
PHYSICAL REVIEW RESEARCH 2, 033144 (2020)

Screened Coulomb interactions of general macroions with nonzero particle volume
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A semianalytical approach is developed to calculate the effective pair potential of rigid arbitrarily shaped
macroions with a nonvanishing particle volume, valid within linear screening theory and the mean-field
approximation. The essential ingredient for this framework is a mapping of the particle to a singular charge
distribution with adjustable effective charge and shape parameters determined by the particle surface electrostatic
potential. For charged spheres, this method reproduces the well-known Derjaguin-Landau-Verwey-Overbeek
(DLVO) potential. Further exemplary benchmarks of the method for more complicated cases, like tori, triaxial
ellipsoids, and additive torus-sphere mixtures, leads to accurate closed-form integral expressions for all particle
separations and orientations. The findings are relevant for determining the phase behavior of macroions with
experiments and simulations for various particle shapes.
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I. INTRODUCTION

Screened Coulomb interactions of electronic or ionic na-
ture are ubiquitous in quantum-mechanical and classical sys-
tems, such as strongly correlated electron matter [1,2], chem-
ical bonds [3,4], superconductors [5], proteins [6], liquid
crystals [7–9], DNA [10–12], graphene [13], lipid membranes
[14,15], supercapacitors [16,17], microfluidics [18], and dusty
plasmas [19,20]. A general understanding of electrostatic
screening in various geometrical settings is needed, consid-
ering that many of these systems have a complex geome-
try. In particular, classical charge-screened particles of vari-
ous shapes and surface functionalities can be experimentally
synthesized and characterized today in great detail [21,22];
however, theoretical understanding of effective particle inter-
actions is lagging behind as it is difficult to account for finite
particle volume and nonspherical particle shape. This paper is
aimed at bridging the gap between the available experimental
and theoretical toolkits.

In order to express the system in solely the degrees of
freedom of interest—such as the positions and orientations of
specific particles—it is useful to integrate out the “fast” charge
degrees of freedom, which leads to an effective description in
terms of electrostatic screening. In free-electron like metals,
this procedure leads to Friedel oscillations, electron density
modulations near a solid-fluid interface and around impurities
[23–25], which is a canonical example of an emergent phe-
nomenon caused by screening. In classical systems [26] and
sufficiently dilute quantum systems [27,28], screening is often
associated with the damped spatial decay of the electrostatic
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potential (and thus the effective pair potential), that for point
particles and for low voltages compared to the thermal energy
has the Yukawa form, ∼ exp(−κr)/r, with κ−1 being the
Debye screening length and r being the radial distance, as
opposed to the bare Coulomb case ∼1/r. Of special interest
are spherical charged particles, with radius a in the colloidal
(sub)micron regime, dispersed in ion-containing liquids, be-
cause of their tunable charge and screening properties [29].
Integrating out the degrees of freedom of the smaller ions re-
sults in a Yukawa-type effective sphere-sphere potential with
a prefactor that depends on the particle charge and, unlike for
point particles, also the salt concentration via κa arising from
the ion-impenetrable particle hard core [30,31]. This so-called
Derjaguin-Landau-Verwey-Overbeek (DLVO) potential [32]
is an essential theoretical tool for understanding the behavior
of charge-stabilized colloids [33], even for out-of-equilibrium
suspensions [34].

For nonspherical shapes, the screened-electrostatic pair
interaction is only analytically known in a few cases for
all particle configurations, even within linear screening the-
ory. However, some studies exist for disks [35–38], rods
[39,40], spheroids [41–45], or helices [46], where the poten-
tial is sometimes calculated only for infinitely long, thin, or
ion-penetrable particles, restricted particle configurations, or
orientation-averaged interactions [47]. The difficulty in find-
ing analytical solutions lies in the finite ion-impenetrable par-
ticle volume which complicates matching the series expansion
solution (if it is even available for the geometry under consid-
eration) of the unscreened potential inside and the screened
potential outside the particle via the boundary conditions.
However, when the pair potential would be known, one does
not need to numerically solve the three-dimensional Poisson(-
Boltzmann) equation for every single-particle configuration
at each simulation step, as in Refs. [48–50] for simulations
of charged colloids. Instead, computationally less expensive
simulations with effective pair potentials can be used, and
by mapping to cell models, even charge regulation can be
incorporated [51]. The lack of availability of accurate pair
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FIG. 1. Scheme of mapping an arbitrary ion-impenetrable par-
ticle with surface charge density σ to an effective ion-penetrable
charge distribution q(r), that can be a point, line, or surface charge.

potentials might explain why fewer phase behavior studies are
known for complex-shaped charged particles [52–54] than for
charge-neutral hard particles [55–60].

In this paper, I devise a framework to semianalytically
approximate effective interactions between (not necessarily
equal) charged finite-size particles with not necessarily spher-
ical shape. By mapping particles to singular charge distribu-
tions (i.e., expressed by δ functions), I find a straightforward
and accurate evaluation of the interaction free energy for ar-
bitrary interparticle separations and orientations. For spheres,
this method reproduces DLVO theory, and hence a similar
level of approximation is expected such as weak double layer
overlap [61]. After discussing spheres, I apply the framework
to more complicated shapes, such as tori and ellipsoids.

II. GENERAL THEORETICAL FRAMEWORK

To set up the theoretical framework, I consider an ion-
impenetrable charged particle of arbitrary shape with di-
electric constant εp, surface P , and interior volume int(P ),
immersed in a structureless solvent with dielectric constant
εs and Bjerrum length �B = βe2/(4πε0εs), with e being the
proton charge, ε0 being the vacuum permittivity, and β−1 =
kBT , with kB being the Boltzmann constant and T being
temperature; see the scheme in Fig. 1. For simplicity, I focus
on a 1 : 1 salt, such that the mean-field approximation is
valid. By thermally averaging over the ions, an inhomoge-
neous electrostatic potential φ(r)/(βe) describes the electric
double layer that is formed around the particle. I split the
total electrostatic potential as a contribution inside the particle
φ<(r) = φ(r)|r∈int(P ), and a contribution outside the particle
φ>(r) = φ(r)|r/∈int(P ). For linear screening, there is the con-
dition on the dimensionless electrostatic potential |φ(r)| � 1,
meaning that I only consider potentials much smaller than the
thermal voltage. Within the mean-field approximation, φ<(r)
and φ>(r) are given by the Laplace and Debye-Hückel (DH)
equations, respectively,

∇2φ<(r) = 0, ∇2φ>(r) = κ2φ>(r), (1)

with κ−1 = (8π�Bρs)−1/2 being the Debye screening length
where ρs is the reservoir salt concentration, and I enforce con-
tinuity φ<(r) = φ>(r) for r ∈ P , and constant-charge bound-
ary condition on the particle surface with outward normal ν̂

and surface charge density eσ ,

ν̂ · [εp∇φ<(r) − εs∇φ>(r)]/εs = 4π�Bσ, r ∈ P . (2)

The finite particle volume complicates matching φ>(r) and
φ<(r) through the boundary conditions [42], although formal
exact multiple-scattering expansions exist [62]. Sometimes
Eq. (1) is not even separable in certain coordinate systems,
which further complicates finding analytical solutions. For
example, due to the nonseparability of the Helmholtz equation
(DH with imaginary κ) in toroidal coordinates, the complete
solution can only be expressed in terms of lengthy toroidal
wave functions [63]. However, some approximations for the
double layer around a torus exist [64,65].

The first central message of this paper is that an ion-
impenetrable charged particle can be mapped to a singular
charge distribution q(r) without a particle hard core, described
by the DH equation (∇2 − κ2)ϕ(r) = −4π�Bq(r), such that
the outside potential is approximated to a very high accuracy
by φ>(r) ≈ ϕ(r), schematically shown in Fig. 1. Conse-
quently, ϕ(r) can be expressed as the convolution of q(r) with
the DH Green’s function,

ϕ(r) = �B

∫
dr′q(r′)

exp(−κ|r − r′|)
|r − r′| . (3)

Here, q(r) can either be a point, line, or surface charge dis-
tribution and has to be parametrized with the same symmetry
of the particle. The salt-dependent shape and magnitude of
q(r) can be determined by matching, e.g., the numerically
or analytically obtained surface potential. The benefit of this
method is that the same q(r) for a single particle enters
the approximate analytical expression for the charge-screened
two-particle interaction, which is the second central message
of this work. For two arbitrary particles with center-to-center
distance vector d and orientations �1,2 that are mapped to
charge distributions qi(r; d,�i ) (i = 1, 2), respectively, I find
for the effective pair interaction within the DH approximation

βe(d,�1,�2) = �B

∫
dr′q1(r)q2(r′)

exp(−κ|r − r′|)
|r − r′| ,

(4)

where I subtracted the infinite self-energy terms, and for
simplicity I omitted the explicit configurational dependence of
the charge distributions in the right-hand side of the equation.

III. BENCHMARKS OF THE THEORY

A. Charged spheres

As an example, a sphere of radius a and total charge Zse =
4πa2σe can be mapped to a point charge q(r) = Qpδ(r).
Using Eq. (3) gives ϕ(r) = Qp�B exp(−κr)/r, to be compared
with the exact analytical solution [66]

φ>(r) = Zs�B exp(κa)

1 + κa

exp(−κr)

r
. (5)

Matching the potential on the particle surface, ϕ(r = a) =
φ>(r = a), I find Qp = Zsϒs, with ϒs = exp(κa)/(1 + κa).
Alternatively, Qp can be computed: For the ion densities
caused by the singular point charge ρ±(r), one can check
that Zs = Qp + ∫

r<a dr[ρ+(r) − ρ−(r)], showing that an ion-
impenetrable charged sphere produces the same electrostatic
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FIG. 2. Electrostatic potential φ(r)/(βe) around a charged torus with charge Zt e = 50e, εp/εs = 0.2, �B/RO = 0.01, and RI/RO = 0.5 for
various κRO. For κRO = 1 (κRO = 5), I found ϒt = 1.22 (ϒt = 5.409) and R/RO = 0.9863 (R/RO = 1.027). (a) Numerical results for thick
and (b) thin double layers. [(c)–(h)] Comparison of the semianalytical ring charge mapping Eq. (B2) with finite-element calculations of the
Poisson-Boltzmann equation for thin and thick double layers, along various axes (insets), as well as an enlarged comparison (near the particle
surface).

potential for r > a as an ion-penetrable particle, consist-
ing of a suitable point charge surrounded by a plasma of
ions. This physical interpretation is possible because φ<(r) =
Zs�B/[a(1 + κa)] is constant and therefore does not contribute
to Eq. (2).

For spherical particles, the DLVO potential results from
Eq. (4),

βss
e (d ) = Z2

s �B

[
exp(κa)

1 + κa

]2 exp(−κd )

d
, (6)

with d = |d|. The same result follows from the linear su-
perposition approximation (LSA) used on Eq. (5), φ2B(r) ≈∑

i φ>(r − Xi ), in force calculations with the stress tensor
[66]. However, the free energy route as in Eq. (4) is incom-
patible with the LSA: One would obtain a different result than
Eq. (6) because the LSA does not account for ion-particle
hard-core interactions [36]. However, unique for the point-
charge mapping is the compatibility with the free energy
and the stress tensor route, because the particle hard core
is effectively mapped out. Finally, the choice of q(r) is not
unique: Mapping spheres to ion-penetrable charged spherical
shells gives the same result as the point-charge mapping.

B. Charged tori

Next, I show an example where the particle is mapped to
a line charge C. Such a mapping is akin to the slender-body
theory for creeping flow [67]; however, my method works
also for “thick” particles, because C need not coincide with

the centerline of the particle. As an illustration, I consider
the pair potential between two identical tori with inner radius
RI , outer radius RO [Fig. 2(a)], and uniform surface charge
density σ = Zt/(4π2RI RO). As a first step, I map the torus to
a charged ring C with parametrization γ : [0, 2π ) → C given
by γ (u) = (R cos u, R sin u, 0), of uniform line charge density
λ = Qr/(2πR). Unlike the point-charge mapping, not only
does the line charge number Qr have to be determined, but
also the shape for R ∈ [RO − RI , RO + RI ]. Using Eq. (3), I
find

ϕ(r) = Zt�Bϒt (κRO, RI/RO)

2π

∫ 2π

0
du

exp[−κ|r − γ (u)|]
|r − γ (u)| ,

(7)

where I factorized the ring charge Qr = Ztϒt using the linear-
ity of Eq. (1). Note that only for κ = 0 (and along the z axis)
can the integral in Eq. (7) be evaluated in terms of known
special functions [68]. For the general case, the integral can
be numerically computed on a desktop PC within seconds.
Second, to establish the values of ϒt and R, I fit the surface po-
tential ϕ(ρ = RO + RI cos α, z = RI sin α), with α ∈ [0, 2π ),
to the numerically obtained surface potential of a charged
torus for fixed κRO, RI/RO, and εp/εs; see Appendix B for
details.

For the numerically obtained axisymmetric φ(r) of a torus
[Figs. 2(a) and 2(b)] [69], I show how the semianalytical
approximation compares for thin and thick double layers with
finite-element calculations (see also Appendix C) for various
cuts along the torus [Figs. 2(c)–2(h)]. For weak and strong
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FIG. 3. Semianalytical approximation of the effective pair potential for identical tori [Eq. (10), lines] compared with finite-element
calculations (dots) for various particle configurations and screening lengths at �B/RO = 0.01 and εp/εs = 0.2. The colored shaded areas indicate
overlap of particle hard cores when the particle distance d is decreased at fixed orientation from d → ∞. Tori have charge Zt = 100 and inner
radius RI = 0.5RO.

intraparticle double-layer overlap, Eq. (7) agrees excellently
with numerics, capturing the full spatial dependence of φ>(r)
for suitably chosen ϒ and R, even for tori with large particle
volumes. Finally, Eq. (7) gives analytical insight: For r →
∞, I find that ϕ(r) ∼ A(θ )Zt�B exp(−κr)/r, with anisotropy
function (see Appendix D for the derivation),

A(θ )

ϒt
= 1 + 1

4
sin2 θ (κR)2 + 1

64
sin4 θ (κR)4 + · · · , (8)

showing the well-known result that particle anisotropy still
persists in the far-field electrostatic potential unlike the un-
screened case, and that the anisotropies are more pronounced
for large κ [36,42]. To my best knowledge, A(θ ) has never
been calculated for a torus before.

To calculate effective pair interactions, I parametrize
two identical rings with arbitrary orientations as γ i(u) =
Xi + R cos ul̂i + R sin um̂i, (i = 1, 2), with n̂i · l̂i = n̂i · m̂i =
0, and n̂i defined in the inset of Fig. 3(b). Using Eq. (4), I find
the interaction between two identical tori

βtt
e (d, n̂1, n̂2) = Z2

t �B

(2π )2
ϒt (κRO, κRI )2

×
∫ 2π

0
du

∫ 2π

0
dv

exp [−κ|γ1(u) − γ2(v)|]
|γ1(u) − γ2(v)| .

(9)

Note that the difference |γ1(u) − γ2(v)| depends on d, n̂1, and
n̂2. Despite being an integral representation, the evaluation
of Eq. (9) is far less computationally expensive than three-
dimensional finite-element calculations of Eq. (1) for every
fixed particle configuration. Explicit calculations give

βtt
e (d, n̂1, n̂2) = Z2

t �Bϒ2
t

(2π )2

∫ 2π

0
du

∫ 2π

0
dv

exp [−κ
√

d2 + 2R2 − 2R f (u, v; d, n̂1, n̂2)]√
d2 + 2R2 − 2R f (u, v; d, n̂1, n̂2)

, (10)

for d not parallel to n̂1 and/or n̂2, where the term f in the integrand simplifies to

f (u, v; d, n̂1, n̂2) = d sin v|n̂1 × n̂2| + R[cos(u − v) − (1 − n̂1 · n̂2) sin u sin v], (11)

whereas for d not parallel to either n̂1 or n̂2,

f = |b1| sin u − |b2| sin v + R

|b1||b2| (cos u cos v[d2(n̂1 · n̂2) − (d · n̂1)(d · n̂2)] + cos u sin v[d · (n̂1 × n̂2)(d · n̂2)]

− sin u cos v[d · (n̂1 × n̂2)(d · n̂1)] + sin u sin v{d2(n̂1 · n̂2)2 − (d · n̂1)(d · n̂2)(n̂1 · n̂2) + [d · (n̂1 × n̂2)]2}). (12)

In Eq. (12), I used the parametrization l̂i = bi/|bi| and m̂i =
l̂i × n̂i, with vector bi = d × n̂i for i = 1, 2.

In Fig. 3, I compare the numerical calculation and the
analytical approximation of Eqs. (10) for a wide variety of
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FIG. 4. Comparisons of the semianalytical approximation of the effective pair potential (lines) with numerical finite-element calculations
(dots) between a charged torus and a charged sphere [Eq. (13)] with arbitrarily chosen particle configurations and screening constants. The
colored shaded areas indicate forbidden regions due to the particle hard cores when the particle distance d is decreased at fixed orientation
from d → ∞. The tori have charge Zt = 100 and inner radius RI = 0.5RO. Spheres have the same surface charge density as the torus with
radius a = 0.4RO. For all cases �B/RO = 0.01 and εp/εs = 0.2.

particle configurations and Debye screening lengths. I find an
excellent agreement with only a deviation for particle separa-
tions close to contact where the repulsion is underestimated,
as expected from a method that is equivalent to the LSA [61].

C. Additive torus-sphere mixtures

The method can also be extended to additive mixtures of
particles, as I highlight for the torus-sphere interaction

βts
e (d, n̂)

= Zt Zs�B

2π
ϒt (κRO, κRI )ϒs(κa)

×
∫ 2π

0
du

exp [−κ
√

d2 + R2 + 2R sin u|d × n̂|]√
d2 + R2 + 2R sin u|d × n̂|

,

(13)

which, again, agrees excellently with numerics (Fig. 4), even
when the sphere partly enters the hole of the torus [Figs. 4(b)
and 4(c), blue line]. In the insets, I highlight on a log-linear
scale that the decay length for these particle shapes is still κ−1;
however, with an orientation-dependent interaction amplitude
of higher anisotropy when the salt concentration is increased
[Figs. 4(b) and 4(c)], which is generic for anisotropic particles
[36,42], as is for the electrostatic potential [Eq. (8)].

D. Charged triaxial ellipsoids

To show the generality of the framework, I consider the
interaction potentials of two triaxial ellipsoids, for which a
mapping to a spherical shell is needed, rather than a line
charge. I hypothesize, however, that some metal spheroidal
particles can be mapped to straight lines, because the

(unscreened) isopotential surfaces of straight lines are prolate
spheroids with specific aspect ratios [70]. It is straightforward
to generalize the approach to mappings to ion-penetrable
charged surfaces S with surface charge distribution σs, and S
parametrized by � : [a, b] × [c, d] → S . I find from Eq. (5)

ϕ(r) = �B

∫ b

a
du

∫ d

c
dv

√
g(u, v) σs[�(u, v)]

× exp[−κ|r − �(u, v)|]
|r − �(u, v)| , (14)

where g(u, v) is the determinant of the induced metric tensor.
For the particle, consider the parametrization for a triaxial

ellipsoid

X(φ, θ ) = (al cos φ sin θ, am sin φ sin θ, an cos θ ), (15)

where the angles are defined for φ ∈ [0, 2π ) and θ ∈ [0, π ),
with volume Ve = (4/3)πal aman, and surface area

Se(al , am, an) = 2πa2
n + 2πalam

sin ψ

× [E (ψ, k) sin2 ψ + F (ψ, k) cos2 ψ],
(16)

with F (ψ, k) and E (ψ, k) being the incomplete elliptic inte-
grals of the first and second kinds, respectively. Furthermore,
cos ψ = an/al and k2 = a2

l /a2
m(a2

m − a2
n)/(a2

l − a2
n). Since X

and � should have the same shape, I use an ellipsoidal shell
with the same aspect ratios as the particle, but with a smaller
size parameterized by Rl ,

�(u, v) = Rl (cos u sin v, γm sin u sin v, γn cos v), (17)

with u ∈ [0, 2π ), v ∈ [0, π ), γm = am/al , and γn = an/al .
From Eq. (14), I determine the electrostatic potential of a

triaxial ellipsoidal particle

ϕ(r) = Ze�BϒR2
l

Se(Rl , γmRl , γnRl )

∫ 2π

0
du

∫ π

0
dv

√
γ 2

m cos2 v sin2 v + γ 2
n sin4 v

(
γ 2

m cos2 u + sin2 u
)

× exp[−κ
√

(x − Rl cos u sin v)2 + (y − γmRl sin u sin v)2 + (z − γnRl cos v)2]√
(x − Rl cos u sin v)2 + (y − γmRl sin u sin v)2 + (z − γnRl cos v)2

, (18)

where I used for σs a homogeneously charged ellipsoidal shell with total charge Zeϒe. The parameters Rl and ϒ are determined
via a fit of the surface potential ϕ0(φ, θ ) = ϕ(X(φ, θ )). As an example, I determine ϒ and Rl for a triaxial ellipsoid with the
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FIG. 5. Comparison of [(a)–(c)] electrostatic potential [Eq. (18)] and (d) the effective pair potential [Eq. (21)] of the semianalytical
ellisoidal-shell mapping with numerical finite-element calculations of the Poisson-Boltzmann equation for a triaxial ellipsoidal particle at
various values of κal , with al being the distance from the origin to the particle surface along the x axis. The potential is compared along
various cuts around the ellipsoid, as well as an enlargement of the comparison between numerical and analytical results close to the particle
surface. In all plots, εp/εs = 0.2, �B/al = 0.01, and Z = 100. The shell that has been used to represent the particle has the same ratios of the
ellipsoidal main axes, but with a rescalable parameter Rl < al and charge parameter ϒ with the same meaning as for the torus. For precise
dimensions of the particle, see the main text.

same volume and surface area as a torus with inner radius RI = 0.5RO and al = RO. In this case, the aspect ratios are γm = 2.595
and γn = 0.454. Moreover, I fix κal = 1 and εp/εs = 0.2. The result of the fit is Rl = 0.9599 and ϒ = 1.1523. In Figs. 5(a) and
5(c), I show a comparison of the resulting electrostatic potential with finite-element calculations, showing excellent agreement
outside the particle.

Finally, by using Eq. (4) I derive for the effective pair interaction between two particles that are mapped to charged shells,

βe = �B

∫ b1

a1

du
∫ d1

c1

dv
√

g1(u, v)σs,1(�1(u, v))
∫ b2

a2

du′
∫ d2

c2

dv′√g2(u′, v′)σs,2(�2(u′, v′))
exp [−κ|�1(u, v) − �2(u′, v′)|]

|�1(u, v) − �2(u′, v′)| .

(19)

I apply Eq. (19) to arbitrarily oriented and positioned ellipsoidal particles, mapped to (for i = 1, 2)

�i(u, v) = Rl cos u sin v l̂i + Rm sin u sin v m̂i + Rn cos v n̂i, 0 � u < 2π, 0 � v < π. (20)

Here {l̂i, m̂i, n̂i} is an orthonormal triad of vectors. I find applying by Eq. (20) to Eq. (19) that

βee
e

(
d, {n̂i, m̂i}2

i=1

) = Z2
e �Bϒ2R4

l

Se(Rl , γmRl , γnRl )2

∫ 2π

0
du

∫ π

0
dv

√
γ 2

m cos2 v sin2 v + γ 2
n sin4 v

(
γ 2

m cos2 u + sin2 u
)

×
∫ 2π

0
du′

∫ π

0
dv′

√
γ 2

m cos2 v′ sin2 v′ + γ 2
n sin4 v′(γ 2

m cos2 u′ + sin2 u′)

×
exp

[−κ

√
f
(
u, u′, v, v′, d, {n̂i, m̂i}2

i=1

)]
√

f
(
u, u′, v, v′, d, {n̂i, m̂i}2

i=1

) , (21)

where the function f in the integrand is expressed as

f (u, u′, v, v′, d, {n̂i, m̂i}2
i=1) = d2 + R2

l [cos2 u sin2 v + cos2 u′ sin2 v′ − 2l̂1 · l̂2 cos u cos u′ sin v sin v′

− 2γn(l̂1 · n̂2 cos u sin v cos v′ + l̂2 · n̂1 cos u′ sin v′ cos v) − 2γmγn(m̂1 · n̂2 sin u sin v cos v′ + m̂2 · n̂1 sin u′ sin v′ cos v)

− 2γm(l̂1 · m̂2 sin u′ sin v′ cos u sin v + l̂2 · m̂1 sin u sin v cos u′ sin v′) + γ 2
n (cos2 v + cos2 v′ − 2n̂1 · n̂2 cos v cos v′)

+ γ 2
m(sin2 u sin2 v + sin2 u′ sin2 v′ − 2m̂1 · m̂2 sin u sin u′ sin v sin v′)] + 2Rl [d · l̂1 cos u sin v − d · l̂2 cos u′ sin v′

+ γm(d · m̂1 sin u sin v − d · m̂2 sin u′ sin v′) + γn(d · n̂1 cos v − d · n̂2 cos v′)], (22)

with l̂i = m̂i × n̂i. This ellipsoid-ellipsoid interaction poten-
tial is tested in Fig. 5(d) to numerical calculations, showing

excellent agreement, except for small particle separations, as
was also found in the previous examples.
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IV. CONCLUSIONS AND OUTLOOK

In summary, I developed a framework to derive effective
pair potentials between finite-sized arbitrarily shaped rigid
macroions. With different combinations of spheres, ellip-
soids, and tori in various mutual orientations, I showed the
applicability and accuracy of this method: This framework
gives analytical insights with broad relevance for experi-
ments and simulations. I expect that the method applies to
many shapes when multiple inhomogeneous singular charge
distributions are used. Furthermore, as recently shown, the
method works also for spheres dispersed in nematic liquid
crystals [9]. Finding the correct charge distribution for a
specific particle can be nontrivial, but often symmetry argu-
ments and an analysis of the necessary multipole moments
to match the far-field electrostatic potential are useful con-
siderations. For example, it was suggested that Janus spheres
can be described by a collection of point charges [71]. My
method becomes less accurate at small particle separations,
like DLVO theory, where the surface potential and/or surface
charge density become “polarized,” which, however, can be
reconciled with the Derjaguin approximation [43,66,72,73].
Furthermore, it is not possible to derive multibody interactions
(of the form as in Ref. [74]), because of the underlying LSA
equivalence.

As an outlook, I propose extending the theory with (many-
body) charge regulation [51,73,75–77] and renormalization
[78–81] to incorporate more types of electrostatic bound-
ary conditions and nonlinear screening, respectively. The
expressions of this paper can then still be used with the
bare charge replaced by an effective (renormalized) charge.
Another extension of the theory would be to include corre-
lations beyond the mean-field result presented here. It would
be interesting to see in this case whether the mapping to a
singular charge distribution is still suitable to describe the
(thermally averaged) electrostatic potential and pair interac-
tions accurately. Such questions can be answered via the
field-theoretical formulation [82] of two particles immersed
in an ion-containing solvent. Furthermore, such a field-
theoretical formulation would be interesting to investigate
the effects of flexible particles, rather than the rigid particles
discussed here. In this case, an elastic free-energy contri-
bution would self-consistently determine the singular charge
distribution needed for the mapping, and this deserves further
research.

More broadly, the findings might also be valuable for any
physical system governed by the Helmholtz equation, e.g.,
acoustics [83] and optics [84], or systems where the Yukawa
potential is involved, such as wetting [85]. Finally, it would be
intriguing to explore charge-screened active matter for various
“thick” particles. Here, the Yukawa potential is already often
used to model steric repulsions between thin active rods
[86,87].
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APPENDIX A: NUMERICAL DETAILS

In the main text, I compared analytical expressions within
linear screening theory with numerical calculations of the
electrostatic potential and the effective pair interactions. In
all cases, the comparisons were made using the nonlinear
Poisson-Boltzmann equation,

∇2φ<(r) = 0, r ∈ int(P ), (A1)

∇2φ>(r) = κ2 sinh[φ(r)], r /∈ int(P ), (A2)

subjected to the constant-charge boundary conditions, Eq. (2)
of the main text. These set of differential equations are
solved with COMSOL MULTIPHYSICS 5.4, and where needed
the cylindrical symmetry of the problem has been exploited
(in particular for a single torus). For three-dimensional finite-
element calculations, boundary layers were used to resolve the
double layer close to the particle surface and a sufficiently
large system size is used to ensure that φ(r → ∞) = 0.
As mesh I used free tetrahedral elements, using extremely
fine elements within the general physics settings. In this
work, particle charges are chosen within the linear-screening
regime.

For the pair interactions, I integrated using the built-in
integration operators the following expression:

βH (d,�1,�2)

= βHC(d,�1,�2) +
2∑

i=1

1

2

∫
Pi

d2r σφ(r)

+ ρs

∫
R

d3r {φ(r) sinh φ(r) − 2[cosh φ(r) − 1]},
(A3)

with R = V \[int(P1) ∪ int(P2)] as the region outside the
particles; see for a derivation, e.g., Ref. [88]. The second term
is an entropy term, that in most cases is much smaller than the
electrostatic terms (third term). For completeness, I added a
particle-particle hard-core interaction HC(d,�1,�2) which
equals zero when particles do not overlap and is infinity
when there is particle overlap. Moreover, I subtract the total
self-energy of the two-body system, which I calculate numer-
ically as H (d → ∞,�1,�2), which is independent of par-
ticle orientations �1,2, i.e., (d,�1,�2) = H (d,�1,�2) −
H (d → ∞,�1,�2).
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FIG. 6. Examples of fits of the numerically obtained surface potential (scaled with the Bjerrum length �B and particle charge Z) with
the expression of a ring charge mapping, Eq. (B2). From this fit the values for R and ϒ are obtained. All calculations were performed at
εp/εs = 0.2.

To numerically evaluate the expressions obtained from a
singular-charge distribution mapping, such as Eqs. (9), (11),
and (14) from the main text, and Eq. (18) in this document,
I used the standard integral and integral2 commands
in MATLAB. For the ellipsoid-ellipsoid interaction Eq. (21),
iterative use of these commands was made.

APPENDIX B: DETERMINATION OF CHARGE AND
SHAPE PARAMETERS FOR AN ELECTROSTATICALLY

SCREENED CHARGED TORUS

Recall the approximation of the electrostatic potential for a
single torus Eq. (7) written down in cylindrical coordinates,

ϕ(r) = Z�Bϒ

2π

∫ 2π

0
du

exp[−κ
√

ρ2 + R2 + z2 − 2ρR cos(u)]√
ρ2 + R2 + z2 − 2ρR cos(u)

, (B1)

which for suitably chosen values of R and ϒ approximately describes a toroidal particle P with standard parametrization
X(ψ, α) = [(RO + RI cos α) cos ψ, (RO + RI cos α) sin ψ, RI sin α], ψ, α ∈ [0, 2π ). Consequently, I find the approximation for
the surface potential

ϕ0(α) = Z�Bϒ

2π

∫ 2π

0
du

exp
[ − κ

√
R2 + R2

O + R2
I + 2RORI cos α − 2(RO + RI cos α)R cos(u)

]
√

R2 + R2
O + R2

I + 2RORI cos α − 2(RO + RI cos α)R cos(u)
. (B2)

In MATLAB, I use the fit command from the Curve Fitting
Toolbox to establish the values of ϒ and R by fitting Eq. (B2)
to numerically obtained surface potentials from COMSOL using
the Levenberg-Marquadt algorithm. A few examples of fits are
shown in Fig. 6. The fits are of good quality even for large
particle volumes. The quality of the approximation, however,
seems to be the least accurate for extremely thin double layers
κRO = 10, although this turns out to be of little importance for
the accuracy of the full spatial dependence of the electrostatic
potential around the particle, as I shall demonstrate later. It
is meaningful to explore the values of the charge parameter
ϒ and shape parameter R for a wide variety of particle
thicknesses as quantified by RI/RO and screening lengths as

quantified by κRO. For this I fitted a whole set of numerically
obtained surface potentials to Eq. (B2). Regarding ϒ , it is
meaningful for the comparison between different κRO and
RI/RO to scale out a large factor for better comparison,

ϒ(κRO, RI/RO) = �(κRO, RI/RO)
exp(κRI )

1 + κRI
, (B3)

and plot � and R as function of κRO for various RI/RO in
Figs. 7(a) and 7(b). Observe that � increases with κRO and
RI/RO, and therefore also ϒ increases. For spheres [ϒ =
exp(κa)/(1 + κa)], the same effect is observed for ϒ as
function of κa; however, � (with natural definition) equals
unity in this case. Regarding the ring, one can see from
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FIG. 7. Result of (a) the charge parameter � and (b) shape parameter R as obtained from fits of the surface potential, see Fig. 6, for various
values of κRO and torus thicknesses as quantified by RI/RO. The results are independent of particle charge Z and Bjerrum length �B in the
linear screening regime, but depend on εp/εs (fixed at 0.2 as in Fig. 6). In panel (c), we plot a statistical parameter showing the quality of the
fits, the so-called coefficient of determination R2. A value of R2 = 1 indicates a perfect fit.

Fig. 7(b) that it roughly coincides with the centerline of the
torus with nonmonotonous behavior as function of κRO and
RI/RO around R = RO. Although choosing R = RO would be
still a good approximation, as I have checked, the quality of
the fit is a little bit better if it is used as a free parameter. The
main determining factor for describing the full electrostatic
potential is, however, ϒ or equivalently �.

Finally, in Fig. 7(c), I plot a statistical parameter that quan-
tifies the quality of the surface potential fit, the coefficient of
determination or R-squared value R2, with R2 = 1 indicating
a perfect fit. From Fig. 7, one can see that the fit is of lesser
quality for larger κRO and thicker particles, which is not
surprising considering that an infinitely thin torus would be
described perfectly by the mapping, and thick particles are a
deviation from that. However, the quality is good enough to
approximate the full spatial dependence of the electrostatic
potential; see also the next section.

APPENDIX C: MORE COMPARISONS OF THE
ELECTROSTATIC POTENTIAL FOR AN

ELECTROSTATICALLY SCREENED CHARGED TORUS

In Fig. 2 of the main text, I showed some comparisons
of the numerically obtained electrostatic potential with the
semianalytical approximated ring-charge mapping. Here, I
will show that the approximation works even in a relatively
“extreme” cases of an even thicker torus RI/RO = 0.8, and
extremely thin double layers (up until κRO = 10). The results
are shown in Fig. 8. Regarding the charge parameters and
shape parameters for these tori, I find for κRO = 1, R =
1.01058, and � = 1.1879; for κRO = 5, I find R = 1.0545
and � = 1.8078; and finally, for κRO = 10, I find R = 1.0392
and � = 2.2751. See also Fig. 7.

APPENDIX D: DERIVATION OF THE TORUS
ANISOTROPY FUNCTION WITH

YUKAWA MULTIPOLE EXPANSIONS

Sometimes it is beneficial to assess the far-field behavior
of the electrostatic potential, which can be obtained with
multipole expansion. Such an expansion is useful in deriving,
for example, the anisotropy function of a particle; see Eq. (8)
in the main text. For the dimensionless electrostatic potential

of the form

ϕ(r) = �B

∫
dr′ q(r′)G(r, r′), (D1)

a general multipole expansion is given by

ϕ(r) = �B

∑
n

1

n!
G(n)

i1,...,in
(r)T (n)

i1,...,in

= �B

∑
n

1

n!

∂n

∂r′
i1
...∂r′

in

G(r, r′)
∣∣∣
r′=0

∫
dr′ r′

i1 ...r
′
in q(r′).

(D2)

Here G(n)(r) is the 2n-polar basis functions expressed in ten-
sor form and Tn is the 2n-pole moment tensor. Both tensors are
symmetric in all indices, and I used the Einstein summation
convention. Now consider the DH Green’s function G(r, r′) =
exp(−κ|r − r′|)/|r − r′|. In this case, I find up until n = 4,

G(0)(r) = exp(−κr)

r
, (D3)

G(1)
i (r) = exp(−κr)

r3
(1 + κr)ri, (D4)

G(2)
i j (r)= exp(−κr)

r5
{[3 + 3κr + (κr)2]rir j − r2(1 + κr)δi j},

(D5)

G(3)
i jk (r) = exp(−κr)

r7
{[(κr)3 + 6(κr)2 + 15κr + 15]rir jrk

− r2[(κr)2 + 3κr + 3](riδ jk + r jδik + rkδi j )},
(D6)

G(4)
i jkl (r) = exp(−κr)

r9
{[105 + 105(κr) + 45(κr)2

+ 10(κr)3 + (κr)4]rir jrkrl

− r2[15 + 15κr + 6(κr)2 + (κr)3]

× (rir jδkl + rkrlδi j + rirkδ jl

+ r jrlδik + rirlδ jk + r jrkδil )

+ r4[(κr)2 + 3κr + 3](δi jδkl + δikδ jl + δilδ jk )},
(D7)

with G(0)(r) being the monopolar, G(1)(r) the dipolar, G(2)(r)
the quadrupolar, G(3)(r) the octapolar, and G(4)(r) the

033144-9



JEFFREY C. EVERTS PHYSICAL REVIEW RESEARCH 2, 033144 (2020)

FIG. 8. Comparison of electrostatic potential of the semianalytical ring-charge mapping with numerical finite-element calculations of the
Poisson-Boltzmann equation for a toroidal particle at various values of κRO, along various cuts around the torus as shown in the insets, as well
as an enlargement of the comparison between numerical and analytical results close to the particle surface. In all plots, RI/RO = 0.8, which
is a thicker torus than the one discussed in the main text (Fig. 1). Furthermore, εp/εs = 0.2, �B/RO = 0.01, and Z = 50. The values of �, or
equivalently ϒ , and R are determined from Fig. 6.

FIG. 9. Comparison of the electrostatic potential of a charged torus as obtained from finite-element calculations, with the Yukawa
multipolar-expanded form Eq. (D17) on log-linear scale. The contributions of the various multipoles are highlighted, where monopolar (M),
quadrupolar (Q), and hexadecapolar (H) effects are considered. The blue lines are the same as the one discussed in the main text Fig. 1. For
the purple lines, the values are cut off because for sufficiently small z at ρ = 0 the potential becomes negative up until quadrupolar order.
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FIG. 10. Comparison of the numerically obtained anisotropy
function with the multipolar expanded anisotropy function obtained
from Eq. (8). The anisotropy function was obtained for the same
parameters as the potential in main text in Figs. 1(a), 1(c)–1(e).

hexadecapolar basis function tensors, respectively. Note that
there are some differences with the unscreened case; for
example, the quadrupolar tensor is not traceless, and therefore
T(2) cannot be chosen traceless. For line charge distributions,
the 2n-pole moment tensors simplify to

T (n)
i1...in

=
∫ b

a
du λ(u)|γ ′(u)|γi1 (u)...γin (u). (D8)

Specifically, for a uniformly charged ring, λ = Qr/(2πR),
γ (u) = R(cos u, sin u, 0), I find up until hexadecapolar order,

T (0) = Qr, (D9)

T (2)
i j = QrR2

2

(
δi j − δizδ jz

)
, (D10)

T (4)
i jkl = QrR4

8
[δi jδkl + δikδ jl + δilδ jk + 3δizδ jzδkzδlz

− (δizδ jzδkl + δkzδlzδi j + δizδkzδ jl

+ δ jzδlzδik + δizδlzδ jk + δ jzδkzδil )], (D11)

and T(n) = 0 for n odd.
It is then straightforward to calculate the tensor contrac-

tions for the monopole and quadrupole term. I find

G(0)(r)T (0) = Qr exp(−κr)

r
, (D12)

G(2)
i j (r)T (2)

i j = QrR2

2

exp(−κr)

r5
{[3 + 3κr + (κr)2]

× (r2 − z2) − 2r2(1 + κr)}. (D13)

In order to compute the tensor contractions for the hexadecap-
olar term, it is useful to use the formula

G(n)
i1...in

(r)T (n)
i1...in

=
n∑

i=1

(
n

i

)
G(n)

n−i,i T (n)
n−i,i, (D14)

which is valid because all z components are zero for the ring.
Furthermore, the notation G(n)

a,b means that x occurs a times
and y occurs b times. Specifically,

G(4)
i jkl (r)T (4)

i jkl =G(4)
xxxx(r)T (4)

xxxx + 6G(4)
xxyy(r)T (4)

xxyy + G(4)
yyyy(r)T (4)

yyyy,

(D15)

which results in

G(4)
i jkl (r)T (4)

i jkl = QrR4

8

exp(−κr)

r9
{[105 + 105(κr) + 45(κr)2

+ 10(κr)3 + (κr)4]3(x4 + 2x2y2 + 3y4)

+ 24r4[(κr)2 + 3κr + 3] − r2[15 + 15κr

+ 6(κr)2 + (κr)3]24(x2 + y2)}. (D16)

Passing to spherical coordinates, I find up until hexadecapolar
order

ϕ(r, θ ) = Zt�Bϒ exp(−κr)

r

(
1 + 1

4
{[3 + 3κr + (κr)2] sin2 θ − 2(1 + κr)}

(
R

r

)2

+ 1

64
{[105 + 105(κr) + 45(κr)2 + 10(κr)3 + (κr)4] sin4 θ + 8[(κr)2 + 3κr + 3]

− [15 + 15κr + 6(κr)2 + (κr)3]8 sin2 θ}
(

R

r

)4

+ O
[(

R

r

)6
])

. (D17)

The accuracy of Eq. (D17) is tested against numerics in Fig. 9, showing that at least up until quadrupolar terms are needed to
describe the far-field anisotropy sufficiently and hexadecapolar terms increase the accuracy even further at shorter distances from
the particle. For r → ∞,

ϕ(r, θ ) ∼ Zt�B exp(−κr)

r
ϒ

{
1 + 1

4
sin2 θ (κR)2 + 1

64
sin4 θ (κR)4 + O[(κR)6]

}
︸ ︷︷ ︸

:=A(θ )

, (D18)

where I defined the anisotropy function A(θ ). I compare A(θ )
in Fig. 10 for κRO = 1 for the torus discussed in the main text.

Unfortunately, it is difficult to make comparisons for shorter
screening lengths. To appreciate why, consider the example
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that the anisotropy function from Eq. (8) is not sensitive at
κRO = 5 for inclusion of the hexadecapolar term; therefore,
I can suffice with only the quadrupolar term. In order to nu-
merically compare Eq. (D18) with the asymptotic expression
for r → ∞, one must have that 3κR2/r � 1 (highest order

in 1/r quadrupolar term after the constant term). Already at
3κR = 1 the potentials are, however, O(10−8), so one needs
to resolve numerically ϕ(r) � 10−8 which is difficult to do
considering that the potential close to the surface is O(10−2)
for the considered set of parameters; see Fig. 9.
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