)
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FIG. 2. Scattering coefficients of a capacitive contact: |Sg±| is
represented as a blue line, |S∓±| as a red line, and |S±±| as a yellow
line. For each coefficient, the gray dashed lines indicate the low- and
high-frequency asymptotes obtained analytically. The graphs were
obtained with the following parameters: Ce = 16 fF, Cg = 8 fF, and
K = 0.5.

S±± = 	∗
e (ω)

	e(ω)

1 + 2	g(ω)
	∗

e (ω)
Ce
Cg

1 + 2	g(ω)
	q (ω)

Ce
CX

, (13)

S±∓ = Ce

Cg

	g(ω)

	2
e (ω)

2 jωZeCe

1 + 2Ce
Cg

	g(ω)
	e(ω)

. (14)

The moduli of Sg±, S±±, and S±∓ are plotted in Fig. 2
as a function of the frequency f = ω

2π
, for a realistic set

of parameters (see Sec. V, Experimental considerations). In
these coefficients, two RC timescales appear, namely, the gate
one, ZgCg, and that of the edge states, ZeCe, defining two
regimes: low frequencies for which ω 	 1/ZgCg and 1/ZeCe

and high frequencies for which ω 
 1/ZgCg and 1/ZeCe. In
the low-frequency regime, the capacitive elements Cg and Ce

play the dominant role. We in particular observe that Sg± �
2 jωZeCe and S±∓ � jωCe

Cg
Ct , with Ct = 2CeCg

Cg+2Ce
being the total

capacitance.
In contrast, at high frequency, the capacitors are transpar-

ent and do not play any role. The scattering elements are
thus dominated by the impedance mismatch [38] between the
edge states (impedance Ze) and the gate (impedance Zg) with,
for instance, Sg± = 2Ze

Ze+2Zg
� 2. This high-frequency limit of

transport and the role of the low-impedance environment are
both often disregarded but play here a crucial role. Indeed,
as we see below, their interplay through impedance mismatch
provides a very straightforward approach to measuring Ze and
thus K .

III. LINEAR AND RING RESONATORS

In this section, we introduce the geometry of linear and
ring “resonators” in which the two edge states are confined
between two capacitive contacts (Fig. 3). In the linear res-
onator [Fig. 3(a)], the contacts are separated by a distance
d and we assume that the regions outside the contacts are
semi-infinite and sink all incoming waves. In the ring geom-

(a) (b)

(c) (d)

FIG. 3. Geometry of the linear and ring resonators. (a),(c)
Schematic view of a linear resonator (a) and a ring resonator (c) for
the edge states of the QSH effect (in red and blue solid lines). Capac-
itive contacts are depicted in yellow. (b),(d) Equivalent transmission
line representation of the linear (b) and ring (d) resonators.

etry [Fig. 3(c)], the edge states circulate along a disk-shaped
mesa of radius r, with the two contacts placed symmetrically
on either side of the disk. Each structure forms a two-port
device, with equivalent transmission line representations de-
picted in Figs. 3(b) and 3(d). The schemes in Figs. 3(b)
and 3(d) highlight the analogy with stepped-impedance res-
onators, with regions of the impedance Ze located between
ports of the lower impedance Zg. Using the scattering matrix
of the free QSH edge and of the capacitive contact, we com-
pute the transmission T of each device and analyze it below.
The reflexion coefficient on each contact is disregarded as it
is mostly dominated by Sgg � 1, and we assume for now that
the devices are ballistic.

Starting with the linear resonator, summing the contribu-
tions of all waves, one obtains the transmission:

T = Sg+S+ge− jω d
v

1 − S+−S−+e−2 jω d
v

= Zg

Ze

S2
g+e− jω d

v

1 − S2+−e−2 jω d
v

. (15)

T exhibits the familiar form of a Fabry-Pérot (FP) res-
onator: the numerator reflects the direct path from one gate to
the other, while the denominator encodes the multiple round-
trips in the cavity. The modulus |T | and the phase arg(T )
are plotted in Figs. 4(a), 4(b) for K = 0.25, 0.5, and 1. We
first note that, since S+− remains small, the FP oscillations
are quite weak, and most of the excitation signal leaks to the
regions located beyond both capacitive contacts. The trans-
mission T is thus governed by its numerator [plotted as a gray
dashed line in Fig. 4(a)]. At low frequencies (for ω 	 1/ZgCg

and 1/ZeCe), T is quite low, dominated by the succession
of two capacitive elements S2

g+, with |T | ∝ ω2. The physics
of interactions remains mostly inaccessible. For the opposite
situation, at high-frequencies, |T | saturates at a maximum
value |Tsat| imposed by the saturation of Sg+, with |Tsat| =
4Zg

Ze
= 8KZg

RK
. In this regime, Sg+ is real, such that arg(T ) � ωd

v
.

This simple geometry thus allows for a very direct readout of
the velocity v from arg(T ), and of the Luttinger interaction
parameter K via |Tsat|.
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FIG. 4. Transmission for the linear and ring resonators. (a),(b) For K = 0.25, 0.5, and 1, the moduli |T | [panel (a)] and the phase
arg(T ) [panel (b)] of the transmission of the linear resonators are plotted as solid colored lines. In panel (a), the dashed lines represent
the approximation Zg

Ze
|Sg+|2 and the high-frequency asymptote |Tsat|, allowing one to determine K . In panel (b), the dashed line represents the

asymptote ωd/v, giving access to v. (c),(d) For K = 0.25, 0.5, and 1, the moduli |T | of the transmission of the ring resonators are plotted as
solid colored lines. In panel (c), the solid gray line represents the interval 
 f between two resonances. In panel (d), the dashed lines represent
the approximation given in Eq. (17), while the solid gray lines represent the peak widths δ f , allowing one to determine K . All graphs were
obtained with the following parameters: Ce = 16 fF, Cg = 8 fF, v = 1 × 106 ms−1, d = 10 μm, and r = 6 μm.

We now move on to the case of the ring resonator. In this case, many waves, scattering on either of the contacts, interfere and
contribute to the output current. The transmission T can be analytically derived in full generality and reads as follows:

T = 2Zg

Ze

S2
g+e− jω πr

v

(
1 − e−2 jω d

v (S2
++ − S2

+−)
)

(
1 − 2e− jω d

v S+− − e− jω 2πr
v (S2++ − S2+−)

)(
1 + 2e− jω πr

v S+− − e− jω 2πr
v (S2++ − S2+−)

) . (16)

As can be seen from Figs. 4(c) and 4(d), T exhibits many
features, with a quite complex behavior. Nonetheless, in the
high-frequency regime ω 
 1/ZgCg and 1/ZeCe, the different
Si j coefficients are all real, and S+− is rather small, so that T
can be approximated by the following formula (plotted as a
dashed gray line):

T = 2Zg

Ze

S2
g+e− jω πr

v

1 − e− jω 2πr
v S++(S++ + 2S+−)

. (17)

In this regime, one again recognizes a familiar Fabry-Pérot
resonator, with an effective “mirror” reflection coefficient � =
S++(S++ + 2S+−). Equidistant resonance peaks are separated
by 
 f = v

2πr , the round-trip frequency, allowing for a simple
extraction of v. Here, losses are ignored, and the geometry is
closed. As a consequence, the amplitude of the peaks tends
to 1 in the high-frequency regime, regardless of parameters.
However, the impedance Ze acts on the value of S±± and hence
on the reflexion � which determines the peak width: we find
that the width of the peaks (full width at half maximum) is

given by δ f = v
2πr

16
√

3KZg

πRK
, allowing for determining K . One

can also simultaneously evaluate the relatively high-quality
factor Q = 
 f

δ f = πRK

16
√

3KZg
� 60

K .

IV. BEYOND THE BALLISTIC LIMIT

The devices previously introduced provide direct simul-
taneous access to v and K . One can, however, wonder how
scattering in the channels could alter the previous results.
In this framework of transmission lines, a basic model of
scattering is proposed via an additional line resistance, Re, in
series with Ce. To lowest order [38], the propagation term s±
then acquires an additional exponential term, e−Re

2Ze
d . It is then

straightforward to show that the linear resonator exhibits a
modified saturation value, |Tsat| = 8KZg

RK
e−Red

2Ze , while the phase
arg(T ) is not modified. The change of |Tsat| is illustrated in
Fig. 5(a) for loss parameters recently measured in HgTe layers
[49] for which Re ranges from ∼0.1 to ∼3 k� μm−1. In the
ring resonator, the FP peaks are more strongly modified. They
have a decreased maximum transmission |Tmax| < 1 and an
increased width δ f that read as follows:

|Tmax| = 8Zge− πRer
Ze

Ze
(
1 − e− πRer

Ze

) + Zg
(
1 + e− πRer

Ze

) , (18)

δ f = v
√

3

2π2r

[(
1 + 16KZg

RK

)
e

πRer
Ze − 1

]
. (19)
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FIG. 5. Effect of losses on the transmission. (a) For Re = 0, 0.1,
and 3 k� μm−1, the moduli |T | of the transmission of the linear res-
onator are plotted as solid colored lines. The dashed lines represent
the high-frequency asymptote |Tsat|. (b) For Re = 0, 0.1, and 3 k�

μm−1, the moduli |T | of the transmission of the ring resonators are
plotted as solid colored lines. The dashed lines represent the approxi-
mation given in Eq. (17), while the solid gray lines represent the peak
widths δ f . All graphs were obtained with the following parameters:
Ce = 16 fF, Cg = 8 fF, v = 1 × 106 ms−1, K = 0.5, d = 10 μm, and
r = 6 μm.

As a consequence, in Fig. 5(b), we observe that a finite Re

strongly suppresses the Fabry-Pérot resonances in the ring
resonator. From Eq. (17), one notices that, for large Re, the
featureless transmission T is then analogous to that of the
linear resonator, with |T | → 16KZg

RK
e− 2πrRe

2Ze . In any case, mea-
surements of samples with different travel lengths should be
employed to carefully take this effect into account.

V. EXPERIMENTAL CONSIDERATIONS

Finally, we review the conditions required to perform the
experiments. First, we note the impedance mismatch which
allows for determining K yields rather small values of |Tsat| �
0.005 � −45 dB. Though small, these values are customary
when measuring edge states in the microwave regime [41]
and remain experimentally measurable with standard vector
network analyzers (VNAs).

Second, we stress that we have restricted this study to short
distances (here d = 10 μm, r = 6 μm) so that the edge states
remain as close as possible to the ballistic limit, usually 5
to 10 μm [49–51]. Besides, in a recent study of HgTe quan-
tum wells [41], we have measured the quantum capacitance,
which remains large even in the topological gap. From the

data, we estimate that v � vF � 1 × 106 ms−1, Cg � 8 fF, and
Ce = 16 fF for a gate with an area of A = 2 μm2. Given these
parameters, the high-frequency range of the study identified
in Figs. 2 and 4 lies beyond 20 GHz. This is challenging
but not inaccessible thanks to the development of cryogenic
microwave probe stations. They allow measurements down
to 4 K and up to 67 GHz [52,53], with accurate in situ
microwave calibration. Besides, these parameters ensure that
the pointlike description of the gate coupling is sufficient,
as the finite length of the gate

√
A is always much smaller

than the plasmon wavelength in the whole frequency range,
i.e., such that

√
A 	 v/ f .

In other systems, with smaller velocities [54], or when
quantum and geometric capacitances are smaller, larger gates
may be necessary. In that case, the transmission line approach
with pointlike contacts between gate and edge states in prin-
ciple fails. A long-range distributed gate coupling can be
worked out based on Ref. [55]. The results described here
can then be adapted to take into account the additional effects
(propagation and finite-size effects) arising [56], and the va-
lidity of our approach is not questioned.

Finally, we point out that the presence of a metallic top-
gate (which screens interactions) and its distance to the helical
edge channels may significantly modify the value of v and K .
Several configurations (back gate, top gate, and resistive top
gate [57]) could thus be tested. In combination with dc mea-
surements, one could also assess the influence of Coulomb
interactions on scattering in helical edge channels, as sug-
gested by many theoretical works [8–10].

VI. CONCLUSION

As a conclusion, we have used the analogy between helical
Luttinger liquids of a QSH insulator and microwave trans-
mission lines to develop simple models of helical Luttinger
liquids and their coupling to local capacitive contacts. We
have combined these building blocks in two different res-
onator geometries and have shown that the measurement of
the microwave transmission coefficient T allows for a very
natural determination of the velocity v and the Luttinger
parameter K . Thus, a full characterization of Coulomb interac-
tion can be obtained, shining new light on its consequences on
the dynamics and back-scattering in helical edge states. The
challenge resides in the use of high frequencies (>10 GHz),
now readily accessible in cryogenic microwave probe stations,
in combination with conventional VNAs.

We believe that the general framework developed here for
helical liquids can be extended to other types of interacting
1D systems, such as the chiral edge states of the integer
and fractional quantum Hall effects (though the geometries
studied in this article are irrelevant). Future developments will
thus aim at proposing geometries that will unveil the exact
nature of modes (charged vs neutral modes, Majorana edge
states, etc.) and allow better understanding of the effects of
edge reconstructions.

The data sets generated and analyzed during the current
study are available from the corresponding author upon rea-
sonable request.
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