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Stationary states and instabilities of a Möbius fiber resonator
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We examine the steady state and dynamic behavior of an optical resonator comprised of two interlinked fiber
loops sharing a common pump. A coupled Ikeda map models with great accuracy the field evolution within and
exchange between both fibers over a single round trip. We find this supports a range of rich multidimensional
bistability in the continuous wave regime, as well as previously unseen cavity soliton states. Floquet analysis
reveals that modulation and parametric instabilities occur over wider domains than in single-fiber resonators,
which can be tailored by controlling the relative dispersion and resonance frequencies of the two fiber loops.
Parametric instability gives birth to a train of pulses with a peculiar period-doubling behavior.
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I. INTRODUCTION

Optical resonators are complex physical platforms, ex-
hibiting an even richer range of phenomena than single-pass
nonlinear systems due to their driven-dissipative nature. They
are of increasing importance in metrology as sources of highly
tunable, broadband frequency combs [1–3]. The Kerr cavity
soliton is one of the fundamental states responsible for gen-
erating these combs [4–8]. Further, they have been proposed
as cryptographic tools due to their chaotic output [9–11].
Nonlinear optical resonators can be precisely modelled by
the so-called Ikeda map [12,13], which describes separately
the evolution of the electric field as it propagates through the
cavity, and the boundary conditions which account for the
injection of pump light and transmission of the cavity field
between each round trip.

In this work, we propose a resonator composed of two
fiber loops sharing a common pump. This geometry is rem-
iniscent of the Möbius strip. Indeed, the two fiber coils are
not closed, but they form a unique loop, in the same way
as a Möbius surface has a unique side. The structure of the
Möbius fiber resonator we consider is shown in Fig. 1. We
model the light propagation inside this resonator by means
of a coupled Ikeda map. Several works have considered
extended/multidimensional Ikeda maps and mean-field ap-
proximations by Lugiato-Lefever equations with nonlinear
coupling between the fields of a single resonator [14–21].
Xue et al. [22] examine the nonlinear response of a similar
fiber resonator with weakly coupled loops, showing how Kerr
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cavity solitons may be generated with great efficiency in one
fiber loop by weakly coupling to a much shorter loop driven
with a constant pump field. While their extended mean-field
model could be applied to the Möbius resonator, we choose
to study the full Ikeda map as we work with a wide vari-
ety of conditions often far from resonances. Here mean-field
models may be less accurate [7] unless several resonances
are included [23]. For our purposes, limiting ourselves to
Möbius resonators composed of two identical-length loops,
the Ikeda map is generally straightforward and realistic to
apply.

The dimensionless Ikeda map connecting the fiber fields
between round trips (labelled with an integer m) is

Am+1
1 (z = 0, t ) =

√
θAin + √

1 − θe−iδ2 Am
2 (z = 1, t ),

Am+1
2 (z = 0, t ) =

√
θAin + √

1 − θe−iδ1 Am
1 (z = 1, t ),

(1)

while intrafiber propagation is described by a lossy nonlinear
Schrödinger equation (NLSE)

i∂zA
m
n = ηn∂t

2Am
n + iβ3,n∂t

3Am
n − ∣∣Am

n

∣∣2
Am

n − i
αi

2
Am

n . (2)

for fibers indexed as n = 1, 2. We work in dimensionless
units in which the intrafiber propagation coordinate z = z̃/L
is scaled to the common fiber length L (denoting here and
subsequently all physical counterparts of dimensionless quan-
tities with a tilde ∼). By assuming identical length fiber
loops, we neglect the possibility of temporal walk-off be-
tween pulses traveling through either fiber. This loss in
our model’s generality is compensated by its simplicity and
ease of numeric integration for our case compared to mul-
tiresonance schemes. Time t = t̃

√
2/|β2,2|L is scaled by the

second-order dispersion coefficient of the second fiber β2,2 ≡
[∂2

ωβ2]ω0 , given propagation constant (wave number) β2(ω)
in the second fiber and pump frequency ω0. Hence η2 ≡
sgn(β2,2) and η1 = sgn(β2,1)|β2,1/β2,2| and the dimensionless
third order dispersion parameters are related to their physical
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FIG. 1. Schematic of the Möbius fiber loop resonator. A pair of
optical fibers (red and blue) are linked as shown, such that the output
of each is fed into the other’s input. The gold region is expanded
inside the dashed box to reveal the coupling structure within; pump
light is split equally by a 50/50 coupler to provide a common input
to both loops in the resonator. Ikeda boundary conditions are imple-
mented by couplers whose ratios are θ to ρ ≡ 1 − θ . Outputs from
both resonators together with reflected pump light are recombined
by a second 50/50 coupler. Short black fibers represent redundant
coupler ports which are not used.

counterparts β3,n =
√

2/|β2,2|3L[∂3
ωβn]ω0/3. The fiber fields

Am
n are related to physical electric fields as Am

n = √
γ LÃm

n ,
where γ is the Kerr nonlinear coefficient, and similarly the
pump field Ain = √

γ LÃin. Since we work with a pump which
is implicitly a time-independent constant, our frequency vari-
able � expresses a scaled detuning of the physical frequency
ω from ω0, that is � = (ω − ω0)

√|β2,2|L/2. θ parametrizes
the transmission of pump light into the fibers and fiber output
fields into the bus waveguide. The absorption coefficient is
also scaled by the fiber length αi = α̃iL, while the detunings
δn = 2kπ − βn(ω0)L measure the phase difference accumu-
lated per round trip with respect to the nearest single-loop
resonance indexed by the integer k.

In this paper, we investigate the power within the fibers
of the Möbius resonator in different dynamical situations.
First we examine steady states in the continuous-wave (time
independent) limit, where the field in either fiber is inde-
pendent of both the round trip number n and the intracavity
time coordinate t . This reveals an extended set of solu-
tions exhibiting bistability, whose symmetry depends on the
relative detuning of the two fiber loops. In the following
section, we consider the dynamical case in which the fiber
fields vary over time, but periodically repeat themselves
within both loops after one or more resonator round trips,
defining a (dynamical) steady state. Here, allowing the fiber
loops to have different dispersive characteristics gives rise
to a new class of Kerr cavity solitons. The structure of
these solitons is sensitive to the relative second- and third-
order dispersion coefficients in each fiber. Finally, we derive
the modulation instability (MI) spectrum by applying Flo-

quet analysis, which demonstrates the existence of additional
Arnold instability tongues beyond those found in single fiber
resonators, arising from dispersion variations between the two
loops.

II. HOMOGENEOUS STEADY STATES

We first seek the time-independent steady states of the
Ikeda map in both fiber loops. For simplicity, here we work in
the low αi limit, such that we incorporate round trip losses into
the Ikeda boundary conditions

√
ρ̃ = √

1 − θ exp(−αi/2) and
the power within each fiber remains constant over a single
round trip. A pair of equations for the steady state fields
is obtained by first integrating the NLSE Eq. (2) over one
round trip, giving Am

n (z = 1) = exp(i|Am
n (z = 0)|2)Am

n (z = 0).
Using this, we substitute for Am

n (1) in Eq. (1), imposing the
constraint Am+1

n (0) = Am
n (0). Substituting for one field in each

equation using the other’s expression and vice versa, then mul-
tiplying on either side of both by their complex conjugates,
yields two simultaneous equations for the intrafiber powers
Y ≡ |A1|2, Z ≡ |A2|2:

(1 + ρ̃2 − 2ρ̃ cos(Y + Z − δ1 − δ2))Y

= (1 + ρ̃ + 2
√

ρ̃ cos(Z − δ2))θX,

(1 + ρ̃2 − 2ρ̃ cos(Y + Z − δ1 − δ2))Z

= (1 + ρ̃ + 2
√

ρ̃ cos(Y − δ1))θX. (3)

A single equation for Y and Z can be obtained from these by
eliminating the common pump term θX :

Y (1 + ρ̃ + 2
√

ρ̃ cos(Y − δ1))

= Z (1 + ρ̃ + 2
√

ρ̃ cos(Z − δ2)). (4)

Some example plots of solutions to Eq. (4) with a fixed δ2

and various δ1 are shown in Fig. 2. Red and blue sections
indicate unstable and stable solution branches, respectively.
The general structure of the curves repeats periodically in
both Y and Z directions. We determine stability by per-
forming a Floquet analysis around solutions in the limit
of zero frequency; a solution is stable if and only if the
modulus of the Floquet matrix’s eigenvalues are less than
unity. The general, frequency-dependent version of this Flo-
quet theory is presented in Sec. IV. In the case of a
resonator with equivalent fibers, δ1 = δ2, the powers follow
a symmetric bistability curve similar to that in Fig. 1(a) in
Ref [24]. If the fibers are unequally detuned however, the
curve opens asymmetrically. If the detuning imbalance be-
tween the two fibers is relatively small, a separate closed
orbit exists, close to which the solutions approximate an
elliptic curve [25]. These approximate local elliptic curves
are indicated by dashed boxes in Fig. 2. Although in the
present paper we do not explore the implications of the
existence of such curves in the stationary state diagram (a
unique feature of our Möbius resonators), it is interesting
to notice that elliptic curves are widely used in practical
cryptography due to their amazingly rich group-theoretical
structure that allows for efficient factoring of large integers
[26,27]. One could easily speculate that optical systems could
be well-suited to study empirically open number-theoretical
problems such as the famous Birch and Swinnerton-Dyer
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FIG. 2. Solutions to Eq. (4) showing the possible stationary state
powers Y, Z in the first and second fiber, respectively, given fixed
δ2 = π and different values of δ1, increasing sequentially through
11π/12, π, 13π/12, and 3π/2 going clockwise from top left to
bottom left. The stable and unstable solutions are marked by blue
and red points, respectively. Those which approximate sections of
elliptic curves lie in the regions enclosed by the dashed boxes. Here
θ = 2/15 and αi = 0.

conjecture [28]. At higher pump powers, the fields do not
converge to round trip independent constants and either
chaotic or cyclic patterns may emerge, as may be inferred by
the relatively low fraction of stable solutions in Fig. 2. The
latter may exhibit period-doubling behavior, on which we will
elaborate in Sec. IV.

III. DYNAMIC STEADY STATES & MÖBIUS
CAVITY SOLITONS

If the two fibers have identical parameters and detuning,
we recover the typical regimes of ring resonator steady state
behavior, which are well described in the mean-field limit
by a Lugiato-Lefever equation [5]. These are illustrated in
Fig. 3, which shows a sequence of homogeneous, modulation
instability, chaotic, oscillating and stabilized cavity solitons
followed finally by homogeneous steady states as the detun-
ing of both fibers is gradually increased over the resonant
interval. Here and in all that follows, the intracavity states
given varying values of detuning δ1 = δ2 are recorded after
propagating the initial condition over many round trips of the
dual Ikeda map Eq. (1). Specifically, at each step we increment
δ1 = δ2 by a small amount and propagate over 500 round
trips, using the output from the previous δ1 = δ2 increment
as the initial condition. We also add noise signals with each
increment to both fibers An(t ) → An(t ) + a exp(iψn(t )), with
a set as one tenth of the initial pulse amplitude and the phase

FIG. 3. Stationary state power distributions YSS in fiber 1 (a) and
ZSS in fiber 2 (b) over time which emerge in a Möbius resonator
composed of two identical fibers, as a function of common detuning
from the pump δ1 = δ2. The steady states are obtained by sequen-
tially incrementing both δ1 and δ2 in steps of 0.01, then propagating
for 500 round trips of the dual Ikeda map Eq. (1). Parameters:
Ain = 0.166, β3,n = 0, η1 = η2 = −1, θ = 2/15, and αi = 1/100.
Different regimes of dynamic steady-state behavior are indicated
with white labels and arrows; the steady state is time-independent
for detunings outside these ranges.

ψ being randomized for each point in time, independently for
both fields. The purpose of this is to ensure that the steady
state we converge to is robust. This is typically sufficient to
obtain convergence to the steady state in each case. At the
first integration step we choose the initial condition An(t ) =
1.2 sech(1.2t ) for n = 1, 2. We also choose Ain = 0.166, θ =
2/15, and αi = 1/100.

The two fibers within the loop may have completely dif-
ferent dispersive properties. In the first example, we examine
the steady states within a fiber resonator, where one fiber
has normal dispersion η2 = +1, while the other has stronger
anomalous dispersion η1 = −1.5. Surprisingly similar behav-
ior regimes to those seen with identical anomalous fibers
emerge, with clear transitions from stationary MI patterns to
chaos followed by cavity soliton formation (Fig. 4). When
multiple solitons form collisions may occur; at lower detuning
this results in the solitons merging, whereas they tend to

FIG. 4. Stationary state power distributions YSS in fiber 1 (a) and
ZSS in fiber 2 (b) over time which emerge in a Möbius resonator com-
posed of one anomalously dispersive fiber η1 = −1.5 and a second,
normally dispersive fiber η2 = 1, as a function of common detuning
from the pump δ1 = δ2. No third-order dispersion is present; param-
eters are Ain = 0.166, β3,n = 0, θ = 2/15, and αi = 1/100.
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FIG. 5. Stationary state power distributions YSS in fiber 1 (a) and
ZSS in fiber 2 (b) over time, which emerge in a Möbius resonator
composed of fibers with opposite group velocity dispersion (GVD)
η1 = −η2 = −1 but otherwise identical parameters, as a function of
common detuning from the pump δ1 = δ2.

collapse for higher detuning. Reducing the strength of the
anomalous dispersion in the second fiber decreases the detun-
ing ranges for which MI and cavity solitons are supported.

Considering a pair of fibers which have equal and opposite
dispersion, η1 = −η2 = −1, neither modulation instability
nor chaotic steady states emerge. However, instead of the
usual Kerr cavity soliton, a new kind of compact state which
we term Möbius cavity soliton (MCS) appears with a com-
plicated yet stable waveform in the fields of both fibers.
Figure 5 plots the intracavity power from both fibers as a
function of detuning. The MCS appears only within a small
detuning range δ ∈ (0.42, 0.455), and its structure changes
somewhat within this. Outside of this range only homoge-
neous steady states appear, with the modulation instability
and chaotic regimes apparently suppressed. On closer ex-
amination, plotting the field’s intrafiber evolution over two
round trips reveals that the stationary fields are snapshots of
a stable periodic state which oscillates smoothly between the
two (Fig. 6). The periodic behavior arises as the field expe-
riences cyclic second-order dispersion as it travels through
both loops of the resonator; a similar state was previously
found in a dispersion-modulated fiber ring [29]. The spectrum
of this MCS is considerably wider than that of the standard
cavity soliton given the same pump power and detuning, and
therefore is a promising seed for a broadband frequency comb
when emitted in a pulse train.

Including third order dispersion β3,n = 2.6 in both fibers,
the MCS becomes asymmetric in time and acquires a finite
group velocity. It is stable for an extended detuning range
δ ∈ (0.34, 0.45), however unlike the previous MCS which
results from β3,n = 0 the two fields within the resonator are
distinct and do not periodically transform into each other.
As a consequence the intracavity field in either fiber swaps
each round trip (but appears stationary when examined ev-
ery second round trip). From this, it is clear that the initial
condition affects steady state stability, as the field which first
traveled through the anomalously-dispersive fiber supports a
MCS to a slightly larger detuning limit than that which started
in the fiber with normal dispersion. This MCS has a highly
oscillatory structure in time and a narrower, peaked spec-
trum with resonant radiation resulting from the third-order

FIG. 6. Example of the intracavity steady state power in a
Möbius resonator composed of two fibers with equal and opposite
second-order dispersion η1 = −η2 = −1. Both fibers are detuned
from the pump by δ1 = δ2 = 0.43. (a) Intracavity power profiles
from fiber one and fiber two after 700 round trips. (b) Power profile
over time resulting from intrafiber propagation of one field over two
round trips, showing how the state continuously changes from the
distribution in one fiber to the other and back over one period of
the Möbius cavity soliton (MCS). (c) Comparison of the MCS spec-
trum with that of a standard Kerr cavity soliton which forms in an
equivalent resonator with fibers that have the same dispersion, given
the same pumping and initial condition as the dispersion oscillating
resonator. The MCS bandwidth is considerably larger, particularly at
lower powers.

dispersion clearly visible (Fig. 7). There are multiple peaks
as the Ikeda boundary conditions result in a series of possible
phase-matched wave numbers rather than one [30,31]; these
appear to satisfy phase matching conditions for integers k

〈β3,n〉�3 + 〈ηn〉�2 = 〈δn〉 + 1
2 〈Pn〉 + 2πk (5)

FIG. 7. (a) Power profiles from fiber one and fiber two given δ =
0.36, η1 = −η2 = −1 and β3,1 = β3,2 = 2.6. (b) Comparison of the
MCS spectrum with that of the input pulse. The green arrows indicate
the resonant radiation peaks. The other peaks result from four-wave
mixing between these.
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FIG. 8. (a) Power profiles from fiber one and fiber two given δ =
0.4, η1 = −η2 = −1 and β3,1 = −β3,2 = 2.6. (b) Comparison of the
MCS spectrum with that of the input pulse.

where 〈〉 denotes the averaging of a parameter over the fiber
index n and Pn is the peak power of the soliton in fiber n.
Note that in the case of Fig. 7 〈ηn〉 = 0 and there is only
one positive-frequency root for each k. We assume the other
peaks in the spectrum result from four-wave mixing between
these phase-matched frequencies. If the sign of β3,n swaps
between fibers as well that of ηn, a similar MCS forms in
both fiber loops. The oscillating β3,n leads to a reduced MCS
group velocity compared to the state formed with a common
β3,n as well as a reversed t-asymmetry between the intracavity
power (Fig. 8). Further, clear resonant radiation spectral peaks
do not appear since consistent phase-matching cannot be
achieved under these conditions. Specifically, 〈β3,n〉 = 〈ηn〉 =
0 so Eq. (5) cannot be satisfied for any �.

Allowing for unequal detuning from resonance in the two
fibers δ1 	= δ2 adds an additional dimension to the resonator’s
parameter space and considerably extends the possible exis-
tence of dynamical steady states. Performing a similar survey
of time dependent steady states over (δ1, δ2) ∈ [−π, π ] ×
[−π, π ] as was done in Fig. 3 for a resonator with η1 = −1.5,
η2 = 1 yields a map as shown in Fig. 9. Time dependent
states are concentrated around the joint resonance close to
the line δ1 + δ2 = 0. Proceeding from the negative (−π,−π )
to positive (π, π ) extremes of detuning we find the familiar
sequence of homogeneous, modulationally unstable, chaotic,
solitonic and homogeneous states. These state domains show
some curvature in the (δ1, δ2) plane, which we expect to
increase with pump power and round trip losses.

We note that the dynamical steady-states are dependent on
the sequence of parameters tested and their initial values. For
example, if the scan of increasing detuning shown in Fig. 5
had started with δ1 = δ2 = 0.4, the corresponding steady state
would be homogeneous. On increasing δ1 = δ2 from this
point, we would not observe the formation of Möbius solitons
in the same detuning range unless an external perturbation was
added. It appears that the chaotic MI phase from which cavity
solitons typically emerge is suppressed in resonators with
η1 = −η2 = −1, meaning they will not appear spontaneously
on increasing detuning from the homogeneous state. Like-
wise, had we examined the same detuning ranges in reverse
order a different sequence of states would result. This depen-
dence would be considerably more complicated to explore in a
higher-dimensional plot such as Fig. 9, where there are many

FIG. 9. Dynamical steady-state category in fiber 1 as a function
of fiber detunings from resonance (δ1, δ2). States are identified by a
color code; homogeneous states 1, modulation instability 2, chaotic
states 3, and cavity solitons 4.

more starting points and directions in detuning space from
which to probe the resonance. The analysis of bifurcation,
hysteresis and multi-stability in single fiber resonators is a
complex area of study in itself [32–34], so we propose a
more thorough examination of these as applied to the Möbius
resonator in future works.

IV. MODULATION INSTABILITY

The presence of two fibers in the resonator with distinct
dispersive properties raises the possibility of strongly mod-
ified modulation instability compared with that observed in
homogeneous fiber resonators [7,35,36]. The stepwise disper-
sion modulation seen by light over a complete round trip of the
resonator might be expected to result in similar instabilities
as a resonator composed of a single fiber with oscillating
dispersion, as presented in several previous works [37–40]. To
investigate this, we adapt the Floquet analysis of Ref. [38] to
the Möbius resonator. The only significant extension required
is that perturbations in both fibers must be monitored simul-
taneously to describe a complete round trip, meaning we have
a system of four simultaneous equations to solve rather than
two. To facilitate analysis, we incorporate small round trip
losses as in Sec. II into the boundary condition of the Ikeda
map (1), which now reads

Am+1
1 (z = 0, t ) =

√
θAin +

√
ρ̃e−iδ2 Am

2 (z = 1, t ),

Am+1
2 (z = 0, t ) =

√
θAin +

√
ρ̃e−iδ1 Am

1 (z = 1, t ),
(6)

∂zA
m
n = −iηn∂t

2Am
n + i

∣∣Am
n

∣∣2
Am

n (7)

with ρ̃ + θ < 1. We write the total field in the two res-
onators as Am

1 (z, t ) = A1 + ǎm(z, t ) + ib̌m(z, t ), Am
2 (z, t ) =

A2 + čm(z, t ) + iďm(z, t ). ǎ, b̌, č, ď are real perturbations and
the time-independent stationary state in resonator n is

An(z) = √
Pn exp (iPnz + ψn). (8)
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FIG. 10. Modulation instability gain as a function of frequency ω and common round trip phase φ1 = φ2 = φ for various ratios of second-
order dispersion r ≡ η2/η1 in the two resonator fibers.

As discussed earlier, there is no analytic solution available
for the steady state powers Pn and phases ψn, though it
is straightforward to find them numerically by integrating
a time-independent version of the Ikeda map. Considering
solely evolution through the first fiber loop, the linearized
NLSE for the perturbation coefficients reduces to a 2 × 2
coupled pair of ordinary differential equations,

d

dz

(
am(z, ω)
bm(z, ω)

)
=

(
0 −η1ω

2

η1ω
2 + 2P1 0

)(
am(z, ω)
bm(z, ω)

)
. (9)

Note the perturbations have been Fourier transformed into
the frequency (ω) domain. This problem has solutions with

eigenvalues

±k1 = ±
√

η1ω2(η1ω2 + 2P1) (10)

and corresponding eigenvectors

v+,− =
(

cos(k1z)
k1

η1ω2 sin(k1z)

)
,

(− η1ω
2

k1
sin(k1z)

cos(k1z)

)
. (11)

The eigenvectors define a fundamental solution matrix for
the ODE (9) X1(z) = (v+, v−). A completely analogous so-
lution matrix will exist for the perturbations in the second

FIG. 11. Modulation instability gain as a function of frequency ω and round trip phase in the first fiber φ1 = φ2 − π/2 for various ratios
of second-order dispersion r ≡ η2/η1 in the two resonator fibers.
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FIG. 12. Modulation instability spectrum that emerges over m
round trips in a Möbius resonator with δ1 = δ2 = 0.6π , P1 = P2 =
0.2, and η2 = 10η1 = 1. Colour axis shows the intracavity spectral
power of the second fiber on a logarithmic scale, as measured every
second round trip. Only the positive half of the spectrum is shown
since it is symmetric about � = 0. The spectrum in the first fiber
loop is nearly identical and features sidebands with the same strength
and position as those shown here. Dashed white, magenta, green, and
yellow lines indicate the band edges as predicted by the instability
gain spectrum resulting from Floquet analysis.

fiber;

X2(z) =
(

cos(k2z) − η2ω
2

k2
sin(k2z)

k2
η2ω2 sin(k2z) cos(k2z)

)
. (12)

These can be combined into a single 4 × 4 block diagonal
matrix which describes the evolution of all perturbations in
the am(z) = (am, bm, cm, dm) basis as

X (z1, z2) =
[

X1 O2

O2 X2

]
(13)

given O2 is the 2 × 2 null matrix. Meanwhile the bound-
ary conditions can be implemented by a combined
rotation

� =
√

ρ̃

[
O2 �2

�1 O2

]
, (14)

where

�n =
(

cos(φn) − sin(φn)
sin(φn) cos(φn)

)
(15)

and φ1 = P1 − δ1 + ψ1 − ψ2, φ2 = P2 − δ2 + ψ2 − ψ1. The
combined matrix describing a complete round trip evolu-
tion is the product of these, W = �X (1, 1). The eigenvalues
and eigenvectors of W can be solved for analytically, how-
ever the expressions are not particularly tractable. The four
eigenvalues consist of two pairs with equal magnitudes but
opposite sign, ±λ1,±λ2; since the eigenvalue modulus is
what determines instability gain, we need only consider
one of each pair. The gain for a particular frequency ω is
then [38]

g(ω) = ln (max(|λ1(ω)|, |λ2(ω)|)). (16)

We plot the gain assuming different values of dispersion in
both fibers in Fig. 10, assuming the detuning in both fibers
is the same. At least two instability branches are always
present at low frequencies. Increasing the GVD value in the

FIG. 13. Intracavity power over time in fiber one [(a) and (c)] and
fiber two [(b) and (d)] after m round trips. In (a) and (b), δ1 = δ2 = π ,
which results in a single P1 instability branch being excited. As the
eigenvalues of the Floquet matrix W are real, the MI pattern repeats
exactly in both fibers every second round trip, i.e., Am

n (t ) = Am+2
n (t ).

In contrast, for (c,d) δ1 = π and δ2 = π/2, which leads to a Faraday
P2 MI branch being excited. Imaginary Floquet eigenvalues leads to
period doubling, which manifests as a repetition of the Faraday MI
pattern within each fiber every two round trips, with the phase of the
pattern reversing each time. Hence four round trips are necessary for
a complete cycle Am

n (t ) = Am+4
n (t ). Other parameters: |Ain|2 = 1.79,

η1 = 10η2 = 1, and θ = 2/15.

first fiber η1 relative to the fixed GVD in the second fiber
η2 = 1 alters the curvature of the instability branches; it also
gives rise to two additional branches at higher frequencies
when the difference in dispersion magnitude between the two
fibers is sufficiently big. This is consistent with the findings of
Ref. [38].

Here we have an additional degree of freedom in the rel-
ative detuning between the two fibers, which can modify the
both the extent and positions of the branches. For example,
choosing φ2 = φ1 + π/2 leads to the modified gain in Fig. 11,
which shows the branches enabled by dispersion oscillation
in Fig. 10 become significant at low frequencies for any rel-
ative dispersion η1/η2. It is interesting to note that when the
two loops have dispersion with equal magnitude but opposite
signs, the instability branches become flat. This means that
for each steady state parametrized by the phase φ, either we
have no gain, or the gain is peaked around ω = 0. Hence
the steady state is either stable or unstable with respect to
zero frequency perturbations, that is the unstable state of a
multistable response. This fact explains why no modulation
instability is observed for opposite dispersions, as we found
in the previous section (see Fig. 5).

To check the accuracy of the Floquet analysis’ predictions
we numerically simulate MI in a Möbius resonator with δ1 =
δ2 = 0.6π , P1 = P2 = 0.2, and η1 = 10η2 = 1. The Floquet
theory indicates that to first order there should be four pairs
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of instability bands under these conditions, and indeed the
numerically integrated spectrum shows three sidebands devel-
oping after 100 round trips (see Fig. 12).

Instability branches may vary in their period behavior; MI
patterns on certain branches repeat exactly after every two
round trips, whereas those on others repeat every four round
trips. The period-doubling behavior associated with Faraday-
type instability branches is well documented in other works
[7,38,40]; an example is presented in Figs. 13(c) and 13(d),
in which the intracavity power in either fiber shows the same
MI pattern after two round trips, but exactly out-of-phase with
respect to the original pattern. The power time series in both
fibers repeats exactly every four round trips, corresponding to
a full period of the Faraday instability. This contrasts with ho-
mogeneous or dispersion oscillating cavities, where the Fara-
day instability gives rise to a period two pattern. This periodic-
ity is explained by the fact that the unstable eigenvalues of the
Floquet matrix W are purely imaginary over these branches,
i.e., they have a phase of ±π/2. The perturbations are again
in-phase after four round trips, which eventually generates the
observed sequence. For comparison an instability pattern that
develops with real Floquet eigenvalues, which repeats exactly
every two round trips, is presented in Figs. 13(a) and 13(b).
A detailed analysis of parametric instabilities of the Möbius
resonator and they period doubling is outside the scope of this
paper and it will be reported elsewhere.

V. CONCLUSION

We have found new dissipative structures in a Möbius
optical fiber resonator, which to our knowledge has not
been studied previously. When continuous-wave solutions are
modulationally stable, their powers define unusual bistability
curves which may be approximated by elliptic curves in cer-
tain limits. A variety of time-dependent localized and periodic
states which cannot be realized by standard fiber resonators
are supported, including exotic cavity solitons and extended
modulation instability. These are enabled by the ability to
tune the resonances and dispersive properties of both fibers
in the resonator independently. We anticipate that Möbius
cavity solitons will be of interest to researchers working on
frequency comb generation, owing to their broadened spec-
trum compared to the typical Kerr cavity soliton.
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