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The field of quantum sensing aims at improving the detection and estimation of classical parameters that are
encoded in physical systems by resorting to quantum sources of light and quantum detection strategies. The same
approach can be used to improve the current classical measurements that are performed on biological systems.
Here we consider the scenario of two bacteria (E. coli and Salmonella) growing in a Luria-Bertani broth and
monitored by classical spectrophotometers. Their concentration can be related to the optical transmissivity via
the Beer-Lambert-Bouguer’s law and their growth curves can be described by means of Gompertz functions.
Starting from experimental data points, we extrapolate the growth curves of the two bacteria and we study the
theoretical performance that would be achieved with a quantum setup. In particular, we discuss how the bacterial
growth can in principle be tracked by irradiating the samples with orders of magnitude fewer photons, identifying
the clear superiority of quantum light in the early stages of growth. We then show the superiority and the limits of
quantum resources in two basic tasks: (i) the early detection of bacterial growth and (ii) the early discrimination
between two bacteria species.
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I. INTRODUCTION

Growth curves are found in a wide range of disciplines,
such as fishery research, crop science, and other areas of
biology [1]. They have for a long time been used to study the
dynamics of the populations of bacteria. These curves typi-
cally show an initial lag time after which the concentration (or
number of organisms) starts to increase exponentially toward
a maximal saturation value; in this final stationary phase, the
growth rate gradually decreases to zero as the asymptote is
reached. This overall process results in a typical sigmoidal
curve that has been represented by various mathematical mod-
els [2]. The parameters of this curve depend on the specific
process under study, be it bacterial growth in samples or dose-
mortality relations [3].

In today’s biology and chemistry laboratories, the spec-
trophotometer is the instrument that is used to measure
bacterial concentrations and therefore track their growth. This
is an optical instrument which measures the transmission
η ∈ [0, 1] of visible, UV, or infrared light through a sam-
ple. More precisely, it measures the optical absorbance A :=
− log10 η [4] also known as optical density (OD) (we assume
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negligible scattering from the sample). Its basic principle is
the well-known Beer-Lambert-Bouguer law [5–7], which re-
lates the optical absorbance of a sample to its concentration
[8]. More precisely, the absorbance A at some specific wave-
length λ is equal to the concentration of the sample C (in
units of mol/m3) times the length l of the optical path (in
units of m) times the molar extinction coefficient ε specific
of the substance (in units of m2/mol). Thus, we have the
formula A = εlC or equivalently η = 10−εlC . In a standard
setup, where ε and l are fixed, the absorbance is the relevant
quantity to be considered for tracking bacterial growth.

The two main types of spectrophotometers are single and
double beam. The first design measures only the light intensity
at the output of the sample, while the second measures the
ratio of the light intensities at the output of two separate paths,
one sent through the sample and the other one sent through
a reference or blank. It is important to estimate the typical
number of photons that are irradiated by these devices for
their readout. To give an idea of the order of magnitude, we
perform a simple calculation based on one of the spectropho-
tometers that we used for our experimental data (Ultraspect
2100 pro Amersham Bioscience). This employs a Xenon light
source at 600 nm with an average of power 10 W, flashing at
a frequency of 25 Hz, corresponding to about 0.4 J per flash.
A typical measurement involves about six flashes for a total
time of about 1/4 of a second, corresponding to about 2.4 J
of energy E irradiated over the sample. From Planck’s law
E = nhc/λ, we can derive the staggering value of n � 1019

thermally distributed photons at 600-nm wavelength.
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The irradiation of such a high energy is a potential disad-
vantage for this instrument. In fact, a very high number of
photons can be destructive, especially if the sample contains
photosensitive bacteria, fragile proteins, or DNA/RNA. Fur-
thermore, there are other limitations to account for in current
spectrophotometers. One problem is the low sensitivity of the
instrument, which is often inadequate for good readouts of
low concentrations, a task which is very important in scenarios
such as early disease detection or food poisoning. Because of
this poor performance, researchers may need to reprepare their
samples many times to get a good statistical estimate.

In the present paper, we discuss how the use of quantum
resources can drastically reduce the number of photons that
are required for readouts of bacterial concentration. Collect-
ing experimental data with standard spectrophotometers, first
we study the typical realistic errors affecting these classical
instruments in tracking the growth of bacterial species (E. coli
and Salmonella). From this data, we extrapolate the functional
forms of the bacterial growth curves, which are then used
in our theoretical simulation of an optimal quantum setup.
We show that similar performances can be achieved by using
quantum designs that employ sources of light with orders
of magnitude fewer photons, when suitably combined with
corresponding optimal quantum detections.

Depending on the working regime (lower or higher concen-
trations), there is a preferable semiclassical or truly quantum
state to be used for the input light. At higher concentrations,
one needs to consider coherent states irradiating a relatively
high mean number of photons per readout (e.g., of the order
of 104). This source is studied in combination with an optimal
quantum detection at the output. It represents our semiclas-
sical benchmark which bounds the performance of any other
classical source (even when the output detection is quantum).
We also discuss how its performance can be achieved by
using a double-beam setup where asymmetrically correlated
two-mode thermal states are prepared at the input and photon-
resolving measurements are performed at the output.

Our results show that the use of truly quantum states is
limited to low concentrations, i.e., during the early phase of
bacterial growth. Considering this initial phase and assuming
a small number of photons irradiated over the sample, the
performance of optimal quantum states in estimating the con-
centration clearly outperforms the semiclassical benchmark
based on coherent states. In general, the optimal quantum
states can be engineered as suitable superpositions of number
states [9,10] and their quantum measurement is the opti-
mal one which minimizes the quantum Cramer Rao bound
(QCRB) [11]. In practice, we also analyze the performance of
quantum states (squeezed vacua) that can be easily engineered
in the laboratory, showing that they offer a similar quantum
advantage as the optimal quantum probes.

Because quantum advantage is relevant at low concen-
trations, it is therefore important in tasks of early bacterial
detection. We therefore study the task of the early detection
of the growth of E. coli in a sample, and the task of the early
discrimination between the growth of two different bacterial
species (E. coli and Salmonella). In both cases, we are able
to show the advantage of the optimal and practical quantum
sources with respect to the semiclassical benchmark (coher-
ent states), both in terms of reducing the time for detecting

bacterial growth and decreasing the error probability in the
discrimination between two different species.

The paper is organized as follows. In Sec. II, we describe
our classical experiments for tracking the growth of E. coli and
Salmonella via standard spectrophotometer in typical labora-
tory conditions. Then, in Sec. III, we study the performance of
a theoretical quantum-enhanced model of spectrophotometer
based on semiclassical or truly quantum sources and output
quantum detection. In Sec. IV, we study early detection and
discrimination of bacteria. Finally, Sec. V is for conclusions.

II. EXPERIMENTAL GROWTH CURVES WITH
CLASSICAL INSTRUMENTS

We have performed two different experiments. In the
first experiment, we considered a single bacterial species
(E. coli, MRE600) [12]. The results were averaged over the
strain so as to consider an average behavior. In the sec-
ond experiment, we instead considered two different species
of bacteria (E. coli BW25113) and Salmonella (enterica
serovar Typhimurium ATCC1428 strain) whose growth behav-
iors were analyzed separately. In all cases, the bacteria were
first grown in a Luria-Bertani (LB) broth at 30 ◦C and then
suitably diluted for subsequent measurements. Their concen-
trations (optical absorbance) were measured by using classical
spectrophotometers. Finally, the outcomes were statistically
postprocessed into experimental growth curves. See Methods
for more details.

From the experimental data, we extrapolated ana-
lytical forms for the growth curves, according to the
Gompertz function [2,13]. This function relates the
concentration/absorbance A of the sample to time t , as
follows:

A = a exp[− exp(b − ct )], (1)

where a, b, and c are parameters to be interpolated from the
data. Note that the Gompertz function can also be rewritten as
[2, Eq. (11)]

A = a exp
{
− exp

[μe

a
(θ − t ) + 1

]}
+ Abk, (2)

where a is the asymptotic absorbance at infinite time t → ∞,
μ := ac/e is the rate of growth in the linear region, and
θ := (b − 1)/c. Here we have also added an additional offset
Abk accounting for nonzero mean absorbance of the blank
sample (i.e., nonunit transmissivity ηbk of the media holding
the species under study).

The data of the first experiment is shown in Fig. 1. At each
time, 24 data points were measured and postprocessed into a
mean value plus an error bar. Data was then used to interpolate
a Gompertz function with suitable parameters. The entire data
of the second experiment is shown in Fig. 2. At each time, 18
data points per species were measured and postprocessed as
before. In particular, in Fig. 3 we zoom on the first six hours,
where the two growth curves for E. coli and Salmonella are
more distinguishable. These experimental curves have been
interpolated by two Gompertz functions.

043260-2



DETECTING AND TRACKING BACTERIA WITH QUANTUM … PHYSICAL REVIEW RESEARCH 2, 043260 (2020)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Time (hrs)

A
bs
or
ba
nc
e

FIG. 1. Growth curve of E. coli (wild-type MRE 600) in terms
of optical absorbance versus time (hours). We show the experimental
data, suitably postprocessed into a mean curve with error bars cor-
responding to one standard deviation. The data is then interpolated
by the Gompertz function (red line) given by Eq. (2) with parameters
a � 9.4, μ � 1.7, θ � 2.9, and Abk � 0.036. For completeness, we
also show the linear phase (t − θ )μ of the growth (dashed blue
line). This linear phase occurs after the latency phase and before the
saturation phase of the sigmoid.

III. THEORETICAL PERFORMANCE WITH
A QUANTUM SETUP

We now consider the theoretical performance that is
achievable by using a semiclassical or a quantum source at
the input, combined with optimal quantum detection at the
output. Our first aim is to show that a semiclassical or fully
quantum setup can achieve an accuracy that is comparable
with the typical performance of a classical spectrophotometer
while using orders of magnitude fewer photons. As semi-
classical sources, we consider single-mode coherent states
and also their approximation by means of two-mode corre-
lated thermal states. As truly quantum sources, we consider
optimal single-mode states, such as number states and their
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FIG. 2. Growth curves of E. coli (black points) and Salmonella
(blue points) in terms of optical absorbance versus time (hours). We
show the experimental data postprocessed into mean curves with
error bars corresponding to one standard deviation.
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FIG. 3. Growth curves of E. coli (black points) and Salmonella
(blue points) in terms of optical absorbance versus time (hours). We
zoom the experimental data of Fig. 2 for times up to six hours. The
two sets of data points are interpolated by two Gompertz functions
with parameters {a, μ, θ} � {0.309, 0.139, 2.634} for E. coli and
{a, μ, θ} � {0.242, 0.0882, 2.672} for Salmonella. In both cases, the
blank has mean absorbance Abk � 0.144 (corresponding to a blank
transmissivity ηbk � 0.717).

superpositions [9]. To explore the limits achievable by these
sources in the estimation of optical absorbance, we consider
the QCRB [11]. For a fixed source (input state) and number N
of probings of the sample, this bound provides the minimum
error-variance that we could achieve by optimizing over all
possible quantum measurements at the output.

First, for our purposes, we need to connect the error (stan-
dard deviation) ση affecting the transmissivity η of the sample
to the error (standard deviation) σA associated with the ab-
sorbance A = − log10 η. A simple calculation provides σA �
ση/(η̄ ln 10), where η̄ is the mean value of the transmissivity,
corresponding to η̄ = 10−Ā, where Ā is the mean value of the
absorbance. This approximation is justified by the so-called
delta method [14–16] (see Methods for more details). In our
theoretical simulation for the quantum setup, we assume that
the experimental mean value Ā, which is well-approximated
by the Gompertz function, represents the actual physical value
A of the absorbance. Correspondingly, we assume that the
mean value η̄ = 10−Ā corresponds to the actual physical value
of the transmissivity. As a result, we may modify the previous
expansion into the following form:

σA � ση

η ln 10
. (3)

The next step is to assume the QCRB for the computation
of ση. Assume that the sample can be approximately modeled
as a pure-loss bosonic channel Eη with transmissivity η. This
channel/sample is probed by N quantum states ρ⊗N

n̄ which
irradiate a total of n̄tot := Nn̄ mean number of photons, where
n̄ is the mean number of photons per state. Assuming an op-
timal measurement of the output states ρ⊗N

out , we can construct
an unbiased estimator η̂ of η. This estimator is subject to an

043260-3



GAETANA SPEDALIERI et al. PHYSICAL REVIEW RESEARCH 2, 043260 (2020)

error variance given by the QCRB,

σ 2
η � 1

NHη,n̄
, (4)

where Hη,n̄ is the quantum Fisher information (QFI) [11] to
be computed on the single-copy output state ρout := Eη(ρn̄).
When ρout is a Gaussian state [17], we can easily compute
the QFI from the fidelity, according to the general formulas in
Ref. [18].

Combining Eqs. (3) and (4), we may write the following
standard deviation error for the absorbance

σA �
[

1

η(ln 10)
√

NHη,n̄

]
η=10−A

. (5)

The explicit expression of the QFI Hη,n̄ depends on the trans-
missivity η and the single-copy input state ρn̄. Assuming
a single-beam configuration where the light emitted by the
source can be described by a coherent state ρn̄ = |√n̄〉〈√n̄|
irradiating n̄ mean photons, we have Hη,n̄ = n̄/η [19], so

σA � 1

ln 10

√
10A

n̄tot
. (6)

This performance can equivalently be achieved in a double-
beam configuration where a two-mode correlated thermal
state is prepared in a very asymmetric way, so one mode is
faint and the other is highly energetic (see Ref. [20] for more
details on this equivalence). The faint mode is sent through the
sample while the energetic one is directly sent to the output
measurement, where both the output modes are subject to
photon counting (see Methods for more details).

The optimal quantum performance corresponds to [19]
Hη,n̄ = n̄[η(1 − η)]−1, which is reached by input number
states or suitable superpositions [9]. By substitution into
Eq. (5), we derive the following improved error and its ex-
pansion at low absorbance:

σA � 1

ln 10

√
10A − 1

n̄tot
(7)

�
√

A

n̄tot ln 10
+ O(A3/2). (8)

An important observation about the standard deviations in
Eqs. (6) and (7) is the fact that they depend on the energy
of the input via the mean total number of photons n̄tot = Nn̄.
This means that these quantities do not change if we consider
a single energetic state (N = 1, n̄ = n̄tot) or a large number of
lower-energy states, so N � 1 and n̄ � n̄tot with Nn̄ = n̄tot

(assuming that the total measurement time of this second
option is reasonable). This is particularly useful for the truly
quantum resources which are typically limited to one photon
or less; for these, we implicitly assume the condition of low-
energy single-copy states so we increase the total energy by
increasing the number of copies N . Furthermore, in the regime
of large N , the QCRB is known to be achievable [10,11,21]
and the optimal detection strategy can be realized by using
local quantum measurements (i.e., performed over the single
copies) combined with adaptive estimators [22,23].

We show our numerical results in Figs. 4 and 5, consid-
ering the mean growth curve of E. coli approximated by the
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FIG. 4. Theoretical growth curves achievable by using coherent
states and an optimal output detection, reaching the QCRB in Eq. (6).
We plot the mean bacterial growth (solid red curve) as given by the
Gompertz function from Fig. 1. Then, we consider the error bars
(at one standard deviation) given by coherent states with n̄tot = 100
(solid black lines), n̄tot = 1000 (dashed black lines), and n̄tot = 10000
(dotted black lines).

Gompertz function plotted in Fig. 1. In Fig. 4, we show the
error bars (at one standard deviation) that we would obtain
by using coherent states for different values of total energy
irradiated. As we can see from the figure, the error bars are
narrow at low absorbances for which we can use relatively few
photons, while they quickly increase at higher values of the
absorbance, for which we need to consider energetic coherent
states. At high absorbance, the performance of coherent states
approximates the quantum limit, as we can see by comparing
Eqs. (6) and (7) for large A. This means that, for this regime,
it makes little sense to consider truly quantum states such as
number states and the best strategy is to use coherent states
with high energy.
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FIG. 5. Theoretical growth curves at low values of absorbance
(latency phase). By fixing n̄tot = 20 photons, we compare the optimal
error bars achievable by coherent states (solid black lines) and those
achievable by the optimal quantum states (dashed blue lines). The
mean growth curve (solid red line) is the Gompertz function from
Fig. 1.
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However, the case for low absorbances/concentrations is
different. As we can see from Fig. 5, at the early stage of
bacterial growth, i.e., during the latency phase of the sig-
moid, the use of optimal quantum sources gives a nontrivial
advantage with respect to coherent states for the same mean
number of photons irradiated over the sample. In other words,
the initial latency phase, i.e., the low-concentration regime, is
the most interesting from the quantum point of view. Note the
asymmetric behavior of the error bars when the absorbance is
close to zero. This is due to the fact that the Gaussian distribu-
tion needs to be truncated. Start with a Gaussian distribution
with mean value Ā and standard deviation σA, and imposes a
one-sided truncation at the origin. Then the mean value and
standard deviation of the new distribution are given by

Ā′ = Ā + g(ω)σA, σ ′
A = σA

√
1 + ωg(ω) − g(ω)2, (9)

where ω := −Ā/σA and

g(x) := 2N (x)

1 − erf (x/
√

2)
, (10)

with N (x) being the standard normal distribution and
erf (x) := 2π−1/2

∫ x
0 e−x2

dx the error function.
Besides investigating the optimal quantum limit, in our fol-

lowing analysis we also explore the performance of a practical
quantum source, as represented by an input squeezed vacuum
state. This is a zero-mean Gaussian state with covariance
matrix diag(r, r−1), where r � 1 represents the squeezing
parameter (in the q quadrature). It is easy to see that its
mean number of photons depends on r and is given by n̄ =
(1 − r)2/(4r). From the literature [10,19], we know that the
performance of this input state for bosonic loss estimation
is close to optimal when n̄ is low. In particular, adapting the
result from Ref. [19], the QFI takes the form

Hη,n̄ = 1

η

[
n̄ − 2n̄η(1 − η)

(1 − η)[1 + 2n̄η(1 − η)]

]
, (11)

which can be used in Eq. (5) to derive the performance of the
squeezed vacuum probe.

Note that in this case, parameters n̄ and N are not simply
combined as before, but we need to fix N and use n̄ = n̄tot/N
in Eq. (11). In this case, we get a lower bound from Eq. (5)
which depends on A and n̄tot. More precisely, one may start
by fixing the amount of decibels that can be realized for
the squeezed probes. Even though values up to 9.3 dB are
currently realizable [24], in our paper we will consider the
case of a relatively cheap source with just 1 dB of squeezing,
so r = 10−1/10 � 0.794 and we have n̄ � 0.013 mean photons
per probe. For instance, this means that using a total of n̄tot =
20 mean photons corresponds to irradiating N = 1500 probes.
The number of probes in the order of 103 − 105 requires a
negligible time with respect to the timescale associated with
the bacterial growth. For instance, using a clock rate and a
detector at 1 MHz, these probes are generated and detected in
about 1 − 100 ms.

IV. QUANTUM-ENHANCED EARLY DETECTION

A. Detecting growth of E. coli

Once it is understood that the initial phase of the bacterial
growth is the most interesting one from the quantum point of
view, we therefore consider the task of early detection. This
consists of distinguishing whether bacteria are growing or not
in the sample. More precisely, we study the time required
for successfully discriminating whether the sample is blank
or contains E. coli growing in accordance with the experi-
mental data of our first experiment (see Fig. 1). As a first
step, we translate the absorbance data A into transmissivity
data η = 10−A, which is the quantity physically measured
by the instrument (and following a Gaussian distribution
under the assumption of many measurements). During the
first phase of the growth (up to three hours), we interpolate
the experimental data with a theoretical curve of the form
η(t ) = ηbk − ct2 + dt3, where ηbk is the transmissivity of the
blank sample, while c and d are suitable constants. From the
experimental data of the absorbance (see Fig. 1), we therefore
retrieve the corresponding decay in optical transmissivity η

versus time t (hours) for E. coli. We find ηbk � 0.92, c � 0.1
and d � 0.0088 for the cubic theoretical curve η(t ).

Using the curve η(t ), we then consider the error bars
achievable by an optimal quantum setup (in terms of source
and detection) and those that are instead achievable by a
semiclassical setup where the source is prepared in co-
herent states and the output is optimally detected by a
quantum measurement. As previously discussed, the latter is
a benchmark which bounds the ultimate theoretical perfor-
mance of any classical setup, i.e., based on classical sources
(coherent/thermal states) combined with classical receivers
(e.g., non-photon-resolving intensity measurements).

Using the QCRB for coherent states ση � √
η/n̄tot and the

QCRB for the optimal quantum states ση � √
η(1 − η)/n̄tot,

we plot the curves in Fig. 6. This figure already qualitatively
shows that truly quantum sources can perform much better at
short times. Below, we make this observation quantitative by
computing the corresponding error probabilities in detecting
the bacterial growth as a function of time.

Let us assume that at time t , we can perform a suf-
ficiently large number of measurements so the QCRB is
well-approximated (we use many probes N , each with small
mean number of photons n̄ such that the total Nn̄ matches
the fixed energetic constraint n̄tot). At each reading time t , the
data points {ηk}N

k=1 provided by the quantum measurement are
used to build an estimator η̂ of the transmissivity η(t ) whose
error ση is given by the QCRB for n̄tot mean total number of
photons irradiated by the source. Assume that the estimator
approximately follows a Gaussian distribution in η as a result
of the central limit theorem (e.g., the estimator may be based
on the arithmetic mean of the outcomes which, in turn, are
identically and independently distributed). Furthermore, for
increasing n̄tot, the standard deviation ση of this distribution
is sufficiently small, so the truncation of the tails at the border
of the finite segment 0 � η � 1 becomes a relatively small
effect.

For the null hypothesis H0 (no growth), the estimator
η̂ is centered around ηbk according to a Gaussian distribu-
tion p0(η) with standard deviation σηbk . For the alternative
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FIG. 6. Decay of transmissivity due to the growth of E. coli ver-
sus time t (black points) compared with the constant transmissivity of
a blank sample (blue points). The sample is monitored by irradiating
a total of n̄tot = 150 photons for each reading. Error bars refer to
one standard deviation as given by the QCRB. In (a), we consider
coherent states as the input source, while in (b) we consider optimal
quantum states. The mean decay (red line) is given by the curve η(t )
extrapolated by the experimental data and described in the main text.

hypothesis H1 (yes growth), the estimator η̂ will be instead
centered around η(t ) � ηbk according to a Gaussian distri-
bution p1(η) with standard deviation ση(t ). We can therefore
consider a decision test with threshold 0 � τ � 1: If η̂ � τ ,
we accept the null hypothesis H0, while if η̂ < τ we accept the
alternative hypothesis H1. Consequently, there are associated
false-positive pFP and false-negative pFN error probabilities,

pFP := prob(H1|H0) = N−1
0

∫ τ

0
p0(η)dη, (12)

pFN := prob(H0|H1) = N−1
1

∫ 1

τ

p1(η)dη, (13)

where the normalization factors Ni := ∫ 1
0 pi(η)dη for i = 0, 1

are due to the truncation at the border. Under this hypothesis,
we may compute

pFP(τ ) = 1

2N0

{
erf

[
ηbk√
2σηbk

]
− erf

[
ηbk − τ√

2σηbk

]}
, (14)

pFN(τ, t ) = 1

2N1

{
erf

[
η(t ) − τ√

2ση(t )

]
− erf

[
η(t ) − 1√

2ση(t )

]}
. (15)
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FIG. 7. Early detection of growth of E. coli. We plot the error
probability versus time t (hours) for the semiclassical case of a
coherent-state source (dashed line), an optimal quantum source (solid
black line), and a practical squeezed quantum source (solid purple
line), all of them irradiating n̄tot = 150 mean total photons over the
sample at each reading time. In particular, we choose 1 dB of squeez-
ing for the squeezed vacuum probe, so we have n̄ � 1.33 × 10−2

mean photons per mode, which requires the use of N = 11 267
probes (so as to irradiate 150 mean photons overall). In panel (a), we
consider the false-negative error probability pFN over time t , fixing
the value of false-positive error probability to pFN = 1%. In panel
(b), we plot the mean error probability pmean over time t . For both
symmetric and asymmetric testing, we can see how the optimal and
practical quantum sources allow one to detect bacterial growth much
earlier than the semiclassical benchmark (at about one hour instead
of two hours).

We now have two possible types of testing. In asymmetric
testing, we fix a tolerable value for the false positives. This
means we fix a value for pFP and, therefore, for the threshold
parameter τ , which can be expressed as an inverse function
τ = τ (pFP). We then replace τ in pFN(τ, t ), and study the
false-negative error probability pFN over time. In symmetric
testing, we instead assume that the two error probabilities
have equal Bayesian costs. In the case of the same priors, the
quantity of interest is therefore the mean error probability:

pmean(t ) := min
τ

pFP(τ ) + pFN(τ, t )

2
. (16)

The numerical results are shown in Fig. 7 for both asym-
metric and symmetric testing. In the regime of small energy
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(n̄tot = 150 in the figure), we can see that optimal quantum
states allow us to detect the growth of E. coli about one hour
earlier than coherent states. Approximately the same quantum
advantage can be reached by using as input source of light
composed of a tensor product of squeezed vacuum states with
just 1 dB of squeezing.

B. Discrimination of different bacterial species

To further explore this capability, let us also study the
performance in the early discrimination between different
bacteria, starting from the experimental data obtained for E.
coli and Salmonella (see Fig. 3). As before, the experimental
data in absorbance A can be expressed in terms of the trans-
missivity η = 10−A and the corresponding growth curves of
the two bacteria can be interpolated by two polynomial func-
tions ηEcoli(t ) and ηSalmo(t ). At each reading time t , the data
points {ηk}N

k=1 of a theoretical quantum measurement provide
an estimator η̂ of the transmissivity η(t ). The minimum error
ση will be given by the QCRB relative to the specific source
and the mean total number of photons n̄tot irradiated over the
sample. The numerical performances of coherent states and
optimal quantum states are shown in Fig. 8, up to four hours.
We can see that, while the quantum source certainly narrows
the error bars, the early discrimination between the two bacte-
ria appear to be more difficult than detecting a generic growth
with respect to the blank.

For the null hypothesis H0 (growth of Salmonella), the es-
timator η̂ is centered around ηSalmo(t ) according to a Gaussian
distribution p0(η) with standard deviation σηSalmo(t ). For the
alternative hypothesis H1 (growth of E. coli), the estimator
η̂ will be instead centered around ηEcoli(t ) according to a
Gaussian distribution p1(η) with standard deviation σηEcoli (t ).
As before, we consider a decision test with threshold 0 �
τ � 1: if η̂ � τ we accept the null hypothesis H0, while if
η̂ < τ we accept the alternative hypothesis H1. The associated
false-positive pFP and false-negative pFN error probabilities
are defined as in Eqs. (12) and (13). From these probabilities
pFP(τ, t ) and pFN(τ, t ), we can construct the mean error prob-
ability pmean(t ) := minτ [pFP(τ, t ) + pFN(τ, t )]/2 for equal
priors. We compare this mean error probability assuming co-
herent state sources, optimal and practical quantum sources
irradiating the same mean number of total photons n̄tot per
reading. As depicted in Fig. 9, an optimal quantum source
gives a clear advantage in the early discrimination between the
two bacteria, even though the advantage seems to be reduced
to less than one hour (about 30 minutes). This quantum advan-
tage is further reduced but yet present when considering the
practical quantum source (based on 1 dB squeezed vacuum).

V. CONCLUSION

In this paper, we have explored the potentialities of a
quantum-enhanced model of spectrophotometer in detecting
and tracking bacterial growth in samples. Starting from exper-
imental growth curves of two bacteria, E. coli and Salmonella,
we simulate the theoretical performance achievable by a quan-
tum design that is based on an input source, semiclassical or
truly quantum, combined with an optimal quantum measure-
ment at the output. We first discuss how this device could
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FIG. 8. Decay of transmissivity due to the growth of E. coli
(black points) and Salmonella (blue points) versus time t (hours).
The sample is monitored by irradiating a total of n̄tot = 103 mean
photons for each reading. Error bars refer to one standard deviation
as given by the QCRB. In (a), we consider coherent states as the input
source, while in (b) we consider optimal quantum states. The mean
decay (red lines) are given by curves ηEcoli(t ) and ηSalmo(t ) that are
extrapolated by the experimental data from Fig. 3.

efficiently work with orders of magnitude fewer photons,
also identifying the regime (low concentrations/absorbances)
where quantum sources can provide a nontrivial advantage.
We have further explored this regime considering tasks of
early detection of bacterial growth and early discrimina-
tion between two bacterial species. In each case, we have
shown that truly quantum light allows us to improve the
detection/discrimination performance with respect to the use
of coherent states.

In conclusion, our paper contributes to clarify the potential-
ities of noninvasive quantum sensing techniques for biological
and biomedical applications. Further investigations may be
aimed at the exploration of similar advantages for other types
of bacteria, the explicit design of optimal receivers, and the
simultaneous discrimination of multiple (>2) species growing
within a sample.
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quantum source (solid black line), and a practical quantum source
(solid purple line), all irradiating n̄tot = 103 mean total photons
per reading. For the practical quantum source, we consider a
tensor-product of 1 dB squeezed vacua, so we need N = 75 113
probes per reading.
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APPENDIX: METHODS

1. Description of the experiments

In the first experiment, we have averaged over a single
strain of E. coli MRE600 [12]. The strain was measured while
growing in a LB broth at 30 ◦C. In particular, three different
colonies of the MRE600 strain were selected from a Petri plate
and incubated overnight. Each colony was then resuspended in
5 ml LB and let grow at 30 ◦C overnight. Subsequently, each
culture has been diluted 1:100 in new flasks containing fresh
LB (a total of three flasks), so the initial OD at 600 nm was
0.02 for all of them. The new cultures were incubated at 30 ◦C
and the OD was measured at various times with four different
dilutions (1:1; 1:2; 1:5, and 1:10) with a technical replicate
for each dilution for a total of 24 samples. The duration of
the experiment was six hours and the measurements were per-
formed by using a single-beam spectrophotometer (Ultraspect
2100 pro Amersham Bioscience). The results of the readings
were then postprocessed [25]. During the postprocessing anal-
ysis, some of the data points were filtered considering the
appropriate dilutions and the fact that readings of OD that

are greater than 1 are not reliable. We call ODd the optical
density measured for a 1:d diluted sample. We only accept
measured values such that ODd < 1. Then, we compute the
effective (nondiluted) OD of the sample as d−1ODd , which
is the quantity plotted in Fig. 1. At each measurement time,
the appropriate readings from all the strains were combined
to form a single vector of 24 data points, over which we
computed average and standard deviation.

In the second experiment, we have analyzed a strain of
E. coli BW25113 [12] and a strain of Salmonella (enterica
serovar Typhimurium ATCC 14028). LB broth was used again
to grow the two species at 30 ◦C. As before, three colonies
of each species were grown in different test tubes overnight
and later diluted (roughly 1:100) in new test tubes with fresh
LB to have all the cultures at the same starting point (around
OD of 0.02 at 600 nm). Each tube was then used to provide
six samples for a total of 18 samples per species. These 18
samples were transferred to the micro-plate of an automatic
spectrophotometer (infinite M200 Pro microplate reader by
Tecan). This particular instrument performed readings of the
18 samples every 30 minutes for 20 hours. The contribution
of the blank was estimated from four blank samples also mea-
sured every 30 minutes for 20 hours, for a total of 4 × 40 =
160 measurements. The blank contribution to the absorbance
was equal to 0.144 ± 0.006. The results of the readings were
then postprocessed [25].

2. Delta method

In general, consider a sequence of random variables Xn

converging in distribution to a normal variable X with (fi-
nite) mean value X̄ and (finite) variance var(X ). Convergence
in distribution means that the cumulative function Fn of Xn

converges to the cumulative function F of X , pointwise in
the entire region where F is continuous. Now take a differ-
entiable function A(X ) with nonzero first derivative. Then,
the sequence A(Xn) converges in distribution to a limit vari-
able, which is normal with mean value A(X̄ ) and variance
[A′(X̄ )]2var(X ). This is the case when A(X ) = − log10(X )
for which we have [A′(X̄ )]2 = [(ln10)X̄ ]−2. For a sufficiently
large number of probings, we can assume, with good ap-
proximation, that the transmissivity η is distributed normally
around the mean value η̄ with small standard deviation ση.
Therefore, we can write the first-order approximation σA �
ση/(η̄ ln 10).

3. Performance of correlated-thermal states

The formulas in the main text refer to single-mode sources.
Let us here consider a two-mode source, therefore suitable for
a double-beam design. In particular, we consider a two-mode
correlated thermal state combined with a practical quantum
detection at the output based on photon counting.

Recall that a two-mode correlated thermal state is a zero-
mean Gaussian state with covariance matrix [17]

VAB =
(

aI cI
cI bI

)
, (A1)
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where I = diag(1, 1) and

a := n̄ + 1/2, b := n̄(x−1 − 1) + 1/2, (A2)

c :=
√

(1 − x)/xn̄. (A3)

Here n̄ is the mean number of thermal photons in the mode
A irradiated over the sample, while 0 < x < 1 is an asymme-
try parameter, so mode B contains n̄(x−1 − 1) mean thermal
photons. We perform photon counting on the output modes A
(sent through the sample with transmissivity η) and B (directly
sent to the receiver).

The optimal performance is given by the classical Cramer-
Rao bound

σ 2
η � 1

Nhη,n̄,x
, (A4)

where the classical Fisher information hη,n̄,x is [20]

hη,n̄,x = γ n̄

η
, γ := 1 + (1 − x)n̄x−1

1 + (1 − x + xη)n̄x−1
� 1. (A5)

Using Eq. (3), we therefore find

σA � 1

ln 10

√
10A

γ n̄tot
, (A6)

where γ = γ (x, n̄, A) by replacing η = 10−A in Eq. (A5).
For fixed absorbance A and input energy n̄, we can optimize
σA over x. For large asymmetry x → +∞, we get γ → 1,
so Eq. (A6) becomes equal to Eq. (6) which is the optimal
performance achievable by coherent states (with an optimal
quantum measurement).
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