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Synchronizing an oscillatory medium: The speed of pacemaker-generated waves
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In an oscillatory medium, a region which oscillates faster than its surroundings can act as a source of outgoing
waves. Such pacemaker-generated waves can synchronize the whole medium and are present in many physical
and biological systems, where they are a means of transmitting information. Through numerical simulations, we
quantify how the properties of the pacemaker and the underlying limit cycle determine the wave speed, as well as
the speed with which they overtake the medium. We compare oscillators based on two of the main mechanisms
that generate oscillations in biochemical systems: bistability and time delay. We show that these mechanisms
produce oscillations whose wave propagation properties differ markedly. While both types of oscillatory media
admit waves that propagate linearly outwards, the dependence of the wave speed on a timescale separation
parameter is different between the two. If timescale separation is lost, waves no longer spread linearly. Finally, we
quantify the effects of pacemaker size, the frequency difference with the surroundings, and the diffusion strength.
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I. INTRODUCTION

Nature is full of periodic phenomena. In biology, familiar
examples include the ubiquitous 24-h circadian rhythms, the
cell division cycle, and heart contractions [1]. In those sys-
tems, periodicity is essential for survival and development.
Many of these rhythms are generated by biochemical mech-
anisms, in which proteins and genes interact through multiple
feedback loops to generate cycles in protein concentration and
activity.

Understanding the properties of such biochemical oscil-
lators has been an important driver for the development of
mathematical models. These models themselves exist on a
range of scales, with on the one hand detailed descriptions
of all biochemical interactions and on the other hand more
abstract representations, meant to understand generic features
of these oscillators. Examples of the latter include the phase-
dynamics approaches pioneered by Winfree [2] and Kuramoto
[3], which have been highly influential in understanding how
different oscillators influence each other. An entirely different
type of theory was developed by Thomas [4], who formalized
the study of feedback loops [5]. Thomas’ rules state that pos-
itive feedback and negative feedback are essential to achieve
multistability and oscillations, respectively. For a system to
cycle, there needs to be a mechanism that can reset it, which
is provided by the negative feedback. However, the presence
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of negative feedback is not enough to guarantee oscillations.
The two main mechanisms which complement negative feed-
back are an additional positive feedback and/or a time delay
[Figs. 1(a) and 1(b)]. Whereas a sufficiently delayed negative
feedback can lead the system to oscillate, robustness of the
amplitude of the oscilllations is often achieved when positive
feedback loops are added to the system [6]. These positive
feedback loops can lead to multiple steady states, which gov-
ern the dynamics of the system. Oscillations consist of slow
progress along branches of steady states, with quick jumps
between them. Such oscillations are called relaxation oscilla-
tions and play an important role in many natural phenomena.
Excellent explanations of how different kinds of motifs and
feedback loops can give rise to oscillations can be found in
the papers by Novák and Tyson [7] and Ferrell et al. [8].

Typically, biochemical systems are modeled using ordinary
differential equations (ODEs), with one equation for each
concentration or activity involved. The evolution of the system
is generated by chemical reactions. In such systems, a time
delay is usually implicit, for example, through intermediate
variables. Another way to model time delays is by introducing
them explicitly in a delay differential equation (DDE), where
the current rate of change of the system may depend on the
past state. When the current rate of change depends on the
whole history, and not on a specific past point in time, delays
can also be modeled using integrodifferential equations. Time
delays can be introduced to capture a travel or signaling time,
or a number of—possibly unknown—intermediate processes.
Even though they are a crude approximation of biological re-
ality, simple time-delay equations have successfully captured
key features of a number of oscillatory biological systems.
The book by Erneux [9] contains plenty of examples.

At first sight, the cycles of an oscillator governed by under-
lying bistability may not be very different from an oscillator
where a highly nonlinear, time-delayed negative feedback is
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FIG. 1. Oscillations in time and space. (a), (c) A negative feed-
back combined with a positive feedback can lead to oscillations
based on jumping between different branches of a bistable system.
(b), (d) Time-delayed negative feedback is another mechanism which
may lead to large-amplitude biochemical oscillations. (e) Time series
which could correspond to either of the two motifs. (f) When coupled
in space, oscillations can give rise to traveling waves. Such waves
are often sent out by an inhomogeneity in the system, called the
pacemaker. Two different speeds are of interest: the speed of the wave
itself, and the speed by which the wave permeates the surrounding
medium, which we will call the envelope speed.

generating the oscillation. The time series for such systems
may be very similar [see Figs. 1(a)–1(e) and Figs. 2(a)–2(f)].
In this paper, however, we show that these systems differ
markedly when coupled in space, and that the main difference
lies in how they generate waves.

A natural place to find biochemical oscillations is inside a
cell, a heterogeneous environment which, especially for large
cells such as egg cells, is not well mixed. A spatial description
is thus necessary to capture the dynamics in the cell. Concen-
trations and activities can now vary in time and space, and
ODEs give way to partial differential equations (PDEs) that
include diffusion of chemicals.

Oscillatory systems which are coupled in space show a
wealth of patterns, either stationary, chaotic, or in the form of
traveling waves [10]. In cell biology, traveling waves usually

FIG. 2. (a), (b) Phase-plane depiction of the limit cycle in the
bistable oscillator model (a) and the delayed oscillator model (b) for
two different values of ε. (c)–(f) Time series of the bistable (c), (e)
and delayed (d), (f) oscillator for ε = 0.1, relaxationlike oscillations
(c), (d) and ε = 5, sinusoidal oscillations (d), (f). Time has been
rescaled such that the period is equal to 10. In panels (c)–(f), the
u variable is represented by the solid line and the v variable by a
dashed line. (g) The cubic function f is modified by the parameters
d and b, which can however be absorbed in the other parameters of
the model. (h) In order to align the delayed oscillator with the bistable
oscillator, we choose τ as a function of ε such that the amplitude in
the v direction of both oscillators is as close as possible.

function to transmit information over long distances [11].
Examples include mitotic waves in the cell cycle of Xenopus
frog embryos [12] and Drosophila fly embryos [13], actin
waves which play a role in cell migration [14,15], and many
others [1,16]. Besides waves in which a protein concentration
or enzymatic activity is propagated, there are many wave
phenomena of an electrical nature, in neurons or cardiac cells
[17,18]. Here it is a voltage, instead of a chemical concentra-
tion, which is transmitted in space.

Traveling waves often originate at inhomogeneities in the
system. An inhomogeneity where the frequency of the oscil-
lations is higher than in the surrounding medium can send out
waves and entrain the rest of the medium [Fig. 1(f)]. Such
a region is therefore called a pacemaker. In two-dimensional
systems, pacemakers sending out waves generate target pat-
terns. Some of the clearest examples of such patterns come

043038-2



SYNCHRONIZING AN OSCILLATORY MEDIUM: THE … PHYSICAL REVIEW RESEARCH 2, 043038 (2020)

TABLE I. Estimates of wave speeds in various chemical and
biological systems.

System Wave speed Ref.

Actin waves (various cells) 0.01–0.15 μm/s [15]
Mitosis in early embryos 0.5–1 μm/s [12,13,26]
Oxidation of CO on Pt(110) reaction 1–4 μm/s [20,21]
cAMP signaling 5–7 μm/s [28]
Yeast glycolysis 10–100 μm/s [24]
Belousov-Zhabotinsky reaction 50–100 μm/s [19,29]
Action potential in cardiac tissue 50–70 cm/s [18,30]
Action potential in squid giant axon 20 m/s [31]

from chemistry and include a dish filled with reactants for
the Belousov-Zhabotinsky reaction [19] or the oxidation of
CO on Pt(110) [20,21]. In such chemical systems, pacemakers
can appear through impurities such as dust particles, or they
can be induced, for example, to suppress chaotic behavior
[22]. In biological systems, target patterns occur in cyclic
adenosine monophosphate (cAMP) signaling in Dictyostelium
discoideum [23], cardiac tissue [18], yeast glycolysis [24],
neural tissue [25], and cell-free extracts of Xenopus laevis
frog eggs [12], where nuclei act as pacemakers to organize
the dynamics [26,27].

Pacemaker-generated waves have a clear function in these
biological systems: they synchronize the system over long
distances and transmit information inside the cell or between
cells [1,11,16]. To ensure proper coordination of these biolog-
ical processes, it is essential that the waves spread sufficiently
quickly through the medium (see Table I).

Some of the examples we mentioned above concern ex-
citable media, instead of oscillatory media. However, the
dynamics of an excitable system are often guided by the
existence of multiple stable branches along which the system
proceeds, just as oscillators based on bistability. In such sys-
tems, excitability and oscillations may be present in the same
system in different, but close, parameter regimes. The waves
in such systems, especially for large timescale separation, are
related and can be studied using the propagation of fronts
[32]. Different types of traveling fronts exist and play a role in
biology [33–35]. In this paper, however, we always consider
oscillatory media.

Wave phenomena and pacemaker dynamics have been
studied mathematically for a long time, mainly using ap-
proximations based on phase-reduction methods [3,36,37] or
singular perturbation methods [32]. These methods provide
essential qualitative understanding of when pacemakers send
out waves. However, quantitative studies of what properties
of the pacemakers and of the limit cycle itself determine the
speed of propagation are rare. Most of these studies have fo-
cused on analytically tractable models, such as λ − ω [38] or
Stuart-Landau oscillators, and the complex Ginzburg-Landau
equation (CGLE) [39]. For example, for the CGLE in two
dimensions the influence of the size of the pacemaker on the
wave number of resulting target patterns has been studied
for disk- and square-shaped pacemakers [40] and ring-shaped
pacemakers [41]. A study of pacemakers in the CGLE in one
dimension can be found in Ref. [42].

In this paper, we numerically study oscillatory media with
a single pacemaker in the middle of the domain. Our goal is
to quantify, first, the speed of waves sent out by this pace-
maker and, second, the speed by which such waves overtake
the whole medium. We call the latter the envelope speed
[Fig. 1(f)]. The structure of the paper is as follows. In Sec. II,
we introduce the two sets of equations we use for oscillators
based on bistability and time delay, respectively. We detail the
algorithm we use for the detection of the speed in Sec. III,
and we discuss the results of our simulations in Sec. IV. First,
we explain the influence of the shape and parameters of the
limit cycles themselves, with a main focus on the timescale
separation (Sec. IV B). After showing that these results are
not specific to our equations, but also appear in existing cell
cycle models (Sec. IV C), we then discuss how pacemaker size
and period influence wave speed (Sec. IV D). Finally, we show
how the diffusion strength influences the waves in Sec. IV E.

II. OSCILLATORS BUILT ON BISTABILITY
AND ON TIME DELAY

A. The bistable oscillator

The equations we use for the oscillator based on bistability,
here referred to as the bistable oscillator, read

ut = ε−1
(
v − 1

4 du(u2 − b)
) + Duuxx,

vt = a − u + Dvvxx. (1)

This set of equations is a variant of the Van der Pol oscilla-
tor [43] and the related FitzHugh-Nagumo equations [44,45].
We call it bistable not because these equations themselves
admit multiple stable solutions, but because for a fixed value
of v, the u variable can evolve towards two stable states, the
branches of the cubic function. In terms of motifs, this is due
to a positive feedback of u on itself. When v is allowed to
evolve in time, the system can be excitable or oscillatory,
depending on the value of a. Here we only consider values
of a where the system oscillates. In such oscillations, the
system slowly progresses along the branches of the cubic
function, with quick jumps between them. This happens for
low values of ε. For increasing ε, the system transitions
from relaxation-type oscillations to more harmonic oscilla-
tions with sinusoidal waveforms for u and v [Figs. 2(a), 2(c),
and 2(e)].

The shape of the cubic function can be modified by the
parameters d and b [Fig. 2(g)]. However, using a suitable
scaling of the variables, these parameters can be absorbed into
ε and a (see Appendix A). From now on we take d = 1 and
b = 4.

Note that we allow diffusion in both the fast and the slow
variable, which is unlike applications in which these equations
are used for modeling action potentials. In those systems,
there is typically only diffusion in the fast variable u. Here,
we regard u and v as generic variables that can stand for any
kind of chemical concentration; therefore we allow both of
them to diffuse.

B. The delayed oscillator

We compare this system to one without bistability, where
the two branches of the nullcline are replaced by a time delay.
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This delayed oscillator is described by

ut = ε−1
(
v(t − τ ) − f̃ (u)

) + Duuxx,

vt = a − u + Dvvxx,

f̃ (u) = f (u)κ[−2,2](u),

(2)

where κ[−2,2](u) = 0 if −2 < u < 2 and 1 otherwise. The
function f̃ was chosen to overlap with the cubic function
f (u) = 1

4 u(u2 − 4), used in the bistable oscillator, far from
the origin [Fig. 2(b)]. The delay τ is chosen such that the
amplitude of the v variable in the delayed system is equal
to the v amplitude in the bistable system with the same ε,
with typical values around 0.3 [Fig. 2(h)]. Through this choice
of the function f̃ and the time delay τ , we assure that the
time-delay system is as close as possible to the bistable os-
cillator if one would inspect the time series or the phase plane
[compare Figs. 2(c) and 2(d) and Figs. 2(e) and 2(f). We have
effectively replaced the progression along the branches in the
bistable system by an overshoot due to delay in the delayed
system. From a mathematical point of view, both systems
are not trivial to compare directly since there are significant
mathematical differences between ODEs and DDEs. How-
ever, we think it is useful to make this comparison, since in
real biological or chemical systems, it is often not clear what
the underlying dynamical system is by mere inspection of
the time series. The comparison is thus more conceptual than
technical.

Even though the choice of f̃ is artificial, this delayed oscil-
lator is an example of a delayed negative feedback loop such
as, for example, the Goodwin oscillator [46] or the delayed
cell cycle oscillator [47]. From a different viewpoint, this
equation models the variable v which brings about its own
decline in a time-delayed, highly nonlinear way. For ε → 0,
we obtain from the first equation

v(t − τ ) ≈ f̃ (u) ⇒ u = f̃ −1[v(t − τ )] = g[v(t − τ )],

where the function g is the inverse of f̃ , a steplike response
function. For very small ε, the system is approximately
given by

v′ = a − g[v(t − τ )], (3)

which is a negative feedback system: v starts out small, such
that g[v(t − τ )] is negative. This means a − g[v(t − τ )] is
positive, leading to an increase in v. At a time τ after v crosses
zero, g[v(t − τ )] becomes positive and v starts decreasing,
provided a lies in (−2, 2).

The time series of the delayed oscillator similarly show a
transition from relaxationlike oscillations to more sinusoidal
oscillations for increasing values of ε [Figs. 2(b), 2(d), and
2(f)].

III. NUMERICAL METHODS AND ALGORITHM
FOR SPEED DETECTION

Our system consists of a one-dimensional domain of length
L with periodic boundary conditions. We take L = 400 as
standard domain length. In the middle of the domain we
define a pacemaker region of size S which oscillates faster
than the surroundings [Fig. 1(f)]. In order to compare wave
speeds in different systems and with different parameters, we

FIG. 3. Detection of the envelope exponent, envelope speed, and
wave speed. (a) Space-time plot of the u variable. Black lines are
the profiles where u crosses 0 from below. The red profile is the one
used in the other panels. The red dots denote the detected envelope
location. (b) Envelope detection from a profile. (c) Wave speed de-
tection. (d) Envelope points as a function of time together with fit,
from which the envelope speed can be obtained.

always rescale time such that the period of the uniform spatial
oscillation is Po. In the pacemaker region, we rescale time such
that the period there is Pi < Po. Standard values are Po = 10
and Pi = 9.5. Although a pacemaker region can be induced by
any space-dependent parameter, here we use time rescaling to
ensure that only the frequency, and not the shape of the limit
cycle, is altered in the pacemaker region.

We perform our numerical simulations using a pseudospec-
tral algorithm for the bistable system and an implicit algorithm
for the delayed oscillator (see Appendix B for more details).
These algorithms were chosen because they provide a good
compromise between accuracy, simplicity, and computational
cost.

After simulating the system for a total time of T = 1000
(this corresponds to 100 periods for our default of Po = 10),
we detect whether a wave propagates linearly outward from
the pacemaker and, if so, what the wave speed and envelope
speed are. Figure 3 shows the details of the algorithm we
use. First, we iterate over each spatial position xi to detect all
the points (xi, ti, j ) for which the u variable crosses zero from
below. For the first position x0, each of the points (x0, t0, j )
will be the first point of a profile. For each of the points
(xi, ti, j ) at subsequent spatial locations, we find the closest
point for the previous x value (xi−1, ti−1, j′ ). We append the
point (xi, ti, j ) to the profile containing this previous point.
In this way we obtain profiles separated in time [Fig. 3(a),
black lines]. For such a profile, we can plot the t coordinates
as functions of the x coordinates. This has a “V” shape with
two horizontal extensions [Figs. 3(b) and 3(c)]. We define the
envelope position as the transition point from the horizontal
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part to the V part. Since this transition is smooth, we use
the following method to detect this point: first, we smooth
the profile using a seven-point moving average. Next, we fit
a function of the form t = a + btβ through the middle part of
the V branch [between the gray horizontal lines in Fig. 3(b)].
The envelope position is the intersection of the horizontal line
through the leftmost point of the profile and this fitted function
[dashed lines in Fig. 3(b)]. If there is an outgoing wave, its
speed can be detected from such a profile as well [Fig. 3(c)].
For this, we fit a straight line through the middle of a branch
of the V. The wave speed is the inverse of the slope of this
line.

Once the envelope points have been detected for all profiles
[Fig. 3(a), red dots], we omit the first point and the points
whose distance to the boundary is less than L/20, and next
we fit a function of the form x = D + Ctγ to the outgoing en-
velope [Fig. 3(d)]. For γ ≈ 1, C corresponds to the envelope
speed (see also Fig. 1). The periodic boundary conditions do
not influence the results, which we tested by trying different
domain lengths L.

IV. RESULTS

A. Asymmetry weakly influences the wave speed

First, we look at the influence of the parameter a. For
a = 0, oscillations in the bistable model are symmetric and
spend equal amounts of time on the left and right branches
of the cubic nullcline [Fig. 4(c)]. For the delayed model,
the oscillations are also symmetric for a = 0 [Fig. 4(d)]. If
a > 0, the system spends a longer time on the right branch
of the nullcline [Fig. 4(e)]. The shape of the limit cycle in
the phase plane remains largely unchanged in the bistable
model [Fig. 4(a)]. However, in the delayed oscillator, the limit
cycle is shifted to higher values of v [Figs. 4(b) and 4(f)].
Oscillations cease to exist if |a| is too large.

Asymmetric oscillations generate waves with a slightly
larger speed in both models, although the effect is small
[Fig. 4(g)]. Due to symmetry, the wave speed for −a is
the same as that for a. In the following, we take a = 0 for
definiteness.

B. Influence of timescale separation

The timescale separation parameter ε determines the char-
acter of the oscillations (Figs. 2 and 5(a)–5(c)]. In both the
bistable model and the delayed model, low values of ε corre-
spond to oscillations with quick jumps between two branches.
Higher values of ε, on the other hand, correspond to harmonic
oscillations where both u and v show sinusoidal time series.

When timescales are well separated (small ε), waves
spread linearly or even slightly faster [Figs. 5(d) and 5(g)].
When ε is increased, the wave gradually spreads in a more
diffusionlike way (γ decreases) [Figs. 5(e) and 5(h)]. For even
higher values of ε, phase slips occur [Figs. 5(f) and 5(i)].
These same three regions of qualitatively different behavior
are found for both types of oscillator [Fig. 5(j)]. This shows
that, from the mere observation that waves are present, we
cannot distinguish between the two mechanisms. A different
story holds, however, when we examine the speed of these
waves.

FIG. 4. The parameter a determines the symmetry of the oscil-
lations, but has little effect on the wave speed. (a), (b) Limit cycle
for a = 0 and a = 1.1 in the bistable oscillator (a) and the delayed
oscillator (b). (c)–(f) Time series corresponding to the limit cycles
shown in panels (a) and (b). For panels (c) and (d): a = 0 (symmetric
waveform). For panels (e) and (f): a = 1.1. (g) Wave speed as a
function of a for both models. In all plots, ε = 0.01.

In the region where γ > 0.9, we compute the speed of the
outgoing wave c [Fig. 5(k)]. Interestingly, while we set up the
systems in such a way that both bistable and delayed systems
have very similar waveforms [Figs. 2 and 5(a)–5(c)], the de-
pendence of wave speed on ε differs significantly. Increasing
ε lowers the wave speed for the bistable oscillator, whereas
in the delayed system it is nearly independent of ε. For the
bistable model, there are two regimes for the wave speed, with
a transition around ε = 0.01. Note that for higher values of ε,
when both oscillators are close to harmonic, their wave speed
is nearly equal.

The envelope speed C follows the trend of the wave speed
[Fig. 5(l)]. If we know the wave speed, we can determine the
envelope speed using the formula

C = Po − Pt

Po
c. (4)

This formula can be derived from the following geo-
metrical argument. Referring to the notation in Fig. 5(m),
if (t1, x1) is the first envelope point and (t2, x2) is the
second, we have t2 − t1 = Po and x2 − x1 = c(Po − Pt ), as
illustrated in the sketch. From this it follows that C = x2−x1

t2−t1
=

Po−Pt
Po

c.
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FIG. 5. Wave propagation, wave speed, and envelope speed as functions of timescale separation ε. (a)–(c) Time series of the u variable for
ε = 0.005, 0.7, and 5 for the bistable (blue) and delayed (red) oscillator. The blue lines (bistable) are shifted upwards to better distinguish the
shapes. In reality the curves overlap. (d)–(f) Space-time plots for the bistable system. (g)–(i) Space-time plots for the delayed system. For both
the bistable and the delayed system we have on the left: ε = 0.005, linear wave propagation; middle: ε = 0.7, sublinear outward spreading of
the pacemaker influence; right: ε = 5, phase slips. (j) Exponent of the envelope spread as a function of ε. Three regions are indicated: linear
(or faster) spread (I), sublinear spreading (II), and phase slips (III). The arrows indicate the values of ε used in panels (a)–(i). (k) Wave speed
as a function of ε, computed where γ > 0.9. (l) Envelope speed as a function of ε. The dashed lines indicate the approximation C = Po−Pi

Po
c.

Other parameters used: Du = Dv = 1, S = 20, Po = 10, and Pi = 9.5. (m) Geometric relation between wave speed, envelope speed, Po, and the
effective period of the pacemaker Pt . (n) Dispersion relation for wave trains in the oscillatory medium without inhomogeneity, for ε = 0.01.
The curves were obtained by simulating the system on a domain of length λ until a wave train of a single wavelength was obtained and by
computing its speed and temporal period. The system was rescaled such that the period of a uniform oscillation was Po = 10.

Note, however, that Pt here is the effective period of the
pacemaker region, taking into account the influence from out-
side as well. It is not equal to Pi, the pacemaker’s intrinsic fre-
quency, which is a parameter of the model. Due to diffusion,

the period of the pacemaker region shifts upward, such that
Pi < Pt < Po. This affects the wave speed, since higher peri-
ods correspond to higher wave speeds, as can be seen from
the dispersion relation for these systems [Fig. 5(n)]. However,
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this mainly plays a role when the size of the pacemaker is
smaller, as we discuss in Sec. IV D. The dashed lines in
Fig. 5 show the envelope speed if we assume that Pt = Pi.
The approximation is generally good and is slightly better for
low values of ε. This indicates that the effect from the outside
medium on the pacemaker is larger for larger values of ε.

On a side note, a formula for the envelope speed already
appears in Hagan’s paper [36, Eq. (4.21)]. There, both the
envelope speed and the wave speed are derived analytically
through a phase-reduction method. The formula we derived
above is implicit in the equations in Hagan’s paper, but to
the best of our knowledge the geometric derivation has not
appeared in the literature.

C. Similar results hold for both a bistable and a
delayed cell cycle model

To verify that our results are not specific to the sys-
tem based on the Van der Pol oscillator, we perform the
same analysis for a bistable model and a time-delayed model
that describe cell cycle oscillations in early Xenopus laevis
frog embryos. This biological system has been an important
example of nonlinear dynamics, both spatial and tempo-
ral, generated by biochemical mechanisms. The biochemical
underpinnings of these cell cycle oscillations are well char-
acterized. Moreover, in extracts made of these frog eggs,
waves of mitosis have been observed [12], and recently the
importance of pacemakers in these systems has been shown
as well [26,27].

Different mathematical models for this system exist, each
taking into account a number of experimental observations.
Experiments have shown that in this system both bistability
[48,49] and time delay [50,51] play a role. The oscillation is
built around periodic activation and inactivation of a protein
called cyclin-dependent kinase 1 (Cdk1), which becomes ac-
tive when bound to a cyclin B subunit. Activated Cdk1 brings
about its own decline through activation of a protein complex
called the anaphase promoting complex/cyclosome (APC/C),
which targets cyclin B for destruction. This negative feedback
loop is time delayed. Moreover, Cdk1 is involved in different
positive feedback loops, which creates a bistable response as
function of cyclin B activity.

We perform the same analysis as in the previous section
and numerically compute the wave speed as function of a
timescale separation parameter. In the bistable model, there
is a natural timescale separation present when using the de-
fault, experimentally obtained parameter set. We introduce
the additional parameter ε to modify this inherent timescale
separation. For the bistable system, we use the model by Yang
and Ferrell [51], and for the delayed model we use a variant
of a simple model we studied before [47]. Note that, unlike
the Van der Pol variants we study in the rest of the paper, the
two cell cycle models here cannot be directly compared. The
timescale separation parameter ε has a different meaning in
each model and applies to different variables. Both models,
however, are limit cases of a single, general, three-equation
model. The details of the equations and parameter values can
be found in Appendix C.

The simulations with the cell cycle models confirm what
we saw for the Van der Pol system (see Fig. 6): in the system

FIG. 6. In two different cell cycle models, timescale separation
influences wave speed only when bistability is present. (a) Phase
plane representation of the cell cycle oscillation in the bistable
model. The system oscillates by repeatedly moving up and down
along the branches of a bistable response curve. Black and gray lines
are the nullclines of the system. (b) The oscillation in a plane for the
delayed cell cycle model. The intersection of the black and gray lines
is the fixed point of the system, which is unstable due to time delay.
(c) Wave speed as function of ε for the bistable cell cycle model.
(d) Wave speed as function of ε for the delayed cell cycle model.

based on bistability, the timescale separation determines the
speed of the outgoing waves. In the delayed model, there is
almost no effect of timescale separation on the wave speed.

Note that in real systems, such as the cell cycle, both time
delay and bistability probably play a role in generating the
oscillations. Preliminary results on both the Van der Pol-like
model as the cell cycle model indicate that, if we add a
time delay to a bistable model, the curve representing wave
speed as function of ε changes only little, unless the time delay
is large. We leave a more in-depth study of systems in which
bistability and time delay are mixed for future work.

D. Influence of size and period of the pacemaker

Besides the parameters of the underlying oscillating sys-
tem, there are two properties of the pacemaker itself that
have an important influence on wave behavior: its size and
its period [Figs. 7(a)–7(d)]. While larger pacemakers promote
linear wave spreading [Fig. 7(e)], they emit waves that are
slower [Fig. 7(g)]. This is likely due to a mechanism that
affects the effective period, which we briefly discussed before.
Diffusion shifts the period of the pacemaker region upward
to a period Pt which lies between Pi and Po. This effect is
stronger for smaller pacemakers, which is intuitive: since they
are smaller, they undergo a relatively larger effect from the
surroundings, causing their period to shift to values closer to
the period of the surrounding medium. Waves with a higher
temporal period move faster due to the dispersion relation for
wave trains in these systems [Fig. 5(n)]. Therefore smaller
pacemakers with their higher period emit faster waves. Per-
haps counterintuitively, whereas the wave speed decreases
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FIG. 7. The size and period of the pacemaker influence the outgoing waves. (a), (b) Space-time plot for waves sent out by a small (a) and a
large (b) pacemaker. Waves from the larger pacemaker have a higher envelope speed, but a lower wave speed. (c), (d) Space-time plot for waves
sent out by a pacemaker with low (c) and high (d) period difference with the surrounding medium. A larger period difference corresponds to a
higher envelope speed and a lower wave speed. (e), (f) Envelope exponent γ as a function of the pacemaker size S (e) and the relative difference
of the period of the pacemaker and the surrounding medium h = (Po − Pi )/Po (f). (g), (h) Wave speed c as a function of pacemaker size (g) and
period difference (h). (i), (j) Envelope speed C as a function of pacemaker size (i) and period difference (j). Parameters: ε = 0.01, Po = 10,
and Du = Dv = 1. (Po − Pi )/Po = 0.05 in panels (e), (g), and (i). S = 20 in panels (f), (h), and (j).

with size, the speed of the envelope increases [Fig. 7(i)].
This follows from Eq. (4): whereas c is smaller for a large
pacemaker, it maintains a higher difference with the outside
medium such that the term Po − Pt is larger. This can com-
pensate for a decreasing wave speed c. Note that both wave
speed and envelope speed saturate as the size becomes large.
In this limit, the period of the pacemaker is not shifted due to
influence from outside and Pt → Pi.

Next, we fix the pacemaker size and the period of the
outside medium Po, but vary Pi: the intrinsic pacemaker pe-
riod. Here, a similar picture emerges. Define h = Po−Pi

Po
, the

relative difference in period between the pacemaker and the
medium. A larger value of h ensures that waves spread lin-
early [Fig. 7(f)], but leads to lower speeds [Fig. 7(h)]. Again,
whereas the wave speed decreases, the envelope speed in-
creases [Fig. 7(j)]. Note that when the difference in periods
is too large, phase slipping can occur [similar to Figs. 5(f)
and 5(i)]. The results on size and frequency hold for both the
bistable and the delayed system.

E. Influence of diffusion strength

The other purely spatial aspect which influences wave
propagation is the strength of diffusion. Both types of oscil-
lator differ when it comes to the influence of the diffusion
constants Du and Dv (Fig. 8). In the bistable system, the speed
is mainly determined by the diffusion strength of the fast
variable, Du [Figs. 8(a) and 8(c)]. A large value of Dv destroys
the linear propagation (γ < 1). In the delayed system, both Du

and Dv affect the speed of the wave and whether it propagates
linearly [Figs. 8(b) and 8(d)]. Typically it is assumed that the
wave speed scales as

√
D. For pacemaker-generated waves

this is only strictly true in the bistable model with Dv = 0
[Fig. 8(e)]. In the other cases the speed actually increases
faster than expected from a

√
D scaling [Figs. 8(e) and 8(f)].

This is likely again caused by the change in effective period Pt :
larger diffusion means more influence of the outside medium
on the pacemaker. This leads to an increased effective period
Pt [Figs. 8(g) and 8(h)] and a higher speed, following the
dispersion relation [Fig. 5(n)]. Interestingly, our results show
that this mechanism is much weaker in the bistable model
when only diffusion in the fast u variable is present, indicating
that the effective period of the pacemaker Pt is mainly influ-
enced by diffusion of the slow variable v. Finally, we note that
the Dv = 0 case corresponds to typical models of neuronal
systems and action potentials, in which the scaling c ∼ √

D
therefore holds.

V. CONCLUSIONS

Robust biochemical oscillators, which are essential for
the survival and development of many organisms, are often
built on interaction motifs which generate bistability and/or
time delays. In this paper, we have shown that oscillators
built on these mechanisms behave differently when coupled
in space. Whereas both a bistable and a delayed oscillator
can generate outgoing target patterns, bistable systems gen-
erate faster waves provided that the system shows sufficient
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FIG. 8. Influence of the diffusion strength of the two variables
on the wave speed. (a)–(d) Wave speed c as a function of Du and Dv

for the bistable system (a), (c) and the delayed system (b), (d).
Two values of the timescale separation are used: ε = 0.01 (a), (b)
and ε = 0.1 (c), (d). In the white region γ < 0.9, no clear, linearly
propagating waves are found. (e), (f) Wave speed c as a function of
Du for the bistable system (e) and the delayed system (f) for Dv = 0
and Du = Dv (ε = 0.01). Values are normalized to their value at
Du = 1. (g), (h) Similar to panels (e) and (f), but now showing the
effective period of the pacemaker region as a function of Du.

timescale separation. The bistable system is characterized by
two regimes. For large timescale separation (small ε), the
wave speed is markedly higher than for small timescale sep-
aration. In the latter regime, there is little difference between
bistable and delayed oscillators. The higher wave speed in the
bistable system is most likely due to the fact that for large
timescale separation, waves in this system are governed by the
propagation of fronts between the two stable branches. This
observation is also the starting point of the singular pertur-
bation approach to traveling waves [32] and is applicable to
excitable media as well as oscillatory media.

For high ε, the oscillations are nearly harmonic and the
wave dynamics are no longer governed by front propagation.
In this situation, the dynamics are better described through
a phase-reduction approach such as the one typically used
in theoretical studies of pacemakers which we discussed in
the Introduction. In a follow-up paper, we intend to discuss
these different approximation methods and their application
to pacemaker-generated waves.

We have found that pacemakers need not send out a
wave which permeates linearly into the medium: large dif-

fusion, small timescale separation, and/or small pacemakers
can lead to sublinear spreading, in our terminology corre-
sponding to γ < 1. Another interesting aspect of our study
is the explicit relation between wave speed and envelope
speed. Perhaps contrary to expectations, the size and the fre-
quency of the pacemaker influence wave speed and envelope
spreading speed in different ways. A large pacemaker, or one
with a larger frequency difference, is usually considered to
be a strong pacemaker. Strong pacemakers do take over the
medium faster, due to the increased envelope speed, but the
waves they send out are slower. Due to the generality of these
results, they will likely also apply to the classical examples of
target patterns and pacemakers, namely the chemical oscilla-
tors such as the Belousov-Zhabotinsky reaction.

The distinction between envelope speed and wave speed
is also important in situations where multiple pacemakers are
present in a single medium. When this is the case, they com-
pete with each other until one takes over the whole medium.
We recently investigated such systems of multiple pacemak-
ers [52] and showed that both size and frequency matter in
the determination of which pacemaker dominates the whole
medium.

Understanding which factors contribute to the speed and
range of pacemaker-generated waves is important as these
types of waves have increasingly been shown to play a crucial
role in coordinating biological processes over large distances
[1,11,16]. It is therefore reasonable to expect that evolution
has somehow optimized these systems to be able to trans-
fer information as fast as possible, maybe bound to other
constraints on the interactions between proteins and the spa-
tial structure of cells. In our study we have given a general
overview of the factors that determine the wave speed of a
pacemaker-generated wave, for different types of oscillators
and different parameter regimes. We expect that such a gen-
eral overview is an important step to better understand which
mechanisms are the most biologically relevant.
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APPENDIX A: ABSORPTION OF THE
PARAMETERS d AND b

The set of equations for the bistable system is as follows:

ut = ε−1
(
v − 1

4 du(u2 − b)
) + Duuxx, (A1)

vt = a − u + Dvvxx. (A2)

By the change of variables

ũ = 2√
b

u, ṽ = 8

b
√

bd
v, s = 4

db
t, y = 2√

db
x,
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this system can be written as

ũs = ε̃−1
(
ṽ − 1

4 ũ(ũ2 − 4)
) + Duũyy, (A3)

ṽs = ã − ũ + Dvṽyy, (A4)

where

ε̃ = 16

(db)2
ε, ã = 2√

b
a.

Here, the parameters b and d , which determined the shape of
the cubic nullcline, have been absorbed in ε and a.

APPENDIX B: DETAILS OF THE NUMERICAL SCHEME

Simulations of the set of PDEs were done in PYTHON using
the NUMPY and SCIPY modules. We tested multiple methods
and settled on a pseudospectral method for the bistable sys-
tem and an implicit method for the delayed system. These
provided the best compromise between accuracy, stability, and
simplicity. Especially for the fast-moving waves (low ε in the
bistable model), the pseudospectral method gives the most
accurate results.

1. Pseudospectral method

Let F denote the spatial Fourier tranform. We integrate the
system

Xt = F (X ) + DXxx

as follows. Let ti = t0 + idt be the time points and x j, j =
0, . . . , N − 1 be the spatial grid points.

(i) Perform one Euler step of the reaction term over half a
time step:

Xi+ 1
2 , j = Xi, j + dt

2
F (Xi, j ).

(ii) Perform the diffusion part in Fourier space over a full
time step:

X̂i+ 1
2 ,k = F

(
Xi+ 1

2 , j

)
,

ˆ̃Xi+ 1
2 ,k = X̂i+ 1

2 ,k + dtD(−k2)X̂i+ 1
2 ,k,

X̃i+ 1
2 , j = F−1

( ˆ̃Xi+ 1
2 ,k

)
.

(iii) Perform another Euler step over dt/2:

Xi+1, j = X̃i+ 1
2 , j + dt

2
F

(
X̃i+ 1

2 , j

)
.

We use SCIPY’s FFT algorithms to quickly compute the
transforms.

2. Implicit method

For systems with delay, we use an implicit method. We
discretize the equation Xt = F [X (t ), X (t − τ )] + DXxx as fol-
lows (with τ = ndt):

Xi+1, j − Xi, j

dt
= F (Xi, j, Xi−n, j ) + D

dx2 (Xi+1, j−1

− 2Xi+1, j + Xi+1, j+1). (B1)

Set α = Ddt
dx . In matrix form the equation becomes

⎛
⎜⎜⎜⎜⎝

1 + 2α −α 0 · · · −α

−α 1 + 2α −α · · · 0
0 −α 1 + 2α · · · 0
...

. . .
. . .

. . .
...

−α · · · 0 −α 1 + 2α

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Xi+1,1

Xi+1,2
...

Xi+1,N−1

Xi+1,N

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Xi,1 + dtF (Xi,1, Xi−n,1)
Xi,2 + dtF (Xi,2, Xi−n,2)

...

Xi,N−1 + dtF (Xi,N−1, Xi−n,N−1)
Xi,N + dtF (Xi,N , Xi−n,N )

⎞
⎟⎟⎟⎟⎠

. (B2)

This means we first perform the reaction step (with delay)
with a forward Euler step, and then the diffusion step with a
backward Euler step. We solve the resulting matrix equation
at each timestep using SCIPY’s sparse matrix solver.

Our standard simulation time is T = 1000 with dt = 0.001
and N = 4096 spatial grid points. For the simulations whose
results are shown in Figs. 5(j)–5(l) we used dt = 0.0001 and
for Fig. 8 we used N = 1024. This takes a lot of computa-
tion time, so we perform simulations on a high-performance
computing cluster provided by VSC (Flemish Supercomputer
Center).

3. Rescaling of time

In order to compare the different wave speeds for different
parameters, we rescale all the systems we study such that they
have a period Po. If the original nonspatial oscillator (bistable
or delayed) is described by

X ′ = F [X (t ), X (t − τ )], (B3)

where in our case X = (u, v)T , for each value of the param-
eters, we first numerically compute the period of the limit
cycle, call it P. The rescaled system

X ′ = P

Po
F

[
X (t ), X

(
t − τ

Po

P

)]
(B4)

then has period Po. In order to introduce the inhomogeneity,
we rescale time again in the middle part of the region such that
the period there is Pi. Note that the shape of the limit cycle is
exactly the same in the middle and the outside regions, only
the speed by which it is traversed is different.

APPENDIX C: EQUATIONS OF THE CELL
CYCLE MODELS

1. Bistable model

The bistable cell cycle model is taken
from Yang and Ferrell [51]. The equations
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TABLE II. Parameter values for the model of cyclin-Cdk1 inter-
action by Yang and Ferrell [51].

Symbol Meaning Value

ks Cyclin production rate 1 nM/min
adeg Basal APC/C activity 0.01
bdeg Maximal APC/C activity 0.04

EC50deg Threshold for APC/C activation 32 nM
ndeg Hill exponent for APC/C activation 17

aCdc25 Basal Cdc25 activity 0.16
bCdc25 Maximal Cdc25 activity 0.8

EC50Cdc25 Threshold for Cdc25 activation 35 nM
nCdc25 Hill exponent for Cdc25 activation 11
aWee1 Basal Wee1 activity 0.08
bWee1 Maximal Wee1 activity 0.4

EC50Wee1 Threshold for Wee1 activation 30 nM
nWee1 Hill exponent for Wee1 activation 3.5

are

u′ = ks − a(u)u + ε−1[c(u)(v − u) − w(u)u],

v′ = ks − a(u)v, (C1)

where

a(u) = adeg + bdeg
undeg

EC50
ndeg

deg + undeg
, (C2)

c(u) = aCdc25 + bCdc25
unCdc25

EC50nCdc25
Cdc25 + unCdc25

, (C3)

w(u) = aWee1 + bWee1
EC50nWee1

Wee1

EC50nWee1
Wee1 + unWee1

. (C4)

Here, v is the slow variable which denotes the total amount
of Cdk1-cyclin B complexes in the cell. The fast variable
u stands for active Cdk1-cyclin B complexes. Cyclin B is
produced at a constant rate ks and assumed to bind instantly
to Cdk1 to create the complex. It is targeted for degrada-
tion by APC/C, a protein whose activity depends on active
Cdk1-cyclin B through the function a(u). The production and
degradation are considered to be slow. The activation and
inactivation of the Cdk1-cyclin B complex happen on a faster
timescale. The complex can activate itself, through an inter-
mediate protein called Cdc25, and inactivate itself through
Wee1. Both of these proteins depend on the active Cdk1-
cyclin B through Hill functions, respectively, c(u) and w(u).
We have introduced the parameter ε in this model to modulate
the timescale separation between (in)activation kinetics and
production/degradation. Note that if ε = 1, the fast reactions
are already approximately 10 times faster than the slow ones.
In Fig. 6(c) in the main text, we have therefore divided the

TABLE III. Parameters for the delayed cell cycle model.

Symbol Meaning Value

ks Cyclin B production rate 1 nM/min
bdeg Maximal cyclin B degradation rate 0.1 1/min
K Threshold for APC/C activation 32 nM
n Hill exponent for APC/C activation 17
τ Time delay for APC/C activation 10 min

actual value of ε by 10 for plotting and comparing with the
other oscillator. The values of the other parameters used can
be found in Table II.

2. Delayed model

The delayed cell cycle model is given by the equations

u′ = ε−1
( v(t − τ )n

Kn + v(t − τ )n
− u

)
,

v′ = ks − bdeguv. (C5)

Here, v is Cdk1-cyclin B activity. In this model, the positive
feedback loops through Wee1 and Cdc25 are not present (see
Tsai et al. [53] for a discussion of the strength of the feedback
loops), and there is no bistability. This effectively means that
all Cdk1-cyclin B complexes are active. There is no variable
to denote the total amount of complexes. On the other hand,
we now include a variable for APC/C activity, u. APC/C
is activated quickly by Cdk1-cyclin B after a time delay.
For ε → 0, APC/C activation becomes instant and the above
system of equations reduces to

v′ = ks − bdeg
v(t − τ )n

Kn + v(t − τ )n
v. (C6)

We have studied this model in detail in a previous paper
[47]. The parameters we use for simulating the cell cycle
model (C5) are given in Table III.

3. Both cell cycle models are limit cases of one
three-equation model

The bistable cell cycle model and the delayed cell cycle
model can both be seen as limits of one three-equation model:

u′ = ks − yu + δ−1[c(u)(v − u) − w(u)u],

v′ = ks − yv,

y′ = η−1{a[u(t − τ )] − y}. (C7)

Here u is active Cdk1-cyclin B, v is total Cdk1-cyclin B, and
y stands for APC/C. For η → 0 and τ = 0, this reduces to the
bistable cell cycle model. For δ → ∞, this model reduces to
the delayed cell cycle model.
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