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Thermodynamics of collisional models for Brownian particles: General properties and efficiency
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We introduce the idea of collisional models for Brownian particles, in which a particle is sequentially placed in
contact with distinct thermal environments and external forces. Thermodynamic properties are exactly obtained,
irrespective of the number of reservoirs involved. In the presence of external forces, the entropy production
presents a bilinear form in which Onsager coefficients are exactly calculated. Analysis of Brownian engines
based on sequential thermal switchings is proposed and considerations about their efficiencies are investigated,
taking into account distinct external forces protocols. Our results shed light to an alternative route for obtaining
efficient thermal engines based on finite times Brownian machines.
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I. INTRODUCTION

Stochastic thermodynamics has proposed a general and
unified scheme for addressing central issues in thermodynam-
ics [1–5]. It includes not only an extension of concepts from
equilibrium to nonequilibrium systems but also it deals with
the existence of new definitions and bounds [6–9], general
considerations about the efficiency of engines at finite time
operations [1–3], and others aspects. In all cases, the concept
of entropy production [1,4,10] plays a central role, being
a quantity continuously produced in nonequilibrium steady
states (NESS), whose main properties and features have been
extensively studied in the last years, including its usage for
typifying phase transitions [11–14].

Basically, a NESS can be generated under two funda-
mental ways: From fixed thermodynamic forces [15,16] or
from time-periodic variation of external parameters [17–20].
In this contribution, we address a different kind of periodic
driving, suitable for the description of engineered reservoirs,
at which a system interacts sequentially and repeatedly with
distinct environments [21–23]. Commonly referred as colli-
sional models, they have been inspired by the assumption that
in many cases (e.g., the original Brownian motion) a particle
collides only with few molecules of the environment and then
the subsequent collision will occur with another fraction of
uncorrelated molecules. Collisional models have been viewed
as more realistic frameworks in certain cases, encompassing
not only particles interacting with a small fraction of the envi-
ronment but also those presenting distinct drivings over each
member of system [24–27] or even species yielding a weak
coupling with the reservoir. More recently, they have been
(broadly) extended for quantum systems for mimicking the
environment, represented by a weak interaction between the
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system and a sequential collection of uncorrelated particles
[28–30].

With the above in mind, we introduce the concept of re-
peated interactions for Brownian particles. More specifically,
a particle under the influence of a given external force is
placed in contact with a reservoir during the time interval
and afterwards it is replaced by an entirely different (and
independent) set of interactions. Exact expressions for ther-
modynamic properties are derived and the entropy production
presents a bilinear form, in which Onsager coefficients are
obtained as function of period. Considerations about the ef-
ficiency are undertaken and a suited regime for the system
operating as an efficient thermal machine is investigated.

The present study sheds light for fresh perspectives in
nonequilibrium thermodynamics, including the possibility of
experimental buildings of heat engines based on Brownian
dynamics [31–36] with sequential reservoirs. Also, they pro-
vide us the extension and validation of recent bounds between
currents and entropy production, the so called thermodynamic
uncertainty relations (TURs) [8,9,37–41], which has aroused
a recent and great interest.

This paper is organized as follows: Secs. II and III present
the model description and its exact thermodynamic properties.
In Sec. IV we extend analysis for external forces and consider-
ations about efficiency are performed in Sec. V. Conclusions
and perspectives are drawn in Sec. VI.

II. MODEL AND FOKKER-PLANCK EQUATION

We are dealing with a Brownian particle with mass m
sequentially placed in contact with N different thermal reser-
voirs. Each contact has a duration of τ/N and occurs during
the intervals τi−1 � t < τi, where τi = iτ/N for i = 1, .., N ,
in which the particle evolves in time according to the follow-
ing Langevin equation:

m
dvi

dt
= −αivi + Fi(t ) + Bi(t ), (1)

where quantities vi, αi, and Fi(t ) denote the particle velocity,
the viscous constant and external force, respectively. From
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now on, we shall express them in terms of reduced quantities:
γi = αi/m and fi(t ) = Fi(t )/m. The stochastic force ζi(t ) =
Bi(t )/m accounts for the interaction between particle and the
ith environment and satisfies the properties

〈ζi(t )〉 = 0 (2)

and

〈ζi(t )ζi′ (t
′)〉 = 2γiTiδii′δ(t − t ′), (3)

respectively, where Ti is the bath temperature. Let Pi(v, t ) be
the velocity probability distribution at time t , its time evolu-
tion is described by the Fokker-Planck (FP) equation [3,16,42]

∂Pi

∂t
= −∂Ji

∂v
− fi(t )

∂Pi

∂v
, (4)

where Ji is given by

Ji = −γivPi − γikBTi

m

∂Pi

∂v
. (5)

It is worth mentioning that above equations are formally iden-
tical to description of the overdamped harmonic oscillator
subject to the harmonic force fh = −k̄x just by replacing
x → v, k̄/α → γi, 1/α → γi/m.

From the FP equation and by performing appropriate par-
tial integrations together boundary conditions in which both
Pi(v, t ) and Ji(v, t ) vanish at extremities, the time variation of
the energy system Ui = 〈Ei〉 in contact with the ith reservoir
is given by

dUi

dt
= −m

2

∫
v2

[
∂Ji

∂v
+ fi(t )

∂Pi

∂v

]
dv. (6)

The right side of Eq. (6) can be rewritten as dUi/dt = −(Ẇi +
Q̇i ), where Ẇi and Q̇i denote the work per unity of time and
heat flux from the system to the environment (thermal bath)
given by

Ẇi = −m〈vi〉 fi(t ) and Q̇i = γi
(
m〈v2

i 〉 − kBTi
)
, (7)

respectively. In the absence of external forces Ẇi = 0 and all
heat flux comes from/goes to the thermal bath.

By assuming the system entropy S is given by Si(t ) =
−kB

∫
Pi(v, t ) ln[Pi(v, t )]dv and from the expression for Ji,

one finds that its time derivative is given by

dSi

dt
= −kB

∫ (
Ji

Pi

)(
∂Pi

∂v

)
dv. (8)

As for the mean energy, above expression can be rewritten in
the following form:

dSi

dt
= m

γiTi

( ∫
J2

i

Pi
dv + γi

∫
vJidv

)
. (9)

Equation (9) can be interpreted according to the following
form: dSi/dt = �i(t ) − 	i(t ) [16,42], where the former term
corresponds to the entropy production rate �i(t ) and it is
strictly positive (as expected). The second term is the the flux
of entropy and can also be rewritten more conveniently as

	i(t ) = Q̇i

Ti
= γi

(
m

Ti

〈
v2

i

〉 − kB

)
. (10)

If external forces are null and the particle is placed in
contact to a single reservoir, then the probability distribution
approaches for large times the Gibbs (equilibrium) distribu-
tion Peq

i (v) = e−E/kBTi/Z , with E = mv2/2 its kinetic energy
and Z the partition function. In such case, 〈v2

i 〉 = kBTi/m
and therefore �eq = 	eq = 0 (as expected). Conversely, it
will evolve to a nonequilibrium steady state (NESS) when
placed in contact with sequential and distinct reservoirs, in
which heat is dissipated and the entropy is produced and hence
�NESS = 	NESS > 0.

III. EXACT SOLUTION FOR ARBITRARY
SET OF SEQUENTIAL RESERVOIRS

From now on, quantities will be expressed in terms of
the “reduced temperature” 
i = 2γikBTi/m and kB = 1. Since
we are dealing with a linear force on the velocity, the NESS
will also be characterized by a Gaussian probability distribu-
tion Pi(v, t ) = e−(v−〈vi〉)2/2bi (t )/

√
2πbi(t ) in which both mean

〈vi〉(t ) and the variance bi(t ) ≡ 〈v2
i 〉(t ) − 〈vi〉2(t ) will be in

general time-dependent. Their expressions can be calculated
from Eqs. (4) and (5) and read

d

dt
〈vi〉 = −γi〈vi〉 + fi(t ) (11)

and

d

dt
bi(t ) = −2γibi(t ) + 
i, (12)

respectively, where appropriate partial integrations were
performed. Their solutions are given by the following expres-
sions:

〈vi〉(t ) = e−γi (t−τi−1 )

[
v′

i−1 +
∫ t

τi−1

eγi (t ′−τi−1 ) fi(t
′)dt ′

]
(13)

and

bi(t ) = Ai−1e−2γi (t−τi−1 ) + 
i

2γi
, (14)

respectively, where quantities v′
i−1 ≡ 〈vi〉(τi−1) and Ai’s are

evaluated by taking into account the set of continuity rela-
tions for the averages and variances, 〈vi〉(τi ) = 〈vi+1〉(τi ) and
bi(τi ) = bi+1(τi ) (for all i = 1, ..., N), respectively. Since the
system returns to the initial state after a complete period,
〈v1〉(0) = 〈vN 〉(τ ) and b1(0) = bN (τ ), all coefficients can be
solely calculated in terms of model parameters, temperature
reservoirs and the period. Also, the above conditions state that
the probability at each point returns to the same value after
every period.

For simplicity, from now on we shall assume the same
viscous constant γi = γ for all i’s. In the absence of external
forces, all v′

i’s vanish and the entropy production only depends
on the coefficients Ai’s and 
i’s. Hence, the coefficient Ai

becomes

Ai+1 = xAi + 1

2γ
(
i − 
i+1), (15)
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where x = e−2γ τ/N and all of them can be found from a linear
recurrence relation

Ai = xi−1A1 + 1

2γ

i∑
l=2

xi−l (
l−1 − 
l ), (16)

for i = 2, ....N . As the particle returns to the initial configura-
tion after a complete period, AN then reads

AN = x−1A1 + x−1

2γ
(
1 − 
N ). (17)

By equaling Eqs. (16) and (17) for i = N , all coefficients Ai’s
can be finally calculated and are given by

A1 = 1

2γ

xN

1 − xN

N∑
l=1

x−l (
l − 
l+1) (18)

and

Ai= 1

2γ

xi−1

1 − xN

[
i−1∑
l=1

x−l (
l − 
l+1)+
N∑

l=i

xN−l (
l − 
l+1)

]
,

(19)

for i = 1 and i > 1, respectively. As we are focusing on the
steady-state time-periodic regime, thermodynamic quantities
can be averaged over one period τ . The mean entropy produc-
tion � then reads

� = 1

τ

N∑
i=1

∫ τi

τi−1

	i(t ) dt = (1 − e−2γ τ/N )

2γ τ

N∑
i=1

Ai


i
. (20)

From Eqs. (18) and (19), it follows that

N∑
i=1

Ai


i
= xN

1 − xN

N∑
i,l=1

x−l

(

i+l−1 − 
i+l


i

)
, (21)

and we arrive at an expression for � solely dependent on the
model parameters

� = − N

2γ τ

(
1 − x

x

)
+ 1

2γ τ
· xN−1(1 − x)2

1 − xN

N∑
i,l=1

x−l 
i+l


i
.

(22)
To show that � � 0, we resort to the inequality∑N

i=1 
i+l/
i � N N

√∏N
i=1 
i+l/
i for showing that∑N

i=1 
i+l/
i � N , and hence Eq. (22) fulfills the condition

� � − N

2γ τ

(
1 − x

x

)
+ N

2γ τ

(
1 − x

x

)
= 0, (23)

in consistency with the second law of thermodynamics.
As an concrete example, we derive explicit results for

the two sequential reservoirs case. From Eqs. (13) and (14),
coefficients A1 and A2 reduce to the following expressions:

A1 = 
2 − 
1

2γ

(
1 − e−γ τ

1 − e−2γ τ

)
= 
2 − 
1

2γ

(
1

1 + eγ τ

)
, (24)

where A2 = −A1 and hence

	1(t ) = γ

(

2 − 
1


1

)(
1

1 + e2γ τ

)
e−2γ t , (25)

for 0 � t < τ/2 and

	2(t ) = γ

(

1 − 
2


2

)(
1

1 + e2γ τ

)
e−2γ (t− τ

2 ), (26)

τ/2 � t < τ , respectively, whose average entropy production
reads

� =
[

1
2

2τ
tanh

(
γ τ

2

)](
1


1
− 1


2

)2

. (27)

Note that � � 0 and it vanishes when 
1 = 
2. In the limit of
slow (τ � 1) and fast (τ << 1) oscillations, � approaches to
the following asymptotic expressions:

� ≈ 
1
2

2τ

(
1


1
− 1


2

)2

and

1
2γ

4

(
1


1
− 1


2

)2

,

(28)
respectively, and such a latter expression is independent on the
period.

Equation (27) can be conveniently written down as a
flux-times-force expression, where the thermodynamic force
attempts to the difference of temperatures of reservoirs. Given
that the viscous coefficient is the same for all switchings, the
thermodynamic force can be more conveniently expressed in
terms of difference of 
i’s. More specifically, we have that
� = JT fT , where fT = (1/
2 − 1/
1) and JT can also be
rewritten as JT = LT T fT , where LT T is the Onsager coeffi-
cient given by

LT T = 
1
2

2τ
tanh

(
γ τ

2

)
. (29)

Note that LT T � 0 (as expected).
Figure 1 depicts the average entropy production � versus

τ for distinct values of 
2 and 
1 = 1, γ = 1. Note that it
is monotonically increasing with fT and reproduces above
asymptotic limits.

FIG. 1. Mean entropy production � versus τ for distinct temper-
ature sets 
1 = 1 and 
2 and γ = 1.
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IV. FORCED BROWNIAN AND SEQUENTIAL
RESERVOIRS

Next, we extend analysis for the case of a Brownian par-
ticle in contact with sequential reservoirs and external forces.
We shall focus on the two stage case and two simplest external
forces protocols: constant and linear drivings. More specifi-
cally, the former is given by

fi(t ) =
{

f1; 0 � t < τ/2,

f2; τ/2 � t < τ,
(30)

where f1 and f2 denote their strengths in the first and second
half period, respectively, whereas the latter case accounts for
forces evolving linearly over the time according to the slopes:

fi(t )

γ
=

{
λ1t ; 0 � t < τ/2,

λ2( τ
2 − t ), τ/2 � t < τ,

(31)

with λ1 and λ2 being their amplitudes. It has been considered
in Ref. [41] to compare the performance of distinct bounds
between currents and the entropy production (TURs). In the
presence of external forces, FP equation has the same form of
Eq. (14), but now 〈vi〉(t )’s will be different from zero.

A. Constant external forces

From Eq. (13), the expressions for 〈vi〉(t )’s are given by

〈v〉 =

⎧⎪⎨
⎪⎩

〈v1〉(t ) = eγ τ/2

γ

( f2− f1

1+eγ τ/2

)
e−γ t + f1

γ
,

〈v2〉(t ) = eγ τ/2

γ

( f1− f2

1+eγ τ/2

)
e−γ (t−τ/2) + f2

γ
,

(32)

for the first or second half of each period, respectively.
The average work and heat per time are given by Ẇ =

Ẇ 1 + Ẇ 2 and Q̇ = Q̇1 + Q̇2, respectively, and straightfor-
wardly evaluated from Eq. (7), whose Ẇ 1 and Q̇1 read

Ẇ 1 = −m f1

τ

∫ τ/2

0
〈v1〉 dt

= m f1

γ 2τ
( f1 − f2) tanh

(
γ τ

4

)
− m f 2

1

2γ
(33)

and

Q̇1 = m

4γ τ
(
2 − 
1) tanh

(
γ τ

2

)
+ m

2γ 2τ
( f1 + f2)2

× tanh

(
γ τ

4

)
+ 2m f 2

1

γ 2τ

[
γ τ

4
− tanh

(
γ τ

4

)]
, (34)

respectively. Analogous expressions are obtained for Ẇ 2 and
Q̇2 just by exchanging 1 ↔ 2. Note that Q̇1 + Q̇2 + Ẇ 1 +
Ẇ 2 = 0, in consistency with the first law of thermodynamics.

In the same way as before, the steady entropy production
per period � can be evaluated from Eq. (10) (by taking kB =
1) and reads

� = 2γ

m

(
Q̇1


1
+ Q̇2


2

)
, (35)

and we arrive at the following expression

� = 1

2τ

(
2 − 
1)2


1
2
tanh

(
γ τ

2

)
+ 1

γ τ

(
1


1
+ 1


2

)

× tanh

(
γ τ

4

)
( f1 + f2)2

+
(

f 2
1


1
+ f 2

2


2

)[
1 − 4

γ τ
tanh

(
γ τ

4

)]
. (36)

Since γ τ � 0 and 1 − tanh(x)/x � 0, it follows that � � 0.
Note that � reduces to Eq. (27) as f1 = f2 = 0.

Bilinear form and Onsager coefficients

The shape of Eq. (36) is similar to the linear irreversible
thermodynamics [18,19,43], in which the entropy production
is written down as a sum of flux-times-force expression. This
similarity provides to reinterpret Eq. (36) in the following
form:

� = JT fT + J1 f1 + J2 f2, (37)

where forces fT = (1/
1 − 1/
2) and f1(2) have associated
fluxes JT , J1(2) given by JT = LT T fT [identical to Eq. (29)],

J1 = L11 f1 + L12 f2 and J2 = L21 f1 + L22 f2, (38)

respectively, where L11, L12, L21, and L22 denote their Onsager
coefficients given by

L11 = 1


1

[
1 − 3

γ τ
tanh

(
γ τ

4

)]
+ 1

γ τ
2
tanh

(
γ τ

4

)
(39)

and

L12 = L21 = 1

γ τ

(
1


1
+ 1


2

)
tanh

(
γ τ

4

)
, (40)

respectively. Coefficients L22 and L21 have the same shape of
L11 and L12 by replacing 1 ↔ 2, respectively. Besides, L11

and L22 � 0 (as should be) and they satisfy the inequality
4L11L22 − (L12 + L21)2 � 0, in consistency with the positivity
of the entropy production.

B. Time-dependent external forces

By repeating the previous calculations for linear external
forces the mean velocities 〈vi〉(t )’s are given by

〈v〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈v1〉(t ) = 1
γ
{λ1(γ t − 1)

+e−γ t [λ1 + (λ2e
γ τ

2 − λ1)α(γ , τ )]},

〈v2〉(t ) = 1
γ
{−λ2

[
γ
(
t − τ

2

) − 1
]

+e−γ (t− τ
2 )[(λ1e

γ τ

2 − λ2)α(γ , τ ) − λ2]},

(41)

where

α(γ , τ ) = 2 − e
γ τ

2 (γ τ − 2)

2(eγ τ − 1)
,

respectively. Although more complex than the previous case,
the mean work and heat per time are evaluated analogously
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Panels (a) and (b) depict the efficiency η versus f1 for distinct periods τ (for �
 = 0.5) and �
’s (for τ = 1), respectively. In
both cases, 
1 = 2 and f2 = 1. Symbols •, “stars,” and “squares” denote the f1mE , f1mP, and f1mS , respectively. Panels (c) and (d) show the
corresponding power P , whereas (e) and (f) the average entropy production rate �. Dashed lines show the values of f1 the system can not be
operated as a thermal machine.

from expressions for 〈vi〉(t )’s and bi(t )’s, whose values aver-
aged over a cycle read

Ẇ = −Q̇ = −A{eγ τ ϕ+(γ , τ, ξ )

+ 12e
γ τ

2 (γ 2τ 2ξ − 4) + ϕ−(γ , τ, ξ )}, (42)

where parameters A, ξ and ϕ±(γ , τ, ξ ) read

A = m(λ1 + λ2)2

24γ 2τ (eγ τ − 1)
, ξ = λ1λ2

(λ1 + λ2)2
,

and

ϕ±(γ , τ, ξ ) = γ 2τ 2(2ξ − 1)(3 ± γ τ ) + 24(1 ± γ τξ ),

respectively.

Bilinear form and Onsager coefficients

As in the previous case, the entropy production has also the
shape of Eqs. (37) and (38) given by � = JT fT + J1λ1 +
J2λ2, being LT T the same to Eq. (29), whereas the other

Onsager coefficients read

L11 = 1


1

[
γ 2τ 2

12
− γ τ (2eγ τ + 1)

4(eγ τ − 1)
+ 1

1 + e− γ τ

2

+ 1

γ τ
tanh

(
γ τ

4

)]
+ 1


2

[
e

γ τ

2 (γ τ − 2) + 2
]2

4γ τ (eγ τ − 1)
, (43)

and

L12 =
(
2e

γ τ

2 − γ τ − 2
)(

2e
γ τ

2 − γ τe
γ τ

2 − 2
)
(
1 + 
2)

4γ τ (eγ τ − 1)
1
2
,

(44)
respectively. Coefficients L22 and L21 are again identical to
L11 and L12 by exchanging 1 ↔ 2. Also, it is straightforward
to verify that L11 and L22 are strictly positive and 4L11L22 −
(L12 + L21)2 � 0.

V. EFFICIENCY

Distinct works have tackled the conditions in which pe-
riodically driven systems can operate as thermal machines
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Panels (a) and (b) depict the efficiency η versus λ1 for distinct periods τ (for �
 = 0.5) and �
’s (for τ = 1), respectively. In
both cases, 
1 = 2 and λ2 = 1. Symbols •, “stars,” and “squares” denote the λ1mE , λ1mP, and λ1mS , respectively. Panels (c) and (d) show the
corresponding power P , whereas (e) and (f) the average entropy production rate �. Dashed lines show the values of λ1 the system can not be
operated as a thermal machine.

[18,43–47]. The conversion of a given type of energy into an-
other one requires the existence of a generic force X1 operating
against its flux J1X1 � 0 counterbalancing with driving forces
X2 and XT in which J2X2 + JT XT � 0. A measure of efficiency
η is given by

η = − J1X1

J2X2 + JT XT

= − L11X 2
1 + L12X1X2

L21X2X1 + L22X 2
2 + LT T X 2

T

, (45)

where in such case XT = fT and we have taken into account
Eq. (37) for relating fluxes and Onsager coefficients. Taking
into account that the best machine aims at maximizing the
efficiency and minimizing the dissipation � for a given power
output P = −
1J1X1, it is important to analyze the role of
three load forces, X1mP, X1mE , and X1mS , in which the power
output and efficiency are maximum and the dissipation is
minimum, respectively [18]. Their values can be obtained
straightforwardly from expressions for P and Eq. (45), respec-
tively. Due to the present symmetric relation between Onsager

coefficients L12 = L21 (in both cases), they acquire simpler
forms and read 2X1mP = −L12X2/L11,

X1mE = 1

L11L12X2

[ − L11
(
L22X 2

2 + LT T X 2
T

) + A(X2, XT )
]
,

(46)
with A(X2, XT ) being given by

A(X2, XT ) =
√

L11
(
L22X 2

2 + LT T X 2
T

)
×

√[
L11

(
L22X 2

2 + LT T X 2
T

) − L2
12X 2

2

]
, (47)

and X1mS = −L12X2/L11 = 2X1mP, respectively, where Xi =
fi and λi for the constant and linear drivings, respectively. The
efficiencies at minimum dissipation, maximum power and its
maximum value become ηmS = 0,

ηmP = L2
12X 2

2

2
(
2L22L11 − L2

12

)
X 2

2 + 4LT T L11X 2
T T

, (48)
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and

ηmE = 1

L2
12X 2

2

[
2L11

(
L22X 2

2 + LT T X 2
T T

)−L2
12X 2

2 −2A(X2, XT )
]
,

(49)

respectively, and finally their associated power outputs read
PmS = 0, PmP = 
1L2

12X 2
2 /4L11, and

PmE = 
1

L11L2
12X 2

2

× [
L11

(
L22X 2

2 + LT T X 2
T

) − A(X2, XT ) − L2
12X 2

2

]
× [

L11
(
L22X 2

2 + LT T X 2
T

) − A(X2, XT )
]
, (50)

respectively. We pause to make a few comments: First, above
expressions extend the findings from Ref. [18] for a couple
of driving forces. Second, both efficiency and power vanish
when X1 = X1mS and X1 = 0 and are strictly positive between
those limits. Hence the physical regime in which the system
can operate as an engine is bounded by the lowest entropy
production �mS = LT T X 2

T + (L22 − L2
12/L11)X 2

2 and the value
�

∗ = LT T X 2
T + L22X 2

2 . Third, despite the long expressions
for Eqs. (49) and (50), powers PmP,PmE and efficiencies
ηmP, ηmE are linked through a couple of simple expressions
(in similarity with Refs. [18,46]):

ηmP = ηmE

1 + η2
mE

and
PmE

PmP
= 1 − η2

mE , (51)

and they imply that 0 � ηmP < ηmE (with 0 � ηmE � 1 and
0 � ηmP � 1/2) and 0 � PmE � PmP. Fourth and last, the
achievement of most efficient machine ηmE = 1 implies
that the system has to be operated at null power PmE = 0
and hence the projection of a machine operating for finite
PmP/PmE will imply at a loss of its efficiency.

Our purpose here aims at not only extending relevant
concepts about efficiency for Brownian particles in contact
with sequential reservoirs, but also to show that a desired
compromise between maximum power and maximum effi-
ciency can be achieved by adjusting conveniently the model
parameters (such as the period and the driving). From ex-
pressions for Onsager coefficients, aforementioned quantities
are evaluated, as depicted in Figs. 2 and 3 for distinct pe-
riods τ and temperature differences �
’s for constant and
linear drivings, respectively. In both cases, quantities follow
theoretical predictions and exhibit similar portraits, in which
efficiencies and power outputs present maximum values at
f1mE (λ1mE ) and f1mP(λ1mP ), respectively. The loss of effi-
ciency from the maximum ηmE as f1(λ1) goes up (down)
is signed by the increase of dissipation (as expected) until
vanishing when � = �

∗
. For the constant driving, absolute

values of forces and efficiencies increase as the period τ

[see, e.g., panels (a)] and/or temperature differences [see, e.g.,
panels (b)] are lowered. In such a case, 
1 ≈ 
2 = 
, �
 =

1 − 
2 << 1 and the thermodynamic force fT approaches
to fT ≈ �
/
2. Onsager coefficients become simpler in the
limit of fast switchings, τ → 0 and L11, L22, L12 approach

to (
1 + 
2)/(4
1
2). Some remarkable quantities then ap-
proach to the asymptotic values f1mS → − f2 = 2 f1mP and

ηmP → f 2
2 (
1 + 
2)

2
[

f 2
2 (
1 + 
2) + 2�
2

] , (52)

respectively. For 
1 ≈ 
2, ηmP → 1/2, ηmE → 1, and PmP

reads PmP → f 2
2 /8 and thereby the limit of an ideal machine

is achieved for low periods and equal temperatures. Similar
features are verified for the linear driving, including increas-
ing efficiencies as both τ and �
 decreases. However, they
are marked by a reentrant behavior for τ << 1 and �
 �= 0
[see, e.g., Figs. 3(a) and 5]. It moves for lower τ ’s as �


goes down and the limit of ideal machine, ηmP → 1/2 and
ηmE → 1, is also recovered when both τ → 0 for �
 → 0.

(a)

(b)

FIG. 4. For 
1 = 2, f2 = 1 and distinct �
’s, the comparison
between maximum efficiency [panel (a)] and efficiency at maximum
power [panel (b)] for constant drivings. Insets: The corresponding
power outputs P’s versus τ .
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(a)

(b)

FIG. 5. For 
1 = 2, λ2 = 1, and distinct �
’s, the comparison
between maximum efficiency [panel (a)] and efficiency at maximum
power [panel (b)] for linear drivings. Insets: The corresponding
power outputs P’s versus τ .

Other differences between protocols are appraised in
Figs. 4 and 5. For finite difference of temperatures, the con-
stant driving is always more efficient than the linear one and
their power outputs are also superior. The maximum efficiency
curves (linear drivings) are also reentrant, whose maxima
values increase and deviate for lower τ ’s as �
 decreases.

We close this section by remarking that although short
periods indicates a general route for optimizing the efficiency
of thermal machines in contact to sequential reservoirs, the
present description provides to properly tune the period and
forces to obtain the desirable compromise between maximum
efficiency and power.

VI. CONCLUSIONS

The thermodynamics of a Brownian particle periodically
placed in contact with sequential thermal reservoirs is in-
troduced. We have obtained explicit (exact) expressions for
relevant quantities, such as heat, work, and entropy produc-
tion. Generalization for an arbitrary number of sequential
reservoirs and the influence of external forces were consid-
ered. Considerations about the efficiency were undertaken, in
which Brownian machines can be properly operated ensuring
the reliable compromise between efficiency and power for
small switching periods.

As a final comment, we mention the several perspectives
to be addressed. First, it might be very interesting to extend
such a study for other external forces protocols (e.g., sinu-
soidal time-dependent ones) as well as for time asymmetric
switchings, to compare their efficiencies, mainly with the
linear driving case. Finally, it would be remarkable to verify
the validity of recent proposed uncertainties relations (TURs)
for Fokker-Planck equations [39,41], in such a class of
systems.
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