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Quantum optimization with a novel Gibbs objective function and ansatz architecture search
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The quantum approximate optimization algorithm (QAOA) is a standard method for combinatorial optimiza-
tion with a gate-based quantum computer. The QAOA consists of a particular ansatz for the quantum circuit
architecture, together with a prescription for choosing the variational parameters of the circuit. We propose
modifications to both. First, we define the Gibbs objective function and show that it is superior to the energy
expectation value for use as an objective function in tuning the variational parameters. Second, we describe an
ansatz architecture search (AAS) algorithm for searching the discrete space of quantum circuit architectures near
the QAOA to find a better ansatz. Applying these modifications for a complete graph Ising model results in a
244.7% median relative improvement in the probability of finding a low-energy state while using 33.3% fewer
two-qubit gates. For Ising models on a 2d grid we similarly find 44.4% median improvement in the probability
with a 20.8% reduction in the number of two-qubit gates. This opens a new research field of quantum circuit
architecture design for quantum optimization algorithms.
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I. INTRODUCTION

The quantum approximate optimization algorithm
(QAOA) [1,2] is a general-purpose algorithm for finding a
low-energy state of a given computational-basis Hamiltonian.
This is a classical problem which can be combinatorially
difficult, but using a quantum computer to find the solution
might be more efficient than a classical method. The QAOA
has performance guarantees in certain combinatorial problems
[2] and quantum state transfer [3], and it has been shown that
in general the output of the QAOA is not classically simulable
[4]. The QAOA and related algorithms offer a promising
avenue for near-term applications of quantum computers [5].

As emphasized in the original QAOA paper, the correct
way to frame the goal of quantum optimization is in the prob-
ably approximately correct framework [6]. That is, the goal is
to obtain a high likelihood of finding a nearly optimal solution.
However, the standard objective function for QAOA does not
reflect this goal. We introduce a new Gibbs objective function
and show its superiority in the probably approximately correct
sense. In numerical experiments for grid and complete graph
Ising models, using the Gibbs objective function results in
10.8% and 8.6% median relative improvement of the prob-
ability of finding a low-energy state, respectively. We then
proceed to try and find a superior circuit ansatz for the Gibbs
objective function that is closely related to the general QAOA
circuit through ansatz architecture search (AAS). Using AAS,
the median relative improvement increased to 44.4% and
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244.7% for the grid and complete graph models, together
with a median reduction in the number of two-qubit gates
by 20.8% and 33.3%, respectively. Figure 1 shows two ex-
emplary instances and the improvement of probability of low
energy with ansatzes found by AAS with the Gibbs objective
function. The existence of these superior circuits opens a new
field of research to design a search procedure for optimal
problem-specific circuits.

II. ISING MODELS

A model I is defined on a graph GI with n vertices
v ∈ {1, 2, . . . , n} and a set of undirected edges E = {ei j}. We
select a 4 × 4 grid and complete graph with 10 vertices to
cover the extreme cases of sparse and dense graphs.

Grid. A 4 × 4 square lattice. Edges only exist between
nearest-neighbor vertices. This graph contains 16 vertices and
|E | = 24 edges. The average degree of the vertex in this graph
is 3.

Complete graph. A complete graph with 10 vertices. Edges
exist between any pair of vertices. This graph contains |E | =
45 edges. The degree of each vertex in this graph is 9.

Each instance consists of a set of couplings J sampled
independently from a uniform distribution Ji j ∼ U (−1, 1). A
coupling Ji j is assigned to each undirected edge ei j between
vertices i and j. The Hamiltonian is written as a sum over
edges, E = ∑

ei j
Ji jZiZ j . We denote a problem instance as

I = I (GI, J). In Fig. 2 we plot histograms of the exact
ground state energies per vertex for these instances.

The QAOA specifies a particular quantum circuit architec-
ture which depends on the Hamiltonian. The prescription is
very similar to a discretized adiabatic algorithm. The quantum
state produced by the QAOA at level p is

|ψ〉 = eiβpX eiγpE · · · eiβ1X eiγ1E H⊗n|0n〉. (1)
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FIG. 1. Particular instances of random couplings (left) and the
structures of the associated QAOA ansatzes (middle) and best sparse
ansatzes (right) for (a) grid and (b) complete graph problems with the
Gibbs objective function. On the left, each edge in the instance graph
is colored by its coupling from blue (−1) to red (1). At the middle
and on the right, each edge denotes the existence of a two-qubit gate
on the corresponding edge in the ansatz graph. We show the relative
improvement of the probability of low energy and reduction of the
number of two-qubit gates compared to the usual prescription of the
QAOA.

The 2p parameters �β and �γ are variational parameters of the
model. For the Ising models in this paper, only two-qubit gates
are required to construct the circuit for eiγ E . We will also focus
on p = 1 for simplicity.

Success in approximate optimization is measured accord-
ing to the probability of finding a low-energy state. With that
in mind, we evaluate the performance of our quantum circuits
according to P(E < E0), where P is the Born probability
distribution of the output quantum state |ψ〉 and E0 is the

FIG. 2. Exact ground state energies per vertex of (a) grid and
(b) complete graph instances. Black dashed lines indicate the me-
dians of the exact energies per vertex.

cutoff for what we consider low energy. For definiteness, in
this paper we use E0 = 0.95Egs(I ) as our definition, where
Egs(I ) is the exact ground state energy of the given instance
I (which is always negative for the models we consider).

III. GIBBS OBJECTIVE FUNCTION

A. Theory

We first address the problem of choosing the optimal
values of the variational parameters. The standard prescription
of minimizing the expectation value of the energy, 〈E〉, is
just a proxy for maximizing P(E < E0). Recent work [7]
has explored using conditional value-at-risk (CVaR) as the
objective function. As an alternative, we propose minimizing
the Gibbs objective function, defined as follows:

f = − ln〈e−ηE 〉. (2)

Here η > 0 is a hyperparameter based on the general proper-
ties of the class of problems. The function f is very similar to
the Gibbs free energy from statistical mechanics, which is the
origin of the name.

The reason why 〈e−ηE 〉 might be preferred over 〈E〉 is
easily understood intuitively. The exponential profile rewards
us for increasing the probability of low energy, and deem-
phasizes the shape of the probability distribution at higher
energies. Note that the Gibbs objective function is just as easy
to measure as the energy expectation value itself when the
energy is diagonal in the computational basis: we just perform
a different computation with our measurement samples.

The Gibbs objective function is essentially the cumulant
generating function of the energy [8]. The Taylor expansion
reads f (η) = μEη − σ 2

Eη2/2 + κ3η
3/6 + · · · . For small η,

then, minimizing the Gibbs objective function is equivalent
to minimizing μE = 〈E〉. As η increases, the higher-order
cumulants become more important.

To better understand the Gibbs objective function, we can
try to estimate the best value of the hyperparameter η. For any
η > 0 the probability of low energy is bounded from above as
follows:

P(E < E0) = 〈1E<E0〉
�

〈
1E<E0 e−η(E−E0 )

〉
�

〈
e−η(E−E0 )

〉
. (3)

Choosing η to minimize the right-hand side gives the strongest
inequality out of this one-parameter family. That value of η is
the one which satisfies the equation

E0 = 〈Ee−ηE 〉
〈e−ηE 〉 . (4)

Now, η is meant to be a fixed hyperparameter that is main-
tained throughout parameter optimization, whereas the η sat-
isfying this equation depends functionally on the probability
distribution itself. Our prescription for estimating η is to find
an approximate solution to this equation, valid for a large class
of probability distributions that we may encounter during
parameter optimization.
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If E0 is meant to be close to Egs, then it is clear that the
interesting limit of Eq. (4) is the large-η limit.1 The first
correction at large η to the right-hand side is equal to η−1:

〈Ee−ηE 〉
〈e−ηE 〉 ≈ Egs + η−1.

Combined with Eq. (4), this suggests that we should set
η = (E0 − Egs)−1. We may only be able to estimate values for
E0 and Egs based on the specification of our problem, but in
practice these estimates are good enough. For the problems
we consider, E0 = 0.95Egs and Egs ≈ −1 gives η ≈ 20 as an
estimate, which we use for the majority of our numerical
experiments below.

Note that in the large-η/small-(E0 − Egs) regime one can
make much stronger statements about the relationship be-
tween 〈e−ηE 〉 and P(E < E0). We will sketch some of them
here. In taking the large-η limit above, we effectively approx-
imated the probability density function for the energy, p(E ),
by its constant term p(Egs) near the ground state energy. If
p(E ) is treated as a constant, then P(E < E0) and 〈e−η(E−Egs )〉
are actually equal when η = (E0 − Egs)−1. More generally, if
p(E ) is well approximated by a finite-degree polynomial in
E − Egs with bounded coefficients, then we have the slightly
weaker condition P(E < E0) ∼ 〈e−η(E−Egs )〉, meaning that ei-
ther quantity is bounded from above and below by constant
multiples of the other. This further motivates the use of the
Gibbs objective function.

B. Numerical experiments

To evaluate the performance of the Gibbs objective func-
tion, as well as the ansatz search described later, we analyze
1000 instances each of the grid and complete graph Ising mod-
els. For each instance we optimize the variational parameters
β and γ using the Nelder-Mead algorithm [9] to minimize ei-
ther the expectation value of the energy or the Gibbs objective
function. The underlying circuit ansatz is either the QAOA or
an optimized sparse ansatz as described in the next section.
In all cases we evaluate the algorithm performance accord-
ing to the probability of finding a low-energy state, P(E <

0.95Egs(I )). As discussed above, the quantum optimization
algorithm is not designed to find the exact ground state, and
we chose the metric as 5% around the ground state energy so
the task of finding low energy is hard but not impossible. The
exact value chosen here is not important.

In Fig. 3 we show the effect of changing the hyperpa-
rameter η in the Gibbs objective function using the QAOA
circuit ansatz. When η is small, the Gibbs objective function
is equivalent to the energy expectation value as an objec-
tive function. Therefore the Gibbs objective function cannot
perform worse than the energy expectation value when η is
properly tuned. Numerically, we find that the probability of
low energy increases monotonically with η before plateauing
at large values of η. Our estimated value η = 20 falls within

1We are assuming that η is large compared to the inverse of the
energy scale of the Hamiltonian, but not large compared to the gap.
In other words, even when η is large there should still be many states
between Egs and Egs + η−1.

FIG. 3. Comparison of Gibbs objective function with different η

to the energy expectation objective function on QAOA ansatz. For
every instance given η, we measure the probability of low energy
of QAOA + Gibbs divided by QAOA + energy. The bars show the
range from 5% to 95% and the horizontal segments are median.
For small values of η, the Gibbs objective function is equivalent to
the energy expectation value for purposes of optimization, while for
large values of η it is equivalent to maximizing the probability of
finding the ground state.

the convergence range for the problems we consider, so we
use that value throughout. Finally, we also observe that in
the extreme-η regime, e.g., 105, the parameter optimization
does not converge due to the fact that the objective function
is approximately zero except when the exact ground state is
sampled. This is an obstacle to efficient optimization at those
extreme values.

Figure 4 displays the probability of finding a low-energy
state for each quantum optimization algorithm, denoted as
{ansatz type} + {objective}. QAOA + energy is the original
QAOA prescription and provides the baseline for comparison.
The sparse ansatz is the subject of the next section. As shown
in the scatter plots of QAOA + Gibbs vs QAOA + energy,
using the Gibbs objective function improves the solution.
More significant improvement can be achieved using a sparse
ansatz in addition to the Gibbs objective function, especially
for complete graph instances.

IV. OPTIMIZING THE ANSATZ

Next we discuss alternatives to the QAOA circuit ansatz.
For the Ising Hamiltonians, the operator eiγ E of Eq. (1)
involves a two-qubit operator for each edge in the instance
graph GI . We denote by GA the ansatz graph, which is
obtained from GI by removing some edges. The associated
circuit ansatz A is obtained by removing from eiγ E those
two-qubit operators corresponding to the edges which were
removed from GI . The rest of the quantum circuit remains the
same as in the QAOA. This is clearly not the most general
possible prescription for GA, but makes use of the intuition
that the QAOA ansatz GA = GI is a good starting point for
the architecture search.

In total, an ansatz A(GA, β, γ ) is determined by its graph
architecture GA and continuous parameters β, γ . The optimal
ansatz graph and variational parameters for a given instance
are denoted by ĜA, β̂, γ̂ , and they are the ones that minimize
the objective function:

ĜA, β̂, γ̂ = arg min
GA,β,γ

f (A(GA, β, γ ), I ). (5)
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FIG. 4. Comparison of the objective functions and ansatzes on
1000 grid [(a)–(d)] and complete [(e)–(h)] graph instances. The
histograms show the distributions of probability of low energy for
QAOA + energy. The scatter plots compare the probability of low
energy for {ansatz} + {objective} pairs against the QAOA + energy
baseline.

For each GA, A(GA, β, γ ) represents a family of ansatzes
differing by β, γ . We can optimize Eq. (5) in a nested manner,

ĜA = arg min
GA

f (A(GA, β̂, γ̂ ), I ) (6)

with β̂, γ̂ = arg min
β,γ

f (A(GA, β, γ ), I ). (7)

The outer step [Eq. (6)] searches the space of the archi-
tectures {GA}. For a fixed architecture GA, the inner step
[Eq. (7)] returns the optimal ansatz A(GA, β̂, γ̂ ) in the family
of A(GA, β, γ ). We should understand that β̂ and γ̂ are
implicit functions of the ansatz graph GA through Eq. (7). We
denote the outer step as AAS and the inner step as parameter
optimization.

A. Ansatz architecture search

A good design of the search space is essential in dis-
crete structure optimization problems, e.g., neural architecture
search [10–12], molecule optimization [13], composite design
[14], and symbolic regression [15,16]. Since the QAOA is a
well-recognized ansatz for combinatorial problems, we have
designed the search space for GA based on gradual modifica-
tions of the QAOA ansatz. The QAOA prescription is to take
GA = GI , and our search through architectures is a search
through graphs obtained by removing edges from GI .

Denote by Gk a graph containing k edges. If m is the
number of edges in GI , then there is only one Gm in our
search space, namely GI itself. Thus we say |{Gm}| = 1. If
we remove up to n edges from the graph, then the total search

space is

n⋃
l=0

{Gm−l} = {Gm} ∪ {Gm−1} ∪ . . . ∪ {Gm−n}. (8)

The size of this space is
∑n

l=0( m
l ). A brute-force enumera-

tive search is impractical since the size grows quickly as n
increases. For example, considering a complete graph with
10 vertices,

∑5
l=0( 45

l ) ∼ 1 × 106 and
∑15

l=0( 45
l ) ∼ 6 × 1011.

We propose greedy search as an affordable strategy for AAS.
Given an instance I, the search starts with GA = Gm at level
0. Then level by level, ansatzes are expanded by removing
one two-qubit gate from the best ansatz of previous level,
scored, and the best of them is selected as the output of this
level. The output architectures at level l have l two-qubit
gates (i.e., edges of the graph) removed. The total number of
architectures visited in the greedy search is N � ∑n

l=0(m −
l ) = (n + 1)(m − n/2).

B. Scoring an ansatz

1. Nelder-Mead

The score for each ansatz G̃m−l in AAS is obtained
by specifying parameters β∗ and γ ∗ and computing
f (A(G̃m−l , β

∗, γ ∗), I ). One prescription is to let β∗ and γ ∗
simply be the optimal values of β and γ minimizing the objec-
tive function, β∗, γ ∗ = arg minβ,γ f (A(G̃m−l , β, γ ), I ). We
use the Nelder-Mead algorithm [9] to perform this minimiza-
tion. In other words, we take β∗ and γ ∗ to be close approxima-
tions to the optimal values β̂ and γ̂ for the given ansatz graph.
Nelder-Mead is a black-box optimization algorithm popular
in the quantum variational circuit literature [17,18]. Using
this algorithm requires running quantum circuit simulations at
each iteration and reporting the objective function value to the
optimizer until convergence. Thus it is extremely expensive in
terms of calls to the (simulated) quantum computer. Since we
want to limit the number of such calls, we are motivated to
consider other strategies for finding β∗, γ ∗.

2. Estimated β, γ

Rather than using an optimization algorithm such as
Nelder-Mead to minimize the objective function and thereby
obtain β∗ and γ ∗, we can use analytical estimates to ap-
proximate the parameters instead. This saves the computation
time required to evaluate the quantum circuits for parameter
optimization during scoring. The β∗ and γ ∗ we find will not
necessarily be close to the optimal values β̂ and γ̂ , but the idea
is that this may not be important for the purposes of scoring.
We may still wish to use Nelder-Mead for evaluation of the
final ansatz at the conclusion of the AAS.

The estimates for β∗ and γ ∗ we use in this section come
from making several simplifying assumptions that are not
necessarily valid. The first assumption is that it is reasonable
to use β∗ and γ ∗ values obtained by minimizing the energy
expectation value instead of the Gibbs objective function.
Focusing on the grid Ising model, we can write down an exact
formula for 〈E〉 in a p = 1 QAOA as follows:

〈E〉 = sin 4β
∑
ei j

[∏
k

cos(2γ Jk j )

]
Ji j tan(2γ Ji j ). (9)
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FIG. 5. Histogram of γ ∗ as determined by Eq. (10) for 105

independently drawn sets of couplings J. Black dashed lines are the
medians of the distributions.

To use this formula for an ansatz graph GA other than GI one
just sets to 0 the Ji j associated to the missing edges.

Equation (9) determines β∗ = π/8. To find a formula for
γ ∗ we make another simplifying assumption, namely that
γ ∗ � 1.2 Expanding Eq. (9) to third order in γ and minimiz-
ing the resulting cubic polynomial gives

γ ∗ = −
√√√√ ∑

i j J2
i j

6
( ∑

i jk, j �=k J2
kiJ

2
i j + 1

3

∑
i j J4

i j

) . (10)

All of this was in the context of grid instances, and in
particular in deriving Eq. (9) we made use of the fact that two
neighboring vertices in the graph do not have any neighbors
in common. Nevertheless, as our final simplifying assumption
we will insist on using Eq. (10) for the complete graph as
well. We will see from the numerical experiments that these
simplifying assumptions are good enough for scoring.

3. Fixed β, γ

The estimated β∗ above is already instance-independent,
and the estimated γ ∗ performed well despite the approxima-
tions involved not being fully justified. This suggests that the
precise value of γ ∗ used in scoring is not crucially important.
This is similar to the observation in Ref. [19] that the behavior
of the QAOA tends to concentrate across instances. This
motivates the third scoring prescription, the “fixed-parameter”
prescription.

We generated the distribution of estimated γ ∗ values ac-
cording to the formula Eq. (10) for both the grid and complete
graph models by looking at 105 choices of couplings drawn
independently from the uniform distribution, J ∼ U (−1, 1),
for each model with GA = GI . The associated histograms are
shown in Fig. 5. The “fixed-parameter” prescription for γ ∗
is defined by using the medians of these distributions for all
instances of the associated model. These values are listed in
Fig. 5.

2Rather than finding an explicit formula, one could also choose to
minimize Eq. (9) numerically to find γ ∗. This does not affect the
results.

FIG. 6. Comparison of different prescriptions for the scoring
function of AAS. The solid curves are the scaled probability of
low energy of the best ansatz found through greedy search at each
of the first 20 levels. The shadows show the range from 5% to
95%. Panels (a)–(c) are results from 1000 grid instances and panels
(d)–(f) are results from 1000 complete graph instances. The scoring
prescriptions are (a), (d) Nelder-Mead; (b), (e) estimated parameters;
and (c), (f) fixed parameters. The dark orange and blue curves are the
scaled probability of the best ansatz graph after using Nelder-Mead
to conduct a final optimization of the parameters after AAS, while
the light orange [(b), (e)] and light blue [(c), (f)] curves represent the
scaled probability obtained for the best ansatz graph without the final
parameter optimization step.

C. Numerical experiments

We apply the AAS procedure with the three prescriptions
to choose the scoring parameters β∗ and γ ∗ on grid and
complete graph Ising models. The performance of an ansatz
A produced by AAS is measured by the scaled probability of
low energy,

P̃(A, I ) = PA(E < 0.95Egs)/PI (E < 0.95Egs). (11)

The probability in the numerator is the one associated with
the ansatz graph GA with parameters equal to their optimal
values β̂, γ̂ obtained by minimizing the Gibbs objective
function for that ansatz. The probability in the denominator
is similar, except using the instance graph GI as the ansatz. In
other words, the prescription for computing the denominator
probability is similar to the standard QAOA, except that the
parameters are optimized using the Gibbs objective function
rather than the energy expectation value. We chose to use the
Gibbs objective function for both numerator and denominator
in order to isolate the effects of the AAS. The optimization is
done using Nelder-Mead for both.

Figure 6 shows the scaled probabilities of low energy of the
optimal ansatz at each level for both grid and complete graph
instances. Each column corresponds to a different prescription
for the scoring function of AAS.

We first discuss the results of grid instances. In (a), the
scoring is done using parameters that are optimized by Nelder-
Mead. The scaled probabilities of low energy increase as more
two-qubit gates are removed. But they start to decrease when
more than 5 two-qubit gates are removed. In (b) and (c) the
scoring was performed according to the estimated parameter
prescription and fixed parameter prescription, respectively.
The dark curves in each case represent the performance of the
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final circuit found by AAS using the optimal β̂, γ̂ obtained by
minimizing the Gibbs objective function. We see that there is
not a strong dependence on the scoring prescription, though
the “fixed” procedure is slightly worse. However, the light
curves in (b) and (c) represent the performance of those same
output circuits if, rather than using β̂ and γ̂ , we use the β∗ and
γ ∗ values used in the scoring step of AAS. Then we see that
there is a significant decrease in performance, especially for
the fixed method in (c). The lesson here is that for scoring
in AAS, which only cares about relative performance for
ranking, the circuit parameter values are less important. In
fact, good relative performance from these two prescriptions
suggests that it is possible to construct inexpensive heuristic
functions for scoring without calls to the quantum computer.
We explore this further in Appendix D. On the other hand, it is
crucial to get the parameters right when considering absolute
performance.

The trend for complete graphs in (d)–(f) is very similar.
The main qualitative change is that the performance does not
drop off as steeply as a function of the number of removed
gates. This is easily understood from the fact that the complete
graphs have far more edges than the grid (45 vs 24). We also
see that the “fixed” procedure is closer in performance to the
others for complete graphs.

V. CONCLUSION

We have proposed using the Gibbs objective function and
AAS as two improvements to the QAOA. There are several
potential follow-ups and opportunities for further develop-
ments:

The Gibbs objective function may be useful more broadly
for quantum optimization problems, such as variational ap-
proaches to molecular ground states [17,20]. In those cases,
where the energy is not diagonal in the computational basis,
it will be more challenging to evaluate 〈exp (−ηE )〉 by sam-
pling, but may still be worthwhile.

Even within combinatorial optimization, AAS is costly
because each quantum circuit must be simulated (or run on a
real quantum computer) during the scoring step. Performance
improvements could be offset by this extra cost. That is the
motivation for the alternative heuristic methods we explore
in Appendix D, and it remains an open problem to find
an effective heuristic. Our estimated parameter and fixed
parameter prescriptions for scoring show that it is possible to
capture relative performance without reproducing the absolute
performance. This leaves open the possibility that a good
heuristic scoring function exists.

In this paper, we computed probabilities and expectation
values directly from the wave function. On a real quantum
computer this is impossible. Instead, one estimates expecta-
tion values based on a finite number of samples. The number
of samples is another hyperparameter, and it directly affects
the cost of running the algorithm on a quantum computer.
An open question is whether the scoring in AAS can work
with a very small number of samples, mitigating the cost.
Finally, one may want to include other effects in the scor-
ing, e.g., the fidelity of the two-qubit gates in the circuit,

and search for the Pareto optimal [21] for multiobjective
optimization.3
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APPENDIX A: GREEDY SEARCH

The following three steps are performed at level l in the
search:

(1) Expansion. Generate all the unique {G̃m−l} by removing
one two-qubit gate from the output of the previous level.

(ii) Scoring. Evaluate a scoring function S on each of the
architectures {G̃m−l} generated by the previous step. Ideally,
the scoring function would exactly match the final target
function. However, that can be expensive to compute so we
will examine alternative scoring functions below. In particular,
we will consider different methods for specifying variational
parameters β∗, γ ∗ for each circuit and then evaluating the
Gibbs objective function by simulation using those parame-
ters:

{S (G̃m−l , I )} = { f (A(G̃m−l , β
∗, γ ∗), I )}. (A1)

(iii) Selection. Select the architecture with the best score as
the output of this level.

APPENDIX B: INITIAL VALUES IN NELDER-MEAD

The initial values of β and γ are sampled independently
from the uniform distribution U (0, 0.1).

APPENDIX C: BEAM SEARCH

We introduce beam search, a generalized search algorithm
of greedy search. It has been used in combinatorial optimiza-
tion [25], program synthesis [26], and machine translation
[27]. Beam search differs from greedy search in the selection
step:

Selection. Select w architectures with the best scores,
where the integer w is called the beamwidth. These best-
performing architectures are the output of this level. At early
stages in the beam search we may have fewer than w candi-
dates available, in which case all candidates are returned.

At the lth level, |{G̃m−l}| � w × (m − l ). The total num-
ber of architectures visited in the beam search is N �
w

∑n
l=0(m − l ) = w(n + 1)(m − n/2). As special cases, we

recover enumerative search as w → ∞ and greedy search as
w = 1.

3We thank Edward Farhi for discussion of this point.
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FIG. 7. Illustration of ansatz architecture search (AAS) by re-
moving up to 3 two-qubit gates with beamwidth w = 2.

Figure 7 illustrates the procedure of AAS for a complete
graph with 4 vertices.

From numerical experiments, we found that there was
not much improvement in performance from increasing the
beamwidth w � 1.

APPENDIX D: CHALLENGE: SEARCH WITHOUT
QUANTUM SIMULATION

We demonstrated that with AAS and parameter optimiza-
tion, a circuit ansatz that significantly improves the probability
of low energy can be found. However, all of the methods in
Fig. 6 made use of quantum circuit simulation at each stage
in the search. While we were able to show that the method
with the most quantum circuit simulation (Nelder-Mead) does
not improve significantly on cheaper scoring methods, all
the methods require some quantum circuit simulation at each
level. In this section, we investigate some heuristic functions
for replacement of quantum simulation for the purpose of the
scoring step of AAS. Our results are mixed, and fully solving
this problem remains an open challenge for the community.

Random. For each ansatz in the scoring step, we assign a
random number to replace f (A, I ) in Eq. (A1). This baseline
does not use any information from the ansatz architecture and
problem instance, and amounts to removing edges from the
graph randomly during AAS.

Energy approximation. Our second heuristic uses the esti-
mated energy expectation value as the scoring function. That
is, we plug β∗ = π/8 and γ ∗ as given by Eq. (10) into Eq. (9)
and use that as the score.4

4Really, we first expanded Eq. (9) to third order in γ before
plugging in γ ∗. This is for consistency, but does not make a large dif-

FIG. 8. Comparison of different heuristics for the scoring func-
tion of AAS. Panels (a)–(d) search sparse ansatzes by removing
exactly 5 two-qubit gates on 200 grid instances, and panels (e)–(h)
search sparse ansatzes by removing exactly 15 two-qubit gates on
200 complete graph instances. Panels (a) and (e) use the Nelder-
Mead scoring function at each level in greedy search and serve as the
baseline for measuring performance. The remaining prescriptions,
explained in detail in Appendix D, are (b), (f) random; (c), (g) energy
approximation; and (d), (h) neural networks. For each of these three
prescriptions we use beamwidth w = 100. In all cases, Nelder-Mead
is used at the end to optimize the parameters of the top candidates
from the AAS (the number of which varies along the horizontal axis),
and the candidate with the lowest Gibbs objective function value is
selected for the plot. The solid lines are the mean performance across
instances, the dashed lines are at 1, and the shadows show the range
from 5% to 95%.

Neural network. We use a neural network to approximate
f (A, I ) in Eq. (A1). It contains two dense layers with 128
hidden units and ReLU activation functions. The instance is
represented by 2nd and 4th powers of couplings on edges.
The ansatz graph GA is represented by Booleans indicating
whether a two-qubit gate is placed on an edge of the instance.
We concatenate these features as input of the network. We take
all the ansatzes generated by AAS and Nelder-Mead and split
them randomly by their instances into a training set and test
set. For grid instances, the training set contains 800 instances
with 232 800 ansatzes. For complete graph instances, the
training set contains 800 instances with 568 800 ansatzes.
Both test sets contain 200 instances not seen in the training
set. To fix normalization we use the scaled objective function
value f (A, I )/ f (QAOA, I ) as the label.

Although a training set is not required for the random
and energy approximation heuristics, for a fair comparison
we restrict each heuristic to the same 200 test instances for
each instance type in Fig. 8. We find optimal sparse ansatzes
by removing 5 two-qubit gates for grid instances and 15
two-qubit gates for complete graph instances. Panels (a) and
(e) show the results of AAS and Nelder-Mead. They are the
best ansatzes we can find for the test instances. Since random,
energy approximation, and neural network score functions are
inexpensive to compute compared to quantum simulation, we

ference. We also experimented with numerically minimizing Eq. (9)
rather than using any estimates, and this, too, does not make much
difference.
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have given these an advantage in the search by setting the
beamwidth w to 100. At the end of AAS, we sort the ansatzes
from the last level by their objective function values. Then we
run quantum simulations for the top candidates and report the
best scaled probability of low energy. As more candidates are
taken into consideration, the performance of all three heuris-
tic functions improves but the cost of quantum simulation
for evaluation also increases. The number of top candidates
chosen in each case is listed along the horizontal axis in the
plots. Note that a reasonable fraction of cases produce a scaled
probability less than 1, indicating that one would be better off
just using the original circuit. For grid instances, random (b)
is the worst. Energy approximation (c) performs better than
neural network (d) and is comparable (though still inferior)
to simulation (a). However, for complete graph, none of the
heuristic functions is comparable to simulation (e).

APPENDIX E: THE EFFECT OF NOISE

The purpose of this section is to analyze the effects of a
simple noise model on the Gibbs objective function of Eq. (2).
In the absence of noise, the ideal Gibbs objective function is
given by

fideal = − ln〈e−ηE 〉ψ,

where E is the Hamiltonian we are optimizing and the angled
brackets represent the quantum expectation value in the output
state ψ of the quantum circuit ansatz.

The noise model we consider is a simple depolarizing
channel. With probability 1 − p the quantum circuit is ex-
ecuted perfectly and the output state is the one we expect.
With probability p, there is some error in the execution and
the output state is the maximally mixed one. In other words,
with probability p we sample from the uniform distribution
on bit strings instead of the desired Born distribution. In the
language of density operators, we can say that the effective
density operator describing the quantum state is

(1 − p)|ψ〉〈ψ | + p

2n
I,

where n is the number of qubits.
Using this error model, we can ask what the noise does

to the Gibbs objective function f . We simply replace the
expectation value in the ideal state ψ with an expectation
value in the noisy state (1 − p)|ψ〉〈ψ | + pI/2n. Equivalently,
we can take a weighted average of the 〈·〉ψ expectation value
with an expectation value according the uniform distribution

over bit strings. We find

fnoisy = − ln
[
(1 − p)〈e−ηE 〉ψ + p

2n
Tr e−ηE

]
= fideal − ln

[
1 − p

〈e−ηE 〉ψ − Tre−ηE/2n〈
e−ηE

〉
ψ

]
.

Note that one expects 〈e−ηE 〉ψ � Tr e−ηE/2n if the circuit
is properly trained, and so the correction makes the objective
function larger (worse), as it should. We also have the fol-
lowing bound on the change in the objective function, coming
from the positivity of e−ηE :

fnoisy − fideal � − ln(1 − p). (E1)

For small p the right-hand side is just ≈p. It is reasonable
to expect that 〈e−ηE 〉ψ � Tr e−ηE/2n—in other words, the
trained ansatz should have a much better Gibbs objective
function value than the uniform distribution over bit strings—
which means that the bound in Eq. (E1) will be approximately
saturated.

This means that we can directly translate improvements
to the objective function into resilience against depolarizing
noise. An improvement of size 	 f in the objective function
can counteract the effect of depolarizing noise with size p ≈
	 f (assuming p � 1).

It is also worth noting the effects of noise on the probability
of finding a low-energy bit string, P(E < E0). Using the same
depolarizing noise model,

Pnoisy = Pideal − p(Pideal − Puni).

Here Puni is just the probability for success by random guess-
ing using the uniform distribution on bit strings. Then, taking
logarithms, we find

ln Pnoisy = ln Pideal + ln

(
1 − p

Pideal − Puni

Pideal

)
.

This is very similar to what we saw for the behavior of the
Gibbs objective function. This is not a coincidence: part of
the reason why the Gibbs objective function was chosen is
that the operator e−ηE for appropriate values of η behaves very
similarly to the projection operator one would use to define P.
For large η and E0 close to Egs, P and 〈e−ηE 〉ψ become equal
up to a state-independent multiplicative factor.

TABLE I. Relative improvement of the probability of low energy [Eq. (F1)] and reduction of the number of two-qubit gates [Eq. (F2)]
compared to the usual prescription of the QAOA for 1000 grid instances and 1000 complete graph instances. The values of 5th percentile,
median, and 95th percentile are reported for two instance types.

Relative Probability of Low Energy [Eq. (F1)] Relative Number of Two-Qubit Gates [Eq. (F2)]

5th percentile Median 95th percentile 5th percentile Median 95th
Instance Type Prescription (%) (%) (%) (%) (%) percentile (%)

Grid QAOA + Gibbs +5.9 +10.8 +17.5 0 0 0
Sparse + Gibbs +15.7 +44.4 +102.7 −54.2 −20.8 −8.3

Complete QAOA + Gibbs +3.4 +8.6 +18.7 0 0 0
Sparse + Gibbs +114.4 +244.7 +485.6 −44.4 −33.3 −24.4
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FIG. 9. Five instances of random couplings and the structures of
the associated QAOA and best sparse ansatzes for grid problems with
the Gibbs objective function. On the left, each edge in the instance
graph is colored by its coupling from blue (−1) to red (1). We
show the relative improvement of the probability of low energy and
reduction of the number of two-qubit gates compared to the usual
prescription of the QAOA.

APPENDIX F: RELATIVE IMPROVEMENT OF THE
PROBABILITY OF LOW ENERGY AND REDUCTION OF

THE NUMBER OF TWO-QUBIT GATES

In Table I, we report the relative improvement of the
probability of low energy and reduction of the number of

FIG. 10. Five instances of random couplings and the structures
of the associated QAOA and best sparse ansatzes for complete graph
problems with the Gibbs objective function. On the left, each edge
in the instance graph is colored by its coupling from blue (−1) to
red (1). We show the relative improvement of the probability of low
energy and reduction of the number of two-qubit gates compared to
the usual prescription of the QAOA.

two-qubit gates compared to the usual prescription of the
QAOA (QAOA + energy) for 1000 grid instances and 1000
complete graph instances. The relative improvement of the
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probability of low energy is(
P{ansatz}+Gibbs(E < 0.95Egs)

PQAOA+energy(E < 0.95Egs)
− 1

)
× 100%. (F1)

For sparse + Gibbs, the ansatz for each instance is the ansatz
with the lowest Gibbs objective function value in AAS by
removing up to 20 two-qubit gates. The relative reduction of
the number of two-qubit gates is(

N (A{ansatz}+Gibbs)

N (I )
− 1

)
× 100%, (F2)

where N (·) counts the number of edges in the ansatz graph.
For the usual prescription of the QAOA, A{ansatz}+energy =

I, so the relative reduction is always 0%. QAOA + Gibbs
brings 10.8% and 8.6% median relative improvement of
the probability of low energy for grid and complete graph
instances, respectively. By using a sparse ansatz together
with the Gibbs objective function, the median relative im-
provement of the probability of low energy is 44.4% and
244.7%, with reduction of the number of two-qubit gates by
20.8% and 33.3%, for grid and complete graph instances,
respectively.

In Figs. 9 and 10, we randomly sample five instances out
of 1000 for each instance type and show the structure of their
associated QAOA and best sparse ansatzes with the Gibbs
objective function.
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