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Phase separation of polymer-bound particles induced by loop-mediated one dimensional
effective long-range interactions
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The cellular cytoplasm is organized into compartments. Phase separation is a simple manner to create
membraneless compartments in order to confine and localize particles like proteins. In many cases, these particles
are bound to fluctuating polymers like DNA or RNA. We propose a general theoretical framework for such
polymer-bound particles and derive an effective 1D lattice gas model with both nearest-neighbor and emergent
long-range interactions arising from looped configurations of the fluctuating polymer. We argue that 1D phase
transitions exist in such systems for both Gaussian and self-avoiding polymers and, using a variational method
that goes beyond mean-field theory, we obtain the complete mean occupation-temperature phase diagram.
To illustrate this model, we apply it to the biologically relevant case of ParABS, a prevalent bacterial DNA
segregation system.
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I. INTRODUCTION

The confinement of chemical species, such as RNA
or proteins, within the cytoplasm is mandatory for the
spatiotemporal organization of chemical activities in the
cell [1]. Cells compartmentalize the intracellular space using
either membrane vesicles or membraneless organelles. For the
latter, cells may employ phase separation of chemical species
in order to create localized high-density regions in which
specific reactions may occur [2,3]. Such biological phase
separation mechanisms often involve polymeric scaffolds like
Ribonucleic acid (RNA) or Deoxyribonucleic acid (DNA) to
bind the chemical species [4–9]. A prominent example may
be the formation of localized protein-DNA complexes during
bacteria DNA segregation due to the in vivo ParABS system
[10–15]. Although the molecular components of this widely
conserved segregation machinery have been clearly identified,
their dynamical interplay and the mechanism that leads to
the condensation of the complexes remain elusive. The
interaction between a fluctuating polymer in a good solvent
and smaller associating particles is also a general problem
that goes beyond biology. There are important industrial
applications that exploit the possibility of fine-tuning such
systems to induce polymer-surfactant aggregation at low
surfactant concentration [16].
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More generally, despite early theoretical work [16–18] and
more recent extensive simulation studies [12,19–21], it is still
unclear theoretically how long 1D substrates like DNA poly-
mers interact with particles to form 3D structures essential for
the cellular cycle [4,9,22]. Interestingly, similar organizational
principles may apply to the higher order folding of chromatin
and the interactions between topological domains in
eukaryotic cells [22–26]. A common theme is the mechanism
of protein-induced polymer loop formation via bridging
interactions and the role played by these loops in structuring
DNA and creating localized protein-DNA complexes. Three
different basic models have been studied, mainly using simple
mean-field Flory or Flory-Huggins type approaches and
simulations: (i) sparse but fixed interacting sites [21,22,27,28]
or block copolymers (heteropolymers) composed of fixed se-
quences of different monomers [24], (ii) nonattracting mobile
particles that can bind simultaneously to two or more polymer
sites to form bridges [19,23,29], and (iii) mobile particles that
bind to a polymer and attract to form both bridging bonds
[12,16–18] and possibly nearest-neighbor (NN) ones.

In the above cited studies, the focus is on the collapse of a
polymer induced by polymer-particle interactions, rather than
on the phase behavior of the polymer-bound particles. For
example, in one interesting study [16], a simple mean field
theory was used to investigate the influence of associating
particles on polymer conformation. It was found that after
integrating out the particle degrees of freedom the polymer
could undergo partial collapse, leading to a joint self-assembly
of the polymers and associating particles [16]. The com-
plementary approach was not, however, investigated, namely
the phase behavior of the polymer-bound particles once the
polymer degrees of freedom have been integrated out.

It is therefore not clear from earlier studies if polymer col-
lapse (or partial collapse) is a prerequisite for the appearance

2643-1564/2020/2(3)/033377(14) 033377-1 Published by the American Physical Society

https://orcid.org/0000-0001-6337-0955
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033377&domain=pdf&date_stamp=2020-09-09
https://doi.org/10.1103/PhysRevResearch.2.033377
https://creativecommons.org/licenses/by/4.0/


G. DAVID et al. PHYSICAL REVIEW RESEARCH 2, 033377 (2020)

FIG. 1. Coupled polymer-particle model: The polymer in 3D is
divided into N monomers, each having a position vector Xi, an
occupation �i, and a local adsorption energy εi. Loops form when
particles far apart along the polymer interact at short range in 3D.

of polymer-bound particle phase separation. Furthermore,
previous work on case (iii) [16–18], based on mean field
theory, did not address the crucial question of the range of the
effective 1D long-range interactions between polymer-bound
particles, necessary for determining the existence of a true
phase transition.

We present here an analytical Hamiltonian approach to
case (iii) by introducing a basic microscopic particle-polymer
statistical mechanical model where all relevant physical pa-
rameters appear explicitly. Such a framework is needed to
clarify the existence and nature of phase transitions in such
systems, especially since approximate theoretical [16–18] and
numerical [12] studies of finite size systems suggest phase
separation-like behavior. From this model, we derive an ef-
fective 1D lattice gas model with 1D temperature-dependent
long-range interactions that arise once the 3D conformational
fluctuations of the polymer have been integrated out. We show
that the existence of a phase transition in this effective model
depends on the exponent describing the asymptotic power law
decay of the long-range interactions. We then propose a vari-
ational method that goes beyond mean field theory (MFT) to
compute the mean occupation-temperature phase diagram. We
finally, for illustration, apply our model to the bacterial parti-
tion system ParABS and the formation of ParB condensates.
As a result of this analysis, we propose a plausible explanation
in terms of low-density phase metastability for experiments
showing the existence of high-density ParB protein conden-
sates only in the presence of specific parS binding sites.

II. MODEL

The polymer consists of N monomers (or binding sites)
with each monomer capable of accommodating one bound
particle (see Fig. 1). The effective monomer length lm cor-
responds to the footprint of one particle on the polymer,
measured, for example, in terms of base pairs for DNA.
Each site i is characterized by its position in 3D space Xi,
its occupation �i (equal to 1 if a particle is bound and 0
otherwise), and its on-site binding energy εi (allowing for
local specific or nonspecific binding). In the particle grand-

canonical ensemble, the energy of a state [�i, Xi] is

H[�i, Xi] = HP[Xi] + HSRLG[�i] + HB[�i, Xi]. (1)

The first term HP[Xi] describes the polymer configuration
energy. The second is a 1D short-range lattice gas (SRLG)
Hamiltonian for bound particles,

HSRLG[�i] = −J
N−1∑
i=1

�i+1�i −
N∑

i=1

(μ − εi ) �i (2)

with NN spreading interaction coupling constant J and chem-
ical potential μ. The contribution from 3D bridging interac-
tions, giving the coupling between the bound particles and the
fluctuating polymer, takes the form

HB[�i, Xi] = 1

2

N∑
i, j

′�iU (Xi j )� j, (3)

with Xi j = |Xi − X j | and U (Xi j ) being the potential of 3D
spatial interaction between particles. The prime on the sum
means that |i − j| � ninf , where ninf is the minimal internal
distance in number of sites over which two particles can
interact at long range.

The polymer conformational degrees of freedom can for-
mally be integrated out, yielding a highly nonlinear 1D ef-
fective free energy for the bound particles including two
and all higher body interactions along the chain. Given the
complexity of this coupled model, we derive, using a virial
(cluster) expansion [30,31], a more amenable 1D effective
model that retains only short-range and two-body long-range
interactions:

Z
ZP

=
∑

{�i=0,1}
exp[−β(HSRLG[�i] − β−1 ln〈e−βHB[�i,Xi]〉P)]

≈
∑

{�i=0,1}
e−βFLRLG[�i], (4)

where β = 1/(kBT ), 〈·〉P denotes an average over polymer
conformations, ZP is the partition function of the bare poly-
mer, and FLRLG[�i] is a 1D long-range lattice gas (LRLG)
effective (temperature-dependent) free energy:

FLRLG[�i] = HSRLG[�i] − 1

2

N∑
i, j

′�iGi j� j . (5)

The second term of Eq. (5) is an effective 1D long-range
bridging interaction between particles on the polymer that
depends on the distance along the chain and arises after the
chain conformational fluctuations have been integrated out,
giving rise to the temperature dependence of FLRLG. The
kernel,

Gi j = 4πβ−1
∫ ∞

0
dR R2 [e−βU (R) − 1] Pi j (R), (6)

is obtained by performing a generalized virial expansion
(assuming isotropy) with

Pi j (R) = 〈δ(R − |Xi − X j |)〉P, (7)

the monomer-monomer polymer probability distribution func-
tion (PDF), i.e., the probability that monomers i and j be
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separated by a distance R in space. The effective free en-
ergy FLRLG is therefore completely defined by the polymer
and particle parameters. The effective long-range interaction
encoded by the kernel Gi j implicitly sums over all possible
loops formed by the polymer segment bounded by the two
bridging particles. This approach accounts exactly for two-
body interactions and should therefore be valid for sufficiently
low polymer monomer 3D spatial density (as in Flory-type
approximations [18,32–36]). There will be no restriction,
however, on the 1D occupation along the polymer.

The possibility that the LRLG model exhibit a phase sepa-
ration, while the 1D SRLG model does not, is thus completely
dependent on the asymptotic behavior |i − j| → ∞ of the
kernel Gi j . The asymptotic behavior of Pi j (R), describing
monomer-monomer close contact, is [33,35]

Pi j (R) −→
R

Ri j
→0

c0

R3
i j

(
R

Ri j

)g

, (8)

where c0 is a constant and Ri j = 〈X 2
i j〉1/2

P = b|i − j|ν is the
root-mean-square monomer i-to- j distance with b as the effec-
tive Kuhn length. The exponents ν and g depend on the chosen
polymer statistics. In the absence of polymer connectivity, the
monomers form an ideal gas and Pi j (R) is replaced by the
inverse system volume V −1 in Eq. (6). The above approach
then reduces to the usual nonideal gas virial expansion. To
recover the Flory approach [18], the PDF is replaced by the in-
verse of the volume defined by the polymer radius of gyration.
Such an approximation leads to an infinite-range model that
leaves out crucial particle-particle correlations arising from
polymer connectivity and gives results that are not consistent
with those presented here (see Appendix A). In reality, bound
particles closer on the chain experience enhanced two-body
interactions (down to a lower limit imposed by polymer
rigidity and self-avoidance).

By inserting Eq. (8) in Eq. (6), we obtain the asymptotic
behavior of the long-range interaction, Gi j ∼ |i − j|−α with
α = (3 + g)ν. The effective 1D LRLG model clearly falls
into the universality class of the well-known 1D long-range
Ising model (LRIM) [37], aside from an additional NN in-
teraction that also appears in the effective inverse square
LRIM approach to the Kondo problem [38]. The exponent
α is the key parameter to predict phase transitions in the
LRIM [39]. Ferromagnetic-like phase transitions occur for a
positive kernel and 1 < α < 2 (Dyson criterion) and critical
exponents are classical for 1 < α < 3/2 [40]. The case α = 2
leads to the 1D analog of the Berezinky-Kosterlitz-Thouless
phase transition [38,41].

Interestingly, the Dyson criterion depends here only on
the polymer properties and it is straightforward to obtain
the values of α for the Gaussian and self-avoiding polymer
(SAP) distributions. For a Gaussian polymer, ν = 1/2 and
g = 0, and therefore α = 3/2. For a SAP α ≈ 1.92, since
ν ≈ 0.588 and g ≈ 0.27 [33]. Therefore, the Dyson criterion
for α is fulfilled and these two polymer models are expected
to lead to phase separation. For an infinite compact globular
polymer, we expect Gaussian behavior for interior monomers
owing to internal screening of polymer self-avoidance [42,43].
Typical polymer conformational statistics therefore lead to a

LR interaction decay exponent α that ensures the existence of
a 1D phase transition for bound particles.

III. VARIATIONAL METHOD

Using a variational method [31], we proceed by finding the
coexistence and spinodal curves to construct the entire LRLG
phase diagram in the absence of specific binding sites. To do
so, we absorb the uniform nonspecific binding energy into the
definition of the chemical potential and rewrite the free energy
FLRLG as the sum of two parts by introducing a variational
parameter μ0:

FLRLG[�i] = H0 + 
H, (9)

where

H0 = −J
N−1∑
i=1

�i+1�i − μ0

N∑
i=1

�i (10)

and


H = −1

2

N∑
i, j

′�iGi j� j − (μ − μ0)
N∑

i=1

�i. (11)

H0 is just the Hamiltonian of another 1D SRLG [see Eq. (2)]
with an effective chemical potential μ0 and therefore has the
advantage of being exactly solvable. For J = 0, the variational
method is equivalent to the MFT one, which consists in
moving the NN interaction (term in J) from H0 to 
H (see
Appendix B). MFT, which incorrectly predicts a 1D phase in
the absence of bridging, is improved by the optimal choice for
μ0 when J > 0, because correlation effects, missed entirely
by MFT, are approximately accounted for in the variational
H0. This variational method is exact for the (unphysical)
infinite-range lattice gas (or Ising model [44,45]) (for which
Gi j is independent of i − j and inversely proportional to N),
and therefore we expect it to lead to reasonably accurate
results for the LRLG.

The division in Eq. (9) leads to a trial grand potential

�V = �0 + 〈
H〉0 � �LRLG, (12)

where �0 is the grand potential related to H0 and 〈·〉0 denotes
an average with respect to H0. In the thermodynamic limit
(N → ∞), �0 = −NkBT ln λ+, where λ+ is the largest of
the two eigenvalues λ± which arise from the transfer matrix
method applied to the SRLG model [46]:

λ± = eY
[

cosh(Y ) ±
√

sinh2(Y ) + e−βJ
]
, (13)

with Y = β(J + μ0)/2. The second term in �V,

〈
H〉0 = 1

2

N∑
i, j

′Gi j〈�i� j〉0 − (μ − μ0)
N∑

i=1

〈�i〉0, (14)

involves the mean occupation in the ensemble H0, �0 ≡
〈�i〉0, where

〈�i〉0 = − 1

N

∂�0

∂μ0
= 1

2

(
1 + sinh(Y )√

sinh2(Y ) + e−βJ

)
, (15)

and the two-site correlation function,

〈�i� j〉0 = �2
0 + �0(1 − �0)e−|i− j|/ξLG , (16)
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in the thermodynamic limit with ξLG = −1/ ln rLG being the
SRLG correlation length and rLG ≡ λ−/λ+. The optimization
equation

(∂�V/∂μ0)μ0=μ�
0
= 0 (17)

gives the optimal value μ�
0 of μ0:

μ − μ�
0 = 2��

0[S′ − S] − S′

−��
0(1 − ��

0)(1 − 2��
0)S′′β

(
∂�0

∂μ0

)−1

μ0=μ�
0

(18)

with ��
0 = �0(μ�

0) and where the sums S, S′, and S′′, defined
as

S =
∞∑

k=ninf

Gk,

S′ =
∞∑

k=ninf

Gkrk
LG,

S′′ =
∞∑

k=ninf

Gkk rk
LG (19)

depend crucially on the long-range behavior of the kernel
Gi j = Gi− j (the equality, arising from translational invariance,
holds in the thermodynamic limit) (see Appendix C).

The best variational approximation to the exact grand
potential �LRLG is the optimal grand potential, ��

V = �V(μ�
0),

from which we obtain the average site occupation � ≡
−N−1∂��

V/∂μ. This last definition, along with the optimiza-
tion condition, leads to � = ��

0 and since Eq. (15) can be
inverted to obtain μ�

0 in terms of ��
0, it is possible to write ��

V
entirely in terms of �:

��
V

N
= �0(�)

N
+ �2(S − S′)

+�2(1 − �)(1 − 2�)βS′′
(

∂�0

∂μ0

)−1

μ0=μ�
0

. (20)

The quantities λ+, rLG, and ∂�0/∂μ0 are functions of μ�
0,

which can be written explicitly, by inverting Eq. (15), as a
function of �:

βμ�
0 = 2 ln

[
A
√

B +
√

1 + A2(B − 1)
] − ln(1 − A2) − βJ,

(21)

where A ≡ 2
� with 
� = � − �c the distance from the
critical occupation (�c = 1/2 by particle-hole symmetry) and
B ≡ e−βJ . For instance, β�0(�)/N can be written explicitly
as a function of �,

β�0(�)

N
= ln(1 − A2) − ln

(√
1 + A2(B − 1) + A

√
B
)

− ln
(√

1 + A2(B − 1) +
√

B
)
, (22)

and the derivative appearing in Eq. (20) can be written as(
∂�0

∂μ0

)
μ0=μ�

0

= βe−βJ cosh
[

β

2 (μ�
0 + J )

]
{

sinh2
[

β

2 (μ�
0 + J )

] + e−βJ
} 3

2

, (23)

which when combined with Eq. (21) leads to an explicit
function of �.

With the above analytical variational expressions for
the chemical potential μ and the LRLG pressure P ≈
−��

V/(Nlm) as functions of �, we can obtain the coexistence
and spinodal curves [47,48]. The coexistence curve is defined
by the equality of μ and P in the phases of high (�h) and low
(�l ) occupation,

μ(�l ) = μ(�h) (24)

and

P(�l ) = P(�h), (25)

and the critical point (�c, Tc) by

∂P/∂� = ∂2P/∂�2 = 0. (26)

Owing to particle-hole symmetry,�h + �l = 1 and �c =
1/2, the full coexistence curve, Tcoex(�), can be obtained by
solving a single equation, such as

μ(�l ) = μ(1 − �l ) (27)

or

P(�l ) = P(1 − �l ). (28)

The spinodal curve, Tsp(�), which fixes the limits of metasta-
bility, is defined by the divergence of the isothermal compress-
ibility, or

∂P/∂� = 0. (29)

The critical temperature is found in the limit � → �c =
1/2. This leads to the variational critical temperature as a
solution to the following implicit equation:

T V
c

Tr
= 1

2kBTr

[
(Sc − S′

c) exp

(
J

2kBT V
c

)
− S′′

c

]
, (30)

where the subscript c indicates quantities evaluated at the
critical point and Tr = 300 K is the room temperature.

For simplicity, we illustrate our results for the case of an
attractive square-well (SW) particle interaction of depth u0,
range a, and hard core σ [21,22]:

U (R) =
⎧⎨
⎩

+∞, if R < σ

−u0, if σ < R < a
0, if R > a

, (31)

where u0 > 0 controls the amplitude of the attractive spa-
tial interaction. The asymptotic long-distance behavior (for
Ri j/b � 1) is therefore given by

Gi j −→
|i− j|→∞

KSW|i − j|−α, (32)

where

KSW = 4πβ−1 c0

3 + g

(σ

b

)3+g

×
{

(eβu0 − 1)

[( a

σ

)3+g
− 1

]
− 1

}
. (33)

This model allows us to illustrate generic behavior for poten-
tials with short-range repulsion and longer range attraction:
KSW is positive (attractive) at sufficiently low T and decreases
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FIG. 2. Phase diagrams for polymer-bound particles. Model parameters (see text): lm = 5.44 nm (16 bp footprint), σ = lm, b = √
2lmlp =

23.6 nm, ninf = 10, a = 2σ , and u0 = 3 kBTr (lp = 51 nm is the persistence length). Green star, biological conditions for the bacterial F-plasmid
(� = 0.08 at room temperature Tr). (a) Gaussian polymer. Solid (dotted) line represents the coexistence (spinodal) curve for J = 0 (red) and
J = 3 kBTr (blue). (b) Self-avoiding polymer (SAP) with J = 0 (red) and J = 5 kBTr (blue). (c) Critical temperature Tc for the Gaussian
polymer: variational approach (solid line) and MFT (dotted line). (d) Same as panel (c), but for the SAP.

monotonically with decreasing slope for increasing tempera-
ture, eventually becoming negative (repulsive) at sufficiently
high T due to short-range repulsion. In the attractive regime of
interest here, KSW increases with u0 and a and decreases with
the Kuhn length b, σ , and polymer exponent g because chain
stiffness and polymer self-avoidance inhibit particle-particle
bridging.

IV. PHASE SEPARATION IN THE PARABS
PARTITION SYSTEM

We apply our LRLG model with an appropriately pa-
rameterized SW potential to investigate the possible role of
phase separation in the ParABS partition system. This system
ensures the segregation of autonomous DNA strands, such as
the F-plasmid in E. coli [49], but also the origin domain of
chromosomes in most bacteria [50]. This molecular machin-
ery is composed of three components: a DNA sequence parS
and two protein species ParB and ParA. We focus on one of
its key elements, namely the formation of ParB clusters. ParB
proteins can bind to DNA nonspecifically and specifically on
the parS sequence [51]. Once bound to DNA, ParB proteins
can mutually interact, leading to the formation of ParB S
partition complexes [12,49]. Although we now have a better
understanding of segregation dynamics [13], the conditions of
complex formation are still poorly understood. Experiments

[10,11] show that without the parS sequence, bacteria present
a homogeneous ParB distribution in the cell, while with parS
a ParBS complex forms.

Our goal is to investigate whether the formation of ParBS
complexes could be the result of a 1D phase separation
between states of high and low ParB occupation on the DNA
nucleated by parS, qualitatively similar to conventional liquid-
vapor phase separation in metastable situations. To reach
this goal, we establish the equilibrium phase diagram in the
absence of parS and locate the position of the biological
system (assuming that active processes are only important in
the segregation of already formed ParBS complexes [13]).

The available data for ParB allow us to parametrize the
LRLG model at room temperature Tr = 300 K (see Fig. 2):
The truncated F-plasmid studied experimentally is a short
circular DNA strand of linear size 60 kbp. There are on aver-
age ≈300 ParB present on the DNA (each with a lm = 16 bp
footprint) [52] and therefore 60 000/16 = 3750 possible non-
specific ParB binding sites, leading to a mean occupation
� ≈ 300/3750 = 0.08.

We choose the hard core diameter to be equal to the ParB
footprint, σ = lm ≈ 5.44 nm. From the known persistence
length of DNA, lp = 51.0 nm, the Kuhn length b = √

2lplm
[33,43] is equal to 23.6 nm, and the lower cutoff ninf =
�łp/lm = 10 (loops shorter than lp are sharply repressed by
bending rigidity [9,20]). To complete the parametrization of
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FIG. 3. [(a)–(c)] Results for a SAP. [(d)–(f)] Results for a Gaussian polymer. First line, J = 0. Second line, J = 3 kBTr . Third line, J =
5 kBTr (the variational and mean field approaches give the same results for J = 0). The model parameters are those used in Fig. 2.

the LRLG model, we make the following reasonable choices
for the range and depth of the attractive part of the SW poten-
tial, a = 2σ and u0 = 3 kBTr , respectively. With this choice of
parameters, the LRLG kernel remains positive (attractive) up
to a very high temperature (more than 20 times Tr for both
polymer models studied here).

We have checked that using the asymptotic form of the
kernel

Ki j = KSW|i − j|−α (34)

in place of the full one, Gi j , leads to accurate results (see
Appendix C). The coefficient c0 is equal to [3/(2π )]3/2 for
the Gaussian polymer (see Appendix C) and 0.58 for the SAP
(estimated from exact enumeration data for open and closed
chains of length N = 22 [53]). For this choice of parameters
βKSW at Tr is equal to 2.26 and 3.03 for a Gaussian polymer
and SAP, respectively (the higher value for the SAP arises
from a higher SAP value for c0, which compensates for the
opposing effect of a larger g).

Figures 2(a) and 2(b) show the phase diagrams obtained
using Gaussian polymer or SAP statistics [54]. We observe
that the critical temperature T V

c , which is the solution to
Eq. (30), grows with J [Figs. 2(c) and 2(d)] and that this
effect is severely overestimated by MFT, for which (see
Appendix D)

T MFT
c

Tr
= 1

2kBTr

[
J + S

(
T MFT

c

)]
. (35)

In the asymptotic kernel approximation adopted here (see
Appendix C)

S(T ) =
∞∑

k=ninf

Gk ≈ KSW(T )

[
ζ (α) −

ninf −1∑
k=1

1

kα

]
(36)

with ζ being the Riemann zeta function.
A simple approximation based on the weak temperature

dependence of KSW(T ) for T > Tr and obtained by evaluating
S in Eq. (35) at Tr explains the linear dependence of T MFT

c on
J for large J (see Appendix D). The temperature dependence
of the kernel is, however, crucial in determining the critical
temperature for small J . The variational result for the critical
temperature is also close to being linear in J for large J and
heuristically can be obtained from MFT by evaluating S at Tr

and replacing J by J/3.
The expression (36) indicates how the critical temperature

is crucially determined by ninf , the polymer persistence length
in site number, by reducing the weight of the LR interaction
contribution [9,20]. The relatively large value of ninf = 10
implies that the coefficient of the KSW term in Eq. (36) is
reduced by 75% for the Gaussian polymer and 92% for the
SAP (with respect to ninf = 0). In Fig. 2, the lower Tc shown
by the SAP compared with the Gaussian polymer at constant
J is due to the faster decay of the LR interaction (larger α),
despite the larger value of the SAP KSW (see Appendix C).
The critical temperature Tc is nonzero even for J = 0, but
is far below room temperature. Therefore, the system does
not exhibit phase separation without spreading interactions at
this temperature. Both short-range spreading with reasonable
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biological values for J (≈3–6 kBTr) and long-range bridging
interactions are thus required at room temperature to form
ParB condensates in our model, as suggested by Monte Carlo
simulations [12] and experiments [49,55].

We show in Fig. 3 supplementary phase diagrams for
Gaussian and self-avoiding polymers (SAPs) and various
values of J to provide examples of how mean field phase
diagrams deviate substantially from the variational ones as the
NN interaction J increases. These results also illustrate the
global dependence of the phase diagrams on this key model
parameter.

The position of this system at room temperature in
the occupation-temperature phase diagram [green star in
Figs. 2(a) and 2(b)] shows that for reasonable biological
values of J the system without parS exists in the low oc-
cupation metastable coexistence region, providing a plausi-
ble explanation for the experimental observations [11,12].
Thus, specific ParB binding to parS could provide the energy
required to overcome the nucleation barrier and allow the
system to switch from the metastable low occupation homo-
geneous state to the stable coexistence phase, in which ParB
proteins form a stable high occupation (liquid) cluster on the
DNA around parS, surrounded by a low ParB density (vapor)
background. Experimentally, this system should follow the
conventional behavior of liquid-vapor phase transitions:

(1) In the low occupation metastable region, the system
can form relatively high-density ParBS complexes with only a
small total number of intracellular proteins.

(2) ParB over- or underexpression will favor or repress the
formation of ParBS complexes depending on the position in
the phase diagram. Indeed, systems without parS but with
sufficiently high ParB occupation would be in the unstable
coexistence area and should therefore form protein (liquid)
droplets spontaneously in a low occupation (vapor) back-
ground, the homogeneous state being unstable in this case.

(3) In contrast, systems with too few ParB proteins would
be in the low occupation vapor region, losing the ability to
form complexes even in the presence of parS.

Experimental evidence for such global trends may already
exist in in vitro single-molecule experiments [55,56].

V. SUMMARY AND CONCLUSIONS

We have proposed a general theoretical framework for
the physics of particles interacting on a polymer fluctuating
in 3D that leads naturally to an effective 1D LRLG model.
We established a criterion for the existence of a 1D phase
transition based on the exponent α controlling the asymptotic
decay of the LR interactions, which depends only on the
polymer exponents ν and g. Since this criterion is satisfied
for standard polymer models, the conformational fluctuations
of linear structures like DNA produce effective 1D long-
range interactions between bound particles that lead to 1D
particle phase separation along the polymer. We used our
theoretical approach to construct the whole phase diagram
of the ParB proteins which are part of a prevalent bacterial
DNA segregation system and concluded that the formation of
ParB condensates could plausibly result from parS nucleated
phase separation in the low ParB occupation metastable re-
gion. This general mechanism for triggering the formation of

polymer-bound protein complexes via small nucleation sites
may generally play an important role in membraneless cell
compartmentalization and in industrially important polymer-
surfactant systems [16].

The phase diagrams for the same model, but without
nearest neighbor interactions, presented in Figs. 5 and 6 of
Ref. [18] were obtained using a mean field Flory approach
that predicts phase separation only in the collapsed globule
state but not in the swollen and ideal polymer states. These
phase diagrams cannot be used to explain the formation
of ParB condensates, because they show phase coexistence
only in the very high occupation regime (greater than 75%
coverage on both branches of the phase coexistence curves).
Contrary to our results, these results cannot therefore explain
the low occupancy background phase needed to explain the
experimental ParABS results. There is also evidence coming
from simulations against the ParB condensates being in a
compact globule state [12].

Our method may also be used to derive the 1D particle
distribution along the polymer and the 3D particle density
of the condensate that forms around a specific binding site,
both of which are accessible experimentally [11,49]. It could
also be generalized to treat models (i) and (ii) evoked in the
introduction (see Appendix E). Finally, to facilitate quantita-
tive testing of the present approach, it would also be of great
interest to apply it to the analysis of industrially important
polymer-surfactant systems [16], as well as to pursue experi-
mental and theoretical studies of in vitro biomimetic systems
[55,56].
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APPENDIX A: FLORY APPROACH

We present here a critical analysis of the early work by
Dormidontova et al. [18] and show by comparison with our
own work that the Flory-type approach they adopt, usually
a natural starting point to tackle difficult polymer problems,
is inadequate for understanding the phase behavior of the
system studied. It is important to understand why a Flory-type
approach [18,32–36] fails in this case.
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The work by Dormidontova et al. examines the same gen-
eral problem that we do, that of interacting particles bound to
a fluctuating polymer, but as a starting point they immediately
formulate the problem in the form of a Flory mean field
theory. This type of approach, despite its interest, allows
neither the model to be put on a solid basis, nor, because of
its ad hoc nature, the physics of the system to be studied in a
coherent statistical mechanical framework.

We start by sketching a method for obtaining the Flory
approach in the current context. We underline that this is not
a derivation of the Flory approach because it relies on an
unjustified step that has no rigorous foundations.

The partition function for a polymer of length N and
effective monomer length b

ZP = 4πb−3
∫ ∞

0
dRR2 QP(R), (A1)

can be written in terms of the restricted polymer partition
function, QP(R) (with end-to-end distance constrained to be
R). The (normalized) probability distribution function, Pee(R),
which is related to QP(R) by Pee(R) = b−3QP(R)/ZP, gives
the probability to find the polymer in a state with an end-to-
end distance equal to R. The mean-square end-to-end distance
is

R2
ee = 〈R2〉 = 4π

∫ ∞

0
dRR4 Pee(R). (A2)

Since we expect Pee to be a function of R only in the combi-
nation R/Ree, we introduce the scaling function pee, via

Pee(R) = R−3
ee pee(R/Ree ), (A3)

which allows us to rewrite ZP as

ZP ∼
∫ ∞

0
dx exp[−�(x)], (A4)

using the change of variables x = R/Ree and introducing an
effective end-to-end free energy,

�(x) = − ln[pee(x)] − 2 ln(x), (A5)

that fixes the weight of a configuration with an end-to-
end distance R = xRee in the full partition function. The
Flory approach can be couched in the form of a saddle-
point approximation, given by �′(x) = 0, to obtain an ap-
proximation for the end-to-end distance and full partition
function.

Given the known form of Pee for a Gaussian polymer,

PG(R) =
(

3

2πR2
G

)3/2

exp

[
−3

2

(
R

RG

)2
]
, (A6)

where the Gaussian polymer end-to-end distance is RG =
bN1/2 (b is the Kuhn length), it is straightforward in this case
to find the Gaussian polymer scaling function

pG(α) =
(

3

2π

)3/2

exp

[
−3

2
α2

]
(A7)

and the effective free energy, �G, as a function of the so-called
swelling factor α = R/RG,

�G(α) = −2 ln α + 3

2
α2 − 3

2
ln

(
3

2π

)
. (A8)

Using the Flory approach, �′
G(α) = 0, we can obtain an ap-

proximation, RSP
G , for the end-to-end distance and full partition

function for the simple Gaussian polymer: We recover the
exact end-to-end distance scaling with less than 20% error for
the ratio RSP

G /RG.
To take into account monomer-monomer (mm) and bound

particle-bound particle (pp) interactions, we can now proceed
as we did for the full partition function (see main text) and
perform a generalized virial expansion, but with the extra
complication that we are now working with the constraint that
the polymer end-to-end distance be fixed at R = αRG. We
are also now treating mm and pp interactions on the same
footing, instead of treating the polymer (formally) exactly
and therefore a coupling between the fluctuating polymer
and bound particles only appears when the bare mm in-
teraction, umm(r), is different from the pp interaction one,
upp(r):

�[α; �i] ≈ − 2 ln α + 3

2
α2 − 3

2
ln

(
3

2π

)

− 1

2

N∑
i, j

′�i
[
Gpp

i j (R) − Gmm
i j (R)

]
� j

− 1

2

N∑
i, j

′Gmm
i j + HSRLG[�i], (A9)

where both the constrained kernel for monomer-monomer
interactions,

Gmm
i j (R) = 4πb3β−1

∫ ∞

0
dr r2 [e−βumm (r) − 1] Pi j (r; R),

(A10)

and the constrained kernel for bound particle-bound particle
interactions,

Gpp
i j (R) = 4πb3β−1

∫ ∞

0
dr r2 [e−βupp(r) − 1] Pi j (r; R),

(A11)
depend on the monomer-monomer (mm) polymer constrained
probability distribution function (cPDF),

Pi j (r; R) = 〈δ(r − |Xi − X j |)δ(R − |X1 − XN |)〉GP, (A12)

which describes the probability that monomers i and j be
separated by a distance r in space given that the end monomers
are separated by a distance R (GP denotes that the aver-
age is taken for the Gaussian polymer). It is clear that the
particle-particle interaction introduced in the main text, U (r),
is an effective one that implicity accounts for the difference
between the bare monomer-monomer two-body interaction
and the bound particle-bound particle one:

e−βU (r) = 1 + e−βupp(r) − e−βumm (r). (A13)

(For simplicity, and following Ref. [18], we assume that the
monomer-bound particle interaction is purely repulsive and
identical to the monomer-monomer one.) We expect that if
the mm interaction is approximated by a hard-core repulsion
with a range that is much less than the hard core repulsion of
the pp interaction, then the amplitude of the kernel (33) will
not be substantially modified.
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The mean field Flory approach adopted in Ref. [18]
consists in making without justification the replacement
of b3Pi j (r; R) by an effective interaction volume R−3 =
(αRG)−3. This replacement neglects all correlations along the
polymer and leads effectively to an infinite-range model. We
then recover the approach of Ref. [18] if the nearest-neighbor
interaction J is set to zero in the SRLG Hamiltonian, the
lattice gas is treated in the mean field approximation to find
the Helmoltz free energy (in the canonical ensemble), and a
simple form for the third virial coefficient (independent of the
particle occupation) is added in by hand.

The monomer-monomer and bound particle-bound particle
second virial coefficents are given by, respectively,

Bmm = −2π

∫ ∞

0
dr r2 [e−βumm (r) − 1] (A14)

and

Bpp = −2π

∫ ∞

0
dr r2 [e−βupp(r) − 1]. (A15)

If we define


B = Bmm − Bpp = 2π

∫ ∞

0
dr r2 [e−βU (r) − 1], (A16)

which is minus the second virial coefficient for the effective
pp interaction U , then we find up to a constant, using the Flory
approach of Ref. [18] outlined above,

�Flory[α; �] ≡ 3

2
(α−2 + α2) + V1N1/2

α3
+ V 2

2

2α6

+ N[� ln � + (1 − �) ln(1 − �)]

− V1N1/2

α3


B

Bmm
�2, (A17)

where V1 = Bmm/b3, V2 = C1/2/b3, and � is the average
occupation (C > 0 is the third virial coefficient). To follow
Ref. [18], we have also replaced −2 ln α in � (A9) by 3

2α−2 to
(heuristically) recover the correct polymer swelling, α = 1,
in the absence of mm and pp interactions (we could have
as easily, following de Gennes [32], replaced −2 ln α by
−3 ln α). The above expression for �Flory is in agreement with
the Flory approach of Ref. [18].

In the absence of bound particles, the polymer is assumed
to be in a swollen state (V1 > 0). The first line in (A17) is the
usual Flory expression for a bare polymer. The second line
is the usual entropy of mixing for a noninteracting lattice gas
and the third line arises from the coupling between the bound
particles and the fluctuating polymer.

By following Ref. [18] and replacing b3Pi j (r; R) by an
effective interaction volume R−3 = (αRG)−3, describing (ap-
proximatively) the volume occupied by the polymer, we have
lost all notion of the range of the effective 1D pp interaction
along the polymer. We also recall that applying mean field the-
ory in such a situation can be extremely misleading, because
mean field theory will always lead to a phase transition, even
for the 1D SRLG for which no phase transition exists.

It appears at first sight from (A17) that phase separation
can take place if the pp interaction is less repulsive (but not
necessarily attractive) than the mm one, i.e., 
B > 0. Below
we will show that a sufficiently strong attractive pp interaction
is actually necessary to obtain phase separation because the

Flory approach requires concomitant polymer collapse (to a
globule state). The parameter k introduced in Ref. [18] is
related to the second virial coefficients introduced above by

k ≡ 
B

Bmm
− 1. (A18)

The system of equations governing the equilibrium behavior
of the coupled system can be derived from (A17) using
the Flory minimization condition and the definitions of the
normalized chemical potential μ̃Flory = βμFlory and pressure
P̃Flory = βPFlory,

(∂�Flory/∂α)� = 0,

N−1(∂�Flory/∂�)N = μ̃Flory, (A19)

−(∂�Flory/∂N )M = P̃Flory,

where M = N� (the average number of particles on the
polymer), which leads to

α5 − α = V1N1/2[1 − (1 + k)�2] + V 2
2

α3
,

μ̃Flory = −2V1(1 + k)�

α3N1/2
+ ln

(
�

1 − �

)
, (A20)

P̃Flory = −V1[1 + 3(1 + k)�2]

2α3N1/2
− ln (1 − �).

Dormidontova et al. [18] used the system of equations
(A20) to study phase behavior [see their Eq. (5.3)] nu-
merically for a large but finite value of N (equal to 104).
They found phase separation only in the globule state. They
therefore concluded that bound-particle phase separation was
necessarily linked to the collapse of the polymer with particle
occupation on both branches of the phase coexistence curve
necessarily very high (>0.75).

We can better understand the results of Ref. [18] and
facilitate the comparison with our own results by working
in the thermodynamic limit (N → ∞), where the system of
equations (A20) can be simplified and the polymer degrees of
freedom can be eliminated, leading to an effective theory for
the bound particles. As shown in Figs. 5 and 6 of Ref. [18],
phase diagrams at room temperature can conveniently be
presented in the (�, k) plane, where k > 0 parametrizes the
amplitude of the attractive pp interaction with respect to the
amplitude of the repulsive mm one. The dividing (θ ) curve in
the (�, k) plane between the swollen state (to the left) and
the globule state (to the right) is determined by the vanishing
of the full polymer second virial contribution, i.e. the term
proportional to V1 in the first equation of the system (A20):
kθ (β ) = β−2 − 1. Our simple strategy is to look for phase
separation first in the swollen state and then in the globule
state. If we find phase separation, to be consistent, we must
then check that the predicted phase diagram falls entirely in
the state assumed at the outset.

In the swollen state [to the left of kθ (β )], we find

α5
S ≈ V1N1/2[1 − (1 + k)�2] (A21)

and therefore αS ∝ N1/10, which yields the usual Flory result,
RFlory ∝ N3/5 for the end-to-end distance of a swollen poly-
mer. The attractive pp interactions simply lead to a reduced
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effective Kuhn length. The polymer is still swollen, but less
so than in the absence of bound particles. The key point
now is that the pp interaction terms in the pressure and
chemical potential vanish as 1/(αSN1/2) = N−4/5, when N →
∞ [see (A20)] and thus the bound particle system reduces
to a noninteracting lattice gas. The Flory approach severely
underestimates the importance of bridging interactions in the
swollen state and therefore fails to predict bound-particle
phase separation, in contrast to what we found using the
correct kernel (see main text).

In the globule state [to the right of kθ (β )], the total second
virial contribution becomes negative (attractive) and polymer
collapse to a compact state is arrested by the repulsive third
virial contribution. In this case,

V 2
2

α3
Gl

≈ V1N1/2[(1 + k)�2 − 1] (A22)

and therefore αGl ∝ N−1/6, which yields the usual Flory re-
sult, RGl ∝ N1/3 for the end-to-end distance of a compact
polymer (globule). The attractive pp interactions are so strong
in this case that they overcome the mm repulsion. The key
point now is that the pp interaction terms in the pressure and
chemical potential no longer vanish when N → ∞, but scale
in such a way as to lead to a well-defined thermodynamic limit
in the globule state:

μ̃F,Gl = −2

(
V1

V2

)2

(1 + k)�[(1 + k)�2 − 1]

+ ln

(
�

1 − �

)
, (A23)

P̃F,Gl = −1

2

(
V1

V2

)2

[1 + 3(1 + k)�2][(1 + k)�2 − 1]

− ln(1 − �). (A24)

Thus, the bound particle system retains attractive pp inter-
actions in the globule state and the Flory approach predicts
bound particle phase separation. We have used the effective
set of equations [(A23) and (A24)], obtained by eliminating
the polymer degrees of freedom from the Flory approach, to
reproduce the phase diagrams obtained numerically from the
full Flory approach of [18] (their Figs. 5 and 6). The critical
point (�c, kc) in the (�, k) plane is defined by

∂μ̃

∂�
= ∂2μ̃

∂�2
= 0, (A25)

which can even be calculated analytically (in the thermody-
namic limit): For the flexible chain (Fig. 5 of Ref. [18]), V1 =
V2 = 1, and we find (�c, kc) = (4/5, 9/16) in reasonably
good agreement with the critical point found in Ref. [18] for
N = 104.

We believe, however, that this phase separation in the
globule state presents an inconsistency: As mentioned in the
main text, in the thermodynamic limit of a globule state
we expect ideal Gaussian behavior for interior monomers
owing to internal screening of polymer self-avoidance. In
our approach, we therefore assimilate the globule state in the
thermodynamic limit to an ideal polymer with phase behavior
different from that presented in Dormidontova et al. (their
Figs. 5, 6, and 7). The subtlety here arises from the different

scaling behavior in this case between the scaling of the end-
to-end distance R as a function of N and the scaling of Ri, j as a
function of |i − j| for internal monomers (far from the surface
of the polymer globule in 3D space). The correct scaling can
only be obtained if the correct order of limits is taken: N
should be taken to infinity before |i − j| to find the correct
asymptotic behavior in the thermodynamic limit. Because
the Flory approach therefore overestimates the overall effect
of the attractive interactions between bound particles in the
globule, we are not convinced that the phase behavior found
by Dormidontova et al. in the globule regime has any physical
reality.

APPENDIX B: MEAN FIELD THEORY

The variational method gives mean field results when only
the variational chemical potential term is kept in the reference
Hamiltonian H ′

0 and all correlation terms in 
H ′:

H ′
0 = −μ′

0

N∑
i=1

�i (B1)

and


H ′ = −J
N−1∑
i=1

�i+1�i − 1

2

N∑
i, j

′�iGi j� j

− (μ − μ′
0)

N∑
i=1

�i. (B2)

The prime on the sum means that |i − j| � ninf , where ninf is
the minimal internal distance in number of sites over which
two particles can interact at long range. Since the correlation
length vanishes in MFT, we have directly 〈�i� j〉 = �′2

0 for
i �= j, which leads to the MFT trial grand potential �′

V:

�′
V = −NkBT ln(1 + eβμ′

0 ) − N�′2
0(J + S)

− N (μ − μ′
0)�′

0 (B3)

with

�′
0 = eβμ′

0

1 + eβμ′
0
. (B4)

The optimization equation, ∂�′
V/∂μ′

0 = 0, has as solution
μ′�

0, which gives directly

μ = μ′�
0 − 2�′�

0(J + S) (B5)

and μ′�
0 as a function of �′�

0 is obtained by inverting Eq. (B4):

βμ′�
0 = ln

(
�′�

0

1 − �′�
0

)
. (B6)

The definition of MFT mean occupancy, �, together with the
optimization condition, leads to � = �′�

0. The MFT LRLG
result for the grand potential is then

�′�
V

N
= kBT ln (1 − �) + �2(J + S). (B7)

The MFT result for the chemical potential is given by

μMF = kBT ln

(
�

1 − �

)
− 2�(J + S) (B8)
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FIG. 4. Critical temperature (normalized by Tr = 300 K) as
function of J/kBTr using the Gaussian complete (black) and asymp-
totic kernel (turquoise). Solid (dotted) line is for variational (mean
field) method.

and the MFT pressure by

PMF = −�′�
V/(lmN ). (B9)

In MFT, the long-range interaction simply additively renor-
malizes the NN interaction via J → J + S with the additional
complication that S is temperature dependent.

APPENDIX C: DEFINITION OF S AND OTHERS SUMS

For the ParABS system, the large value of the DNA per-
sistence length leads to a relatively large value (ninf = 10) for
the lower cutoff, which allows us to use the asymptotic large-k
form of the kernel, written as

Kk = KSWk−α, (C1)

in evaluating the sums S, S′ and S′′. This approximation
simplifies the numerical calculations necessary to obtain the
phase diagram.

Because the complete Gaussian polymer probability distri-
bution function (PDF) takes a simple form [33,43],

PG
i j (R) =

(
3

2π
[
RG

i j

]2

)3/2

exp

⎡
⎣−3

2

(
R

RG
i j

)2
⎤
⎦ (C2)

(where RG
i j = b|i − j|1/2 with b the Kuhn length), we were

able to calculate the complete kernel analytically for this case.
Using this complete kernel, we then validated the asymp-

totic approximation by comparing the phase diagrams ob-
tained with those obtained using the complete Gaussian ker-
nel. In Fig. 4, we show that the critical temperatures predicted
by the Gaussian complete and asymptotic kernel behave simi-
larly. We assume that the same positive conclusion concerning
the validity of this asymptotic approximation can be drawn for
the self-avoiding polymer (SAP), for which the complete PDF
and a fortiori the kernel are not known analytically. Hence, for
calculational efficiency in the thermodynamic limit, we chose

to rewrite S as

S ≈
∞∑

k=ninf

Kk =
∞∑

k=1

Kk −
ninf −1∑
k=1

Kk

= KSW

[
ζ (α) −

ninf −1∑
k=1

k−α

]
, (C3)

where ζ (x) is the Riemann zeta function. The first term
KSWζ (α) is the complete asymptotic contribution to the sum
S. The second term allows us to incorporate the influence of
the polymer persistence length.

The same procedure can be applied to the sums S′ and S′′,
leading to

S′ = KSW

[
Liα (rLG) −

ninf −1∑
k=1

rk
LG

kα

]
(C4)

and

S′′ = KSW

[
Liα−1(rLG) −

ninf −1∑
k=1

rk
LG

kα−1
.

]
, (C5)

where

Lis(z) ≡
∞∑

k=1

zk

ks
(C6)

is the polylogarithm function.
The same decomposition carried out for the complete

kernel Gi j leads to

S =
∞∑

k=ninf

Gk =
∞∑

k=1

Gk −
ninf∑
k=1

Gk

≈ KSWζ (α) +
nsup∑
k=1

(Gk − KSWk−α ) −
ninf −1∑
k=1

Gk . (C7)

The first and last terms have been previously explained. The
second term takes into account the residual difference between
the complete kernel Gk and its asymptotic form, which is
most important for low values of k. These two forms for the
kernel converge very quickly and for practical purposes we
take nsup = 50. The same transformation can be applied to the
sums S′ and S′′, leading to

S′ =
∞∑

k=ninf

Gkrk
LG

≈ KSWLiα (rLG) +
nsup∑
k=1

(Gk − KSWk−α )rk
LG

−
ninf −1∑
k=1

Gkrk
LG (C8)
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and

S′′ =
∞∑

k=ninf

Gkk rk
LG

≈ KSWLiα−1(rLG) +
nsup∑
k=1

(Gk − KSWk−α )krk
LG

−
ninf −1∑
k=1

Gkkrk
LG. (C9)

APPENDIX D: VARIATIONAL AND MEAN-FIELD
CRITICAL TEMPERATURE

The self-consistent equation for the variational critical
temperature T V

c can be found using the variational expression
for the chemical potential μ:

μ − μ�
0 = 2��

0[S′ − S] − S′

−��
0(1 − ��

0)(1 − 2��
0)S′′ f (�), (D1)

with the optimized variational parameter μ�
0 given in Eq. (21)

and the function

f (�) = β

(
∂�0

∂μ0

)−1

μ0=μ�
0

= 4[sinh2 (Y (�)) + B]
3
2

B cosh (Y (�))
. (D2)

The objective is to find first the equation for the coexistence
temperature as a function of � using the equality of the
chemical potential in the low and high occupation states
(along with hole-particle symmetry)

μ(�v ) = μ(1 − �v ) (D3)

and then to develop this expression for � → �c = 1/2 (or
A → 0) to find the critical temperature. The first step yields
an implicit equation for the variational prediction for the
coexistence curve:

2kBT ln

(√
1 − A2

v + BA2
v + Av

√
B√

1 − A2
v + BA2

v − Av

√
B

)

− 2�v (S − S′
v ) + 2(1 − �v )(S − S′

l )

+�v (1 − �v )Av[S′′
v f (�v ) + S′′

l f (1 − �v )] = 0, (D4)

with Av = 2�v − 1, S′
v = S′(�v ), and S′

l = S′(�l ). To carry
out the second step and find T V

c , we take the limit � → 1/2.
One can easily show that in this limit S′

v, S′
l → S′ because

rLG → (1 − √
B) / (1 + √

B). The same statement holds for
S′′

v , S′′
l → S′′. Moreover, f (�) → 4

√
B and equation (D4)

becomes

2kB
√

Bc T V
c − (S − S′) + S′′√Bc = 0, (D5)

with Bc = exp[−J/(kBTc)], and finally we obtain an implicit
equation for T V

c :

T V
c = Sc − S′

c

2kB
√

Bc
− S′′

c

2kB
(D6)

with Bc, Sc, S′
c, and S′′

c evaluated at the critical point (and
therefore functions of T V

c ).
Developing the last expression for J → 0 and using the

result that S′, S′′ → 0 in this limit lead to the self-consistent

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

T / T
r
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K
SW

 / 
(k
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T

r)
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SAP K
SW

FIG. 5. Kernel intensity KSW/(kBTr ) as a function of T/Tr . Blue
(red) is for the SAP (Gaussian) statistics.

equation for the mean field critical temperature:

T MFT
c

Tr
= 1

2kBT MFT
c

[
J + S

(
T MFT

c

)]
, (D7)

with S(T ) given by Eq. (C3) in the asymptotic approximation
to the kernel.

Because of the temperature dependence of the kernel, the
MFT critical temperature T MFT

c , which can also be obtained
directly from

(∂PMF/∂�)�=�c = 0, (D8)

is also a solution to an implicit equation. If T MFT
c /Tr > 1, then

the MFT critical temperature can be estimated by replacing
T MFT

c with Tr in Eq. (D7) to obtain an explicit analytical
approximation evoked in the main text:

T MFT
c

Tr
≈ 1

2kBTr
[J + S(Tr )]. (D9)

This approximation relies on the relatively weak temperature
dependence of KSW for the chosen ParBS model parameters
when T > Tr (see Fig. 5).

APPENDIX E: GENERALIZATION TO MODELS (I) AND
(II) OF THE INTRODUCTION

For model (i), the bound particles are not fluctuating but
rather quenched, and the problem reduces to a heterogeneous
polymer problem where the sequence of occupied sites is
frozen. The key question to address is how this quenched
particle occupation influences polymer statistics, including
polymer collapse at sufficiently high frozen particle density
[21,22,27,28]. In certain cases, we expect to find a strong
coupling between the sequence and the polymer conformation
with possible applications in the area of intrinsically disor-
dered proteins (IDPs) (see, e.g., Ref. [57]).

For model (ii), nonattracting mobile bound particles fluc-
tuate and can bind simultaneously to two (or more, in some
cases) polymer sites to form bridges [19,23,29]. This model
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can be formulated by modifying the present model: The
nearest-neighbor interaction should be dropped and the long-
range 3D spatial interaction should written as �i(1 − � j ) =
−�i� j + �i, instead of �i� j , to take into account that an
occupied site i can interact attractively with an unoccupied site
j (a hole). The sign of the long-range interaction is changed
with respect to model (iii), becoming repulsive. Although

we probably would not expect a true phase transition in this
case, a more detailed study needs to be performed before
drawing any solid conclusions. We would, however, expect
a substantial modification of loop entropy and polymers
statistics, leading to possible polymer collapse, depending on
the average particle occupancy on the polymer (as already
observed in simulations).
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