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Ultraviolet catastrophe of a fluctuating curved dislocation line
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Plastic deformation in metals involves stress- and temperature-driven motion of dislocations, which are
topological defects interacting through elastic fields. While singular and nonsingular linear elasticity theories
accurately describe long-range interactions between dislocations, both exhibit the ultraviolet catastrophe in the
form of negative formation energies of short-wavelength fluctuations of dislocation lines, erroneously predicting
straight dislocations to be unstable. We demonstrate how the positive energy of short-wavelength line fluctuations
is restored by the nonlinearity and discreteness of the dislocation core. The treatment predicts positive formation
energies of dislocation line fluctuations over their entire spectrum, in quantitative agreement with atomistic
simulations, and by virtue of its simplicity lends itself to a convenient implementation in dislocation dynamics.

DOI: 10.1103/PhysRevResearch.2.032033

The motion of dislocation lines, the dominant agents
of plastic deformation of crystalline solids, occurs through
stochastic thermal fluctuations of the line shape that propagate
through the material under the effect of applied stress [1–3].
These transient fluctuations span the entire range of scales,
from the very short wavelengths that characterize thermally
activated motion of line edge dislocations and prismatic dislo-
cation loops [4,5], to mesoscopic kink-mediated fluctuations
of screw dislocations [6,7], up to the almost macroscopic
distortions of dislocation lines in dilute alloys or irradi-
ated materials [8,9]. The general occurrence of fluctuations
suggests that they represent the most fundamental aspect
of dislocation-mediated deformation of metals, defining the
nature of brittle-ductile transitions, hardening, fracture, and
creep—in other words, the entire range of phenomena that
determine the lifetime of engineering structures from an air-
craft engine to a nuclear reactor. Fluctuations of dislocation
lines also reflect the complex nature of the transition from
discrete atoms to continuous fields in the treatment of the de-
formation of crystalline materials, representing the foundation
of mathematical analyses of microstructure and mechanical
properties [10–13].

The stochastic motion of dislocations is governed by a
common principle [14–18]: Perturbations in dislocation line
shape are continuously introduced by the movement of the
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atomic lattice, and they are opposed by a corresponding
change in the free energy of the dislocation. The free-energy
change effectively gives rise to line tension, which acts to
straighten out thermal fluctuations in curved dislocations. An
accurate representation of the entire spectrum of fluctuations
is therefore requisite for any coarse-grained dislocation dy-
namics model that takes into account line-shape changes due
to stochastic thermal effects.

The linear elasticity theory erroneously predicts that small
perturbations of the dislocation line shape are energetically
favorable at small wavelengths [2,19], resulting in the ul-
traviolet catastrophe. In other words, at finite temperature
a straight dislocation is predicted to be unstable with re-
spect to short-wavelength fluctuations. While nonsingular
methods have been developed to regularize the well-known
divergences in strain, stress, and elastic energy close to
a dislocation line [20–22], the instability of dislocations
with respect to short-wavelength fluctuations persists even
in these regularized models, motivating the analysis detailed
below.

To understand the fundamental origin of the short-
wavelength instability and develop a treatment free from these
runaway ultraviolet fluctuations, we introduce a nonlinear de-
scription of the dislocation core derived from a minimal model
of atomic bonding in a body-centered-cubic (bcc) crystal that
accounts for periodicity in the discrete lattice [23,24]. By
combining a linear elastic description of displacements at a
large distance from a curved dislocation with the aforemen-
tioned nonlinear slip condition at the glide surface, we obtain
a dislocation dynamics model that predicts a stable spectrum
of shape fluctuations over the entire range of scales, with
configuration energies quantitatively consistent with atomistic
simulations, and containing no adjustable parameters. Fur-
thermore, the model provides an insight into the origin of the
commonly used empirical line-tension approximation for the
dislocation core energy.
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The local core model. To form a dislocation we join two
linear elastic domains � = �+ ∪ �− separated by a glide
surface S = ∂�+. Following the seminal studies by Peierls
and Nabarro [25,26], we introduce a nonlinear misfit po-
tential in S, derived from the multistring Frenkel-Kontorova
model [23,27], resulting in the Lagrangian L over the dis-
placement field ui [24],

L = L� + L∂�, (1a)

L� = −1

2

∫
�

dV ui, jσi j, (1b)

L∂� = −2μpb

π2

∫
S

dA sin2
[π

b
b̂ j (u

+
j − u−

j )
]
, (1c)

where ui, j = ∂ jui is the displacement field gradient, σi j =
ci jkl uk,l is the stress tensor, ci jkl is the stiffness tensor, μ is
the shear modulus, and bi is the Burgers vector. The dimen-
sionless structure constant p is obtained via a comparison to
isotropic elasticity theory [24].

Tensor ui, j is also called the distortion tensor βi j , which
is related to the strain tensor εi j = 1

2 (βi j + β ji ) [28]. Fields
u±

j are defined in terms of their limits approaching the glide
surface in the direction of the surface normal n±

j defined
in either elastic domain. The Lagrangian L� represents the
elastic medium in � in accordance with linear elasticity the-
ory, while L∂� is a Peierls-Nabarro periodic energetic penalty
for displacements collinear to the Burgers vector at the glide
surface, reflecting the discrete lattice discontinuity at the slip
plane and nonharmonicity of the interatomic interaction near
the dislocation core in a bcc crystal [24].

The equilibrium equations are derived by applying the
virtual work principle to the Lagrangian,

ci jkl u
±
k,l n

∓
j = 2μpbi

π
sin

[
2π

b
b̂ j (u

+
j − u−

j )

]
, r ∈ S, (2a)

ci jkl uk,l j = 0, r ∈ �. (2b)

It is sufficient to solve (2a) for the distortion field in S,
which is then convolved with the elastic Green’s function
to give the solution in �. The distortion field in S thus
takes the role of an inclusion, commonly referred to as the
eigendistortion β∗

i j , to distinguish it from the elastic distortion
βi j in � [29].

We exploit the linearity of the elastostatic equilibrium
condition (2b) to find approximate solutions to the nonlinear
boundary-value problem (2). Similar to other regularization
schemes [20,21], we express the eigendistortion in terms of
a convolution of the singular eigendistortion of a classical
dislocation by a nonsingular distribution function ρ(r). To
preserve the discontinuity of the displacement field across a
possibly curved glide surface, the convolution must be applied
in the direction perpendicular to the local normal vector to
the surface; in order to obtain analytical expressions for the
self-energy, we additionally choose to apply the convolution
in the direction collinear to the Burgers vector, obtaining

β̃∗
i j (r) � −bi

∮
S	

dA′
j

∫ ∞

−∞
ds ρ(r′ − sb̂)δ[R(r − sb̂)], (3)

where δ is the Dirac delta function and R is the Euclidean
distance between point r in the bulk and r′ on the cut surface
S	 ⊂ S. The cut surface is defined by the glide surface S which
is terminated by the dislocation curve 	 lying inside the sur-
face. The singular eigendistortion of the classical dislocation
model is recovered by choosing ρ as the singular Dirac delta
function.

As the convolution (3) is applied before the integral over
the cut surface, the distribution function ansatz ρ(r) can
depend on the local line direction t̂ as well as the topologically
conserved b̂, thus allowing a dependence on the dislocation
character, parametrized by cos α = t̂ · b̂.

For a straight dislocation of arbitrary character, the
eigendistortion model (3) solves the boundary-value prob-
lem (2) exactly if ρ(r) is taken in the form of the Cauchy-
Lorentz distribution [24],

ρ(r) = 1

πκ

κ2

(r · b̂)2 + κ2
, (4)

with a dislocation core width of

κ| sin α| = b

8p(1 − ν)
(1 − ν cos2 α), (5)

defined as the width of the distribution perpendicular to the
dislocation line [30].

The glide-surface Lagrangian (1c) predicts core widths that
are too narrow compared to atomistic simulations because the
finite separation h between the lattice planes parallel to the
glide surface is neglected. In what follows, this is accounted
for by a perturbative correction to the structure constant p,
namely [24]

p → ph = bp

b + 2hp(3 − 2ν)
. (6)

For a general curved dislocation, the eigendistortion (3)
is found using the distribution function of the straight mixed
dislocation (4) using the local line character cos α = t̂ · b̂. We
refer to Fig. 1 for a visual representation of the local core dis-
tribution for the example of a perturbed edge dislocation. This
approximation is valid under two conditions. First, the core
distribution is assumed to depend on the line shape locally,
thereby neglecting the influence of other nearby dislocations
on the boundary-value problem. Second, the core distribution
depends on the line shape to first order, specifically through
the local line character defined by Eq. (5). The curvature of
the line could be accounted for as a second-order correction to
the distribution, which is neglected here. While, in principle,
nonlocal effects can be included by varying the distribution
ρ(r) across the dislocation network in order to minimize the
total free energy, the analysis given below shows that the
local approach adopted here already fully solves the ultravi-
olet catastrophe and the corresponding short-wavelength line
instability problem.

By analogy to the classical dislocation theory [31], elastic
fields in the local core model are expressed as line integrals
by application of the isotropic elasticity Green’s function,
with the eigendistortion of the local core model (3) taking on
the role of an inclusion [29]. The resulting expressions are
analytical; see the Supplemental Material [32].

032033-2



ULTRAVIOLET CATASTROPHE OF A FLUCTUATING … PHYSICAL REVIEW RESEARCH 2, 032033(R) (2020)

b

Climb

[111]

[101]
[121]

b

Glide

b

Climb

[111]

ρ(r)
[121]

b

Glide

Perturbed atomistic configurations

Core convolution functions

FIG. 1. Atomistic core structures of 1
2 [111] edge dislocations

perturbed in the climb and glide directions. The panels below show
the corresponding distributions ρ(r) of the eigendistortion found
using the local core model, offset by the position of the glide surface.

Energies in the local core model. To apply the local
core model to stochastic dislocation dynamics, we require
analytical expressions for energies and forces of arbitrary
dislocation configurations. Consider the total energy of two
closed dislocation loops, labeled by (1) and (2), in an infinite
elastic medium,

W = W (1) + W (2) + W (1,2) + W (1)
core + W (2)

core, (7)

where W (1) and W (2) are elastic self-energies of the isolated
loops and W (1,2) is the elastic interaction energy between
the loops. The terms W (1)

core and W (2)
core represent interfacial

energies (1c) in the approximation that the interfacial energy
is unaffected by the presence of other dislocations. The elastic
interaction energy follows from the bulk Lagrangian (1b),

W (1,2) = 1

2

∫
�

dV ũ(1)
i, j σ̃

(2)
i j , (8)

with elastic self-energies given by W (1) = 1
2W (1,1). Only the

eigendistortion contributes to the potential energy, with the
integral over elastic distortion vanishing [21]. Substituting
the approximate eigendistortion (3) and stress field (see the
Supplemental Material [32]) into Eq. (8), we arrive at an
explicit expression for interaction energy in the local core
model, namely

W (1,2) = − μ

8π

∮
	(1)

∮
	(2)

{
[R,kk](1,2)b(1)

i b(2)
j dl (1)

i dl (2)
j

+ 2

1 − ν
[R,i j]

(1,2)b(1)
i b(2)

j dl (1)
k dl (2)

k

− 2

1 − ν
[R,kk](1,2)b(1)

i b(2)
i dl (1)

j dl (2)
j

+ 2ν

1 − ν
[R,kk](1,2)b(1)

i b(2)
j dl (1)

j dl (2)
i

}
, (9)

where

[R,i j]
(1,2) =

∫ ∞

−∞
ds

∫ ∞

−∞
dq ρ (1)

(
qb̂

(1))
ρ (2)

(
sb̂

(2))

× ∂
(1)
i ∂

(1)
j

∥∥r(1) − qb̂
(1) − r(2) + sb̂

(2)∥∥ (10)

is the twice-convolved tensor of second derivatives of R.
The formula is equivalent to De Wit’s expression for the
interaction energy of singular dislocation theory [33], except
for the occurrence of a convolved tensor of second derivatives
[R,i j](1,2).

For the treatment of self-interaction, where b̂
(1) = b̂

(2) = b̂
it is possible to express [R,i j](1,2) analytically in terms of the
twice-convolved inverse distance R−1

c ,

R−1
c =

∫ ∞

−∞
ds

∫ ∞

−∞
dq

ρ (1)(qb̂)ρ (2)(sb̂)

||r(1) − qb̂ − r(2) + sb̂|| , (11)

which is solved by

R−1
c =

2

π
arccos

(√
i(d·b̂)+η+||d−b̂(d·b̂)||

2||d−b̂(d·b̂)||

)
√

(d − iηb̂) · (d − iηb̂)
+ c.c. (12)

Here, η = κ (1) + κ (2), d = r(1) − r(2), and c.c. refers to the
complex conjugate. Tensor [R,i j](1,2) is subsequently evalu-
ated using the transformation

[R,i j]
(1,2) = δi jR

−1
c − b̂ib̂ j

(
R−1

c + dlgl
)

+ dig j + b̂ib̂l (d jgl − g jdl ), (13)

where gi = ∂iR−1
c is the derivative of the convolved inverse

distance with respect to di. The effective stress needed for
computing the Peach-Koehler force [20,21] requires the con-
volved tensor of third derivatives, which is given in the Sup-
plemental Material [32] along with the derivation of Eq. (13).
Note that the single-convolved inverse distance, as required
for evaluating elastic fields in the local core model, is obtained
by setting η equal to the appropriate κ (i) in Eq. (12).

The interfacial energy is expressed as a line integral by
substituting the plastic slip into Lagrangian (1c),

W (i)
core = p

ph

μb2

4π (1 − ν)

∮
	(i)

dl (i)(1 − ν cos2 α), (14)

where α varies in accordance with the parametrization of
the dislocation curve. The functional form for the interfacial
energy between domains �+ and �−, derived here from first
principles, matches the commonly used line-tension approx-
imation for the core energy [19,34,35]. With the exception
of the p/ph prefactor, the core energy does not depend on
atomistic features, but rather only on the dislocation character
and elastic constants. This feature follows from the require-
ment that the nonlinear string interaction at the glide surface
must reduce to the known linear elastic interaction in the bulk
region [24].
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(a) (b)

FIG. 2. Formation energy of sinusoidal perturbations in (a) climb
and (b) glide directions for a 1

2 [111](101) edge dislocation in tung-
sten. The nonsingular elasticity theory is compared with the local
core model (LCM), with (total) and without (elastic) contribution of
the core energy. The local core model is seen to be free from the
small-wavelength instabilities inherent to the nonsingular theory.

Perturbations of a dislocation line. We consider periodic
perturbations of an initially straight edge dislocation in ei-
ther the glide or climb direction. We also compare the lo-
cal core model with the nonsingular continuum theory [20].
The spreading radius RC of nonsingular continuum theory
is chosen such that the elastic self-energy per unit length
of the straight edge dislocation is identical in both mod-
els, leading to RC = 2κ . Figure 2 shows a comparison of
the formation energies for perturbations of sinusoidal shape
of a tungsten edge dislocation, computed using the values
of the material constants given in Tables I and II. The
local core model eliminates the small-wavelength instabil-
ity. A comparison with strain-gradient elasticity theory [21]
is given in the Supplemental Material [32] with similar
conclusions.

Atomistic perturbation energies were computed using
LAMMPS [36] with two interatomic potentials each for bcc
iron [37,38] and tungsten [39,40]. We studied the periodic
perturbations of straight edge dislocations of the types listed
in Table I. Climb-perturbed dislocations were constructed by
initializing dislocations with sinusoidally shifted glide sur-
faces, and subsequently relaxing the system. Glide-perturbed

TABLE I. Geometric and structure constants for the dislocations
studied in this work. Constants p and h are determined in the
Supplemental Material [32], and a is the lattice constant.

Dislocation type b (a) p h (a)

1
2 [111](101)

√
3/2

√
3/(4

√
2) 1/

√
2

1
2 [111](121)

√
3/2

√
3/(4

√
2) 1/

√
6

[100](001) 1 1/
√

2 1/2
[100](011) 1 1/(2

√
2) 1/

√
2

TABLE II. Materials constants used for continuum models.

Material μ (eV/Å3) ν a (Å)

W 1.00 0.28 3.14
Fe 0.39 0.43 2.84

dislocations were generated by first applying constraint forces
to atoms such that the dislocation would bow out periodi-
cally with a specified wavelength and amplitude. Next, the
constraint forces were removed, and the system evolved us-
ing Langevin dynamics at zero temperature with a damping
time constant of 0.25 ps. Following a simulation time of
0.5 ps, the potential energy was found to decay exponentially
over time, as is characteristic for strongly damped systems.
This suggests that the energy penalty associated with the
constraint forces has become negligible, enabling us to ex-
tract perturbation energy over a broad range of perturbation
amplitudes.

The perturbation wavelengths were chosen as modes of the
simulation box dimension in the dislocation line direction, for
line lengths of 200 and 300 Å in tungsten, or 150 and 220 Å
in iron. Atoms separated from the line farther than 300 Å
in tungsten, or 220 Å in iron, were held fixed at positions
corresponding to the anisotropic linear elasticity solution for
the displacement field using elastic constants appropriate for
the chosen interatomic potential. Perturbation formation ener-
gies were computed as the difference between the formation
energies of the perturbed and straight configurations, only
counting unfixed atoms.

The amplitudes and wavelengths of the perturbed config-
urations were determined by fitting a zigzag function to the
positions of high-energy atoms. Data were discarded for fits
with anomalously large residuals, as this indicated the loss
of a regular core structure during the relaxation process. The
resulting amplitudes and wavelengths were used as the input
for the local core model, allowing for a direct comparison
between the continuum and atomistic description. In order to
resolve the significantly kinked structure of glide-perturbed
[100] dislocations, we used a piecewise linear description ob-
tained by binning the positions of high-energy atoms. We fur-
ther included a Peierls energy contribution [41] using Peierls
barriers extracted from atomistic nudged-elastic band [42]
calculations for each interatomic potential. Details on this
procedure are given in the Supplemental Material [32].

We refer to Fig. 3 for a comparison of the formation
energies of line fluctuations from the local core model and
atomistic simulations. Predictions by the local core model
are generally consistent with the atomistic reference, show-
ing that the continuum model can reproduce configurational
energies of [111]- and [100]-type edge dislocations in bcc
iron and tungsten over a broad range of line curvatures.
Note that the local core model contains no adjustable or
external parameters, with the exception of the Peierls barrier
for dislocations of the [100] type. We find that the local
core model systematically overestimates energies for climb-
perturbed dislocations, possibly because the effect of line
curvature on the core functional is neglected. The energies for
glide-perturbed dislocations are scattered, with energies for
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FIG. 3. Comparison of formation energies of periodic pertur-
bations in an edge dislocation perturbed in the (a), (b) climb and
(c), (d) glide directions. Atomistic energies are computed using two
interatomic potentials both for iron [37,38] and tungsten [39,40].
Continuum energies are computed using the local core model for
perturbed dislocations matching the corresponding atomistic con-
figurations. Data are colored according to the ratio of perturbation
amplitude to wavelength (see the color bars). Dashed lines indicate
an over- or underestimation by 50 %.

dislocations in iron being systematically underestimated; iron
is probably better described by an elastically anisotropic local
core model. The chosen potentials display systematic dispari-
ties in energy for the same material, confirming that these for-
mation energies are sensitive to the choice of the interatomic
potential [43].

Averaged over all the sampled dislocations of [100] type,
the Peierls energies represent a significant fraction of the total
formation energies: 18% for [100](011) type, and 55% for
[100](001) type. The core of a [100] dislocation is narrow,
which is correlated with the large value of parameter p in
Table I. Consequently, the Peierls barrier is not negligible, and
hence kink formation [41] contributes a significant part to the
dislocation stiffness.

Concluding remarks. Based on a variational Peierls-
Nabarro model, we develop a dislocation dynamics formal-
ism that takes into account the planar spreading of plastic
eigendistortion across the glide surface. The local core model
resolves the problem of the short-wavelength instability of
dislocation lines and predicts formation energies of perturba-
tions of the dislocation line shape qualitatively and quantita-
tively consistent with atomistic simulations. Furthermore, we
demonstrate that the line-tension expression for the disloca-
tion core energy and the regularization of elastic fields near
the dislocation core fundamentally emerge from the period-
icity of the discrete atomic lattice, here considered through
a nonlinear misfit potential. By incorporating the effect of
the nonlinear misfit potential into the plastic eigendistortion
representing a dislocation, we arrive at a dislocation dynamics
model with a physically consistent and analytically tractable
description of a planar dislocation core, free from the ultravi-
olet catastrophe instability.
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