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Drude weight increase by orbital and repulsive interactions in fermionic ladders
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In strictly one-dimensional systems, repulsive interactions tend to reduce particle mobility on a lattice.
Therefore, the Drude weight, controlling the divergence at zero-frequency of optical conductivities in perfect
conductors, is lower than in noninteracting cases. We show that this is not the case when extending to
quasi-one-dimensional ladder systems. Relying on bosonization, perturbative and matrix product states (MPS)
calculations, we show that nearest-neighbor interactions and magnetic fluxes provide a bias between back- and
forward-scattering processes, leading to linear corrections to the Drude weight in the interaction strength. As a
consequence, Drude weights counterintuitively increase (decrease) with repulsive (attractive) interactions. Our
findings are relevant for the efficient tuning of Drude weights in the framework of ultracold atoms trapped in
optical lattices and equally affect topological edge states in condensed matter systems.
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I. INTRODUCTION

The seminal work by Kohn [1] established the Drude
weight as a crucial quantity to describe the conduction proper-
ties of strongly correlated quantum systems. At zero tempera-
ture (T → 0), it weights the zero-frequency divergence of the
conductivity [2–5]

Re[σ (ω)] = Dδ(ω) + σreg(ω), (1)

signaling a perfect conductor, which, as conventional su-
perconductors, supports nondissipative/ballistic transport. In
quasi-one-dimensional conducting rings of size L, the Drude
weight also determines the dissipationless persistent current
J = D�/L [6–14] generated in response to a (infinitesimal)
magnetic flux � threading the ring. Persistent currents are an
equilibrium property of quantum coherent conductors and are
a phase-coherent manifestation of the Aharonov-Bohm (AB)
phase � acquired by particles upon looping around the ring,
equivalent to a twist in the periodic boundary condition. In
consequence, Drude weights coincide with the susceptibility
of the ground-state energy E to such a twist:

D = Lπ
∂2E

∂�2

∣∣∣∣
�→0

. (2)

In conducting systems, the Drude weight remains finite in
the thermodynamic limit, while its exponential suppression

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

signals insulating behavior. Beyond its usefulness for analyt-
ical and numerical calculations, Eqs. (1) and (2) establish a
remarkable connection between the transport properties and
the sensitivity to modified boundaries of quantum-coherent
systems, underpinning, for instance, the scaling theory of An-
derson localization [15–19] and many-body generalizations
thereof [20–22].

The rich behavior displayed by Drude weights in the
presence of interactions has important consequences for vari-
ous quantum transport phenomena. Quantitative evaluation of
Drude weights is important for the correct interpretation of
experiments addressing related persistent currents in metallic
rings [12–14,23]. Additionally, the divergent contribution in
Eq. (1) does not always disappear at finite temperature in fine-
tuned integrable models [24–36], and is also well described
in real spin chains [37–44]. Drude weights also contribute
to the Hall response of quasi-one-dimensional ladder systems
[45,46].

Importantly, synthetic quantum matter systems, such as
ultracold atoms confined in ring-shaped optical traps [47–55]
provide an experimental platform to study orbital responses
to an applied flux in which temperature, particle statistics, and
even interactions can be engineered almost at will. Moreover,
the currents driven by either displacing the confining potential
[56] or tilting the system [57] reproduce those generated
persistently by a flux � penetrating a ring geometry in an adi-
abatic approximation [46], therefore accessing Drude weights
with open boundary conditions.

It is thus important, both on the experimental and fun-
damental level, to understand and develop physical intuition
concerning the effects of strong correlations on the Drude
weight. It is commonly believed that repulsive interactions
reduce particle mobility in a many-body system, leading
to a generic reduction of the Drude weight [19,58–60].
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FIG. 1. (a) The interacting Creutz model, Eqs. (7)–(10). We
represent interactions by colored boxes and tight-binding hopping
elements as arrows connecting different lattice sites. (b) depicts the
usual one-dimensional case. A single pair of distinct left and right
movers is identified close to the chemical potential μ and V‖ induces
g2/4 interaction processes that exactly compensate each other on the
lattice. (c) illustrates the two-leg ladder case with magnetic flux
(g = 0 for simplicity). A finite interchain hopping of amplitude m
gaps out only one pair among the right or left movers of each singular
chain (dashed lines), leading to a suppression of backscattering g2,‖
processes compared to forward scattering g4,‖ processes caused by
V‖. As a consequence, the Drude weight increases. We also sketch
how V⊥ increases backscattering, opposite to the action of V‖.

Nevertheless, it was recently observed that this fact is remark-
ably violated in Creutz ladders [61]: the effect was attributed
to the presence of an isolated Dirac cone in analogy to
the anomalous magnetic orbital response of two-dimensional
(2D) graphene [62].

In this work, we show that the increase of Drude weight
by local repulsive interactions at zero temperature is actually
a more general feature of quasi-1D interacting systems thread
by a transverse magnetic flux χ , see Fig. 1. To demonstrate
it’s generality we rely on perturbative calculations, which
are in perfect agreement with matrix product states (MPS)
simulations. A more fundamental understanding is derived
from the effective low-energy Luttinger liquid theory of
interacting quantum ladders, showing that nearest-neighbor
interactions and magnetic fluxes provide a bias between back-
and forward-scattering processes. Finally, we connect this
phenomenon with the quantum Hall effect [63], in which
the presence of magnetic fluxes leads to the suppression
of interaction-induced backscattering. In consequence, the
prominence of forward-scattering on polarized edge states
leads to increased mobility, as signaled by an increased Drude
weight.

Remarkably, such Drude weight corrections are linear in
the interaction strength, thus allowing for efficient tunability
of this quantity by switching to attractive interactions, in
which case the Drude weight is suppressed. Our findings are
important as they shed new light on the transport properties of
strongly correlated systems with nontrivial topological prop-
erties, which may be accessed both in synthetic and solid-state
quantum matter systems.

The work is structured as follows: To fully appreciate
our key results presented in Secs. IV and V, in Sec. II we
review why repulsive density-density interactions do not yield
a strong (i.e., linear in the interaction strength) renormaliza-
tion of the Drude weight in strictly one-dimensional systems.
Section III reviews the single-particle properties and band
structure of the Creutz model. In Sec. IV, we calculate the
leading-order corrections to the Drude weight in the inter-
action strength with standard perturbation theory, showing
strong corrections to the Drude weight in excellent quantita-
tive agreement to MPS simulations. Section V presents the
effective Luttinger liquid interpretation of the Drude weight
increase, showing bias between back- and forward-scattering
processes induced by orbital effects and we conclude by
making an important and novel connection to quantum Hall
phases in two dimensions.

II. WEAK DRUDE WEIGHT RENORMALIZATION
IN ONE DIMENSION

In strictly one dimension, interactions cannot possibly
affect the Drude weight in Galilean invariant systems, due
to the perfect decoupling of the center-of-mass motion (af-
fected then by the flux insertion) from the internal degrees
of freedom (affected instead by interactions). Noticeably, this
holds true also for multicomponent systems, as long as the
only coupling between different species is of density-density
nature: in that case, it will be the total current (and therefore
the total Drude weight) to be untouched by interactions, while
off-diagonal drag coefficients may depend on the interspecies
interaction strength. The presence of a lattice, once away from
commensurate effects, which might resonate and open a gap,
is expected to affect this important result only beyond leading
order. These facts are readily understood in the bosonization
formalism [64], which will later help us to clarify where the
hack in the ladder case resides.

Consider a generic single-band tight-binding Hamiltonian,
Hkin = ∑

k ε(k)nk , in which ε(k) is the band dispersion and nk

the density at momentum k. In a low-energy approximation,
the band dispersion ε(k) can be linearized close to the
Fermi points, ε(k) ∼ ε(±kF) ± vF(k ∓ kF), with vF the Fermi
velocity. Such a linearization allows to define two separate
right- and left-moving fermions (Rj/Lj) out of the original
fermions on lattice site j, c j ∼ eikF jR j + e−ikF jL j , and
their densities nα,i = α

†
i αi (α = R, L). In such Tomonaga-

Luttinger-Dirac approximations, the fermionic fields can
in turn be expressed via a pair of canonically conjugate
bosonic fields φ and θ , [φ(x), ∂x′θ (x′)] = iπδ(x − x′),
which describe density and current fluctuations of the
effective low-energy system: ni = nR,i + nL,i = −∂xφ(x)/π
and Ji/vF = nR,i − nL,i = ∂xθ (x)/π , respectively. The
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Hamiltonian can be then exactly cast in the bosonized
form Hkin = ∫

dx
2π

vF[(∂xθ (x))2 + (∂xφ(x))2] [64,65].
In the presence of (short-range) interactions, described

by the Hamiltonian Hint = ∑
i, j Vi, jnin j , the Luttinger liquid

Hamiltonian is only slightly modified to

HLL =
∫

dx

2π

[
uK (∂xθ (x))2 + u

K
(∂xφ(x))2

]
+ V[φ], (3)

in which the Luttinger parameters u and K correspond to the
velocity of the collective plasma oscillation of the gas and give
information about interactions, respectively: e.g., repulsive
1D fermions are usually described by K � 1. The additional
term V[φ] collects all additional nonquadratic terms generated
by density-density interactions, which, importantly, do not
depend on the bosonic operator θ , be the system on a lattice
or not: indeed, the definition of the current operator obtained
via the continuity equation is unaffected,

[n,Hint] = 0 ⇒ ∂xJ = −∂t n = −i[n,H] = −i[n,Hkin]

= i[∂xφ,Hkin]/π = vF∂
2
x θ/π. (4)

As a crucial consequence, the product uK , i.e., the Drude
weight, remains equal to the noninteracting Fermi velocity
vF, unaffected by interactions. Standard minimal coupling, in
which threading a flux � in a ring geometry is equivalent to
shift momenta as k → k − �/L [i.e., here ∂xθ (x) → ∂xθ (x) −
�/L], combined with Eqs. (2) and (3), leads to

D = uK = D0 = vF. (5)

In the absence of commensurability effects or other gap-
formation mechanisms, the corrections V[φ] are usually irrel-
evant in the renormalization group sense [64], and therefore
they do not affect the validity of the Hamiltonian (3) but
at most lead to a renormalization of the Luttinger liquid
parameters (u, K ) → (u∗, K∗). The Drude weight gets renor-
malized D0 = vF → D∗ = u∗K∗ as well, but, crucially for the
following discussion, such renormalization is usually weak
(i.e., at most of order V 2 in the perturbative expansion) and
the Drude weight is suppressed D∗ < D0 [19,58,59].

Alternatively, as we are going to rederive in the follow-
ing, the validity of the identity (5) is also understood from
the fact that interactions generate coupling between left and
right movers, so-called g2 backscattering processes: g2nRnL;
and right/left movers themselves, the so-called g4 forward-
scattering processes: g4(nRnR + nLnL )/2. The Drude weight
is affected by them as follows [64]:

D = D0 + g4 − g2

2π
. (6)

For the same reasons leading to Eq. (5), in conventional lattice
systems one always finds g4 = g2 and thus no renormalization
of the Drude weight occurs to leading order in the interactions.

The arguments leading to the identity (5), namely the
commutation rule (4), do not generally apply in the presence
of orbital effects in quasi-1D systems and, in this paper, we
show a very simple mechanism leading to a modification of
the Drude weight in quantum ladders, which is linear in the
interaction amplitudes and, remarkably, is positive in presence
of typical intrachain repulsive terms.

III. MODEL

The reference system and a sketch of the physical pro-
cesses at work are illustrated in Fig. 1. As an illustration,
we consider a two-leg ladder of fermions (labeled as ↑ and
↓ species) where the plaquettes are threaded by a mag-
netic flux χ . The generalization to the case with N legs,
relevant for topologically protected quantum Hall regimes,
is discussed in Appendix C, with similar conclusions. For
the kinetic/noninteracting part of the full Hamiltonian, we
consider the following:

Hkin = 1

2

L∑
j=1

c†j
((−tei χ

2 σz − gσx
)
c j−1 + mσxc j

) + H.c., (7)

in which we assume periodic boundary conditions c0 = cL,
define the fermionic annihilation operators c j = (c j↑, c j↓)T

and express the tight-binding Hamiltonian using the Pauli
matrices σx, σy, and σz. In the two-leg case, the Hamiltonian
(7) also describes spinful one-dimensional fermions in which
χ is a Rashba spin-orbit coupling [66–69]. Otherwise, Eq. (7)
generally describes spinless fermions on a ladder, in which
σ is the leg index, which can assume more than two values
to describe systems with synthetic dimensions [56,57,70].
Equivalently, it describes two-dimensional lattices of spin-
less fermions in which σ labels the lattice position in the
second dimension, a case, which is explicitly addressed in
Appendix C. For m �= 0, g = 0 and generic values of χ , this
represents the minimal instance of a quasi-1D system pierced
by magnetic flux, which has been extensively investigated
under various aspects [67,71–77], but interestingly not the
one addressed here. For χ = π and g �= 0, the model is the
Creutz ladder [78,79], at whose fine-tuned point m = g = t
the anomalous behavior of the Drude weight was originally
pointed out and attributed to the presence of an isolated Dirac
cone [61]. In this work, we go beyond the fine-tuned point
studied in Ref. [61] and consider a much wider class of
tight-binding models compatible with Eq. (7).

On top of the tight-binding part Hkin, we dress the
lattice with orbital-selective density-density interactions
Hint = H‖ + H⊥ + HU . Our main focus will be on intrachain
(parallel) nearest-neighbors interactions

H‖ = V‖
∑

j

(n j,↑n j+1,↑ + n j+1,↓n j,↓), (8)

but, motivated by recent experiments achieving orbital effects
with synthetic dimensions [56,57], we will also consider
nearest-neighbor (perpendicular) and SU (2) symmetric on-
site repulsion between different legs

H⊥ = V⊥
∑

j

(n j,↑n j+1,↓ + n j+1,↓n j,↑), (9)

HU = U
∑

j

n j,↑n j,↓. (10)

Before considering the effect of interactions on the Drude
weight, we discuss first the band spectrum of the noninteract-
ing model (7), which in Fourier k space reads

Hkin =
∑

k

c†k H0(k)ck, H0(k) = h0(k)1 + 
h(k) · 
σ , (11)
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FIG. 2. Spin components of the bands for different parameters g, χ as displayed at the top of the figures; we fix m = t = 1 and χ = π/2
for simplicity. Black lines mark the band dispersion and the color represents the band polarization along the canonical axis (↑ in blue, ↓ in
red). White implies a perfect superposition of ↑ and ↓ species. The green inset circle represents the winding of 
h(k) and dashed axes mark the
origin. The gray region marks chemical potentials to fix a central charge c = 1 with a single left and right mover at ±kF, the starting point of
the bosonization approach exploited in Sec. V.

where 
h = (hx, hy, hz ) and 
σ = (σx, σy, σz ). In the gauge cho-
sen above,

h0 = −t cos(k) cos
(χ

2

)
, hx = m − gcos(k), (12)

hy = 0, hz = t sin(k) sin
(χ

2

)
, (13)

which is readily put in the diagonal form Hkin =∑
k,ν=± εν (k)d†

ν,kd
ν,k by the transformation ck = U (k)dk with,

for hy = 0,

U (k) = 1√
2

(
1 ·

√
1 + hz

h
− i sgn[hx]σy ·

√
1 − hz

h

)
, (14)

leading to(
c↑,k

c↓,k

)
=

(
u(k) −v(k)
v(k) u(k)

)(
d+,k

d−,k

)
,

u = 1√
2

√
1 + h̃z, v = sgn[hx]√

2

√
1 − h̃z, (15)

with dispersion ε±(k) = h0(k) ± h(k), norm of the Bloch vec-
tor h(k) = |
h(k)| = (h2

x + h2
y + h2

z )−1/2 and h̃i = hi/h. This
can be checked by verifying U †(k)H0(k)U (k) = h0(k)1 +
h(k)σz. In Fig. 2, different spectra are given for different set
of parameters of the Creutz model, among which the band
dispersion sketched in Fig. 1 is reproduced. In the following
sections, we will exploit heavily the two basic ingredients to
obtain the strong renormalization of the Drude weight: (i) a
transverse flux χ , which polarizes the dispersion bands along
a chosen axis and (ii) a gapping mechanism such that only one
pair of the chiral modes remains intact. As a consequence, the
densities defined in the chosen axis (here, σz) are spread asym-
metrically in k space (as depicted in Figs. 1–2) and same-spin
density-density interactions favor forward-scattering, whereas
different-spin density-density terms favor backscattering
processes.

IV. PERTURBATION THEORY

As a supporting point for the Luttinger liquid analysis we
develop in Sec. V, we first derive the corrections to the Drude
weight relying on leading-order perturbation theory in the
interaction strengths V‖, V⊥, and U .

The MPS simulations reported in Fig. 3 show that standard
perturbation theory captures the corrections to the Drude
weight, remarkably not suffering from the typical logarithmic
divergences arising in perturbation theory predictions of many
other quantities in one-dimensional systems. The appear-
ance of such divergencies ultimately signals the breakdown
of long-lived single-particle excitations, which are replaced
by collective plasmonic excitations well described through
bosonization. Still, the low-energy excitation spectrum itself

FIG. 3. Renormalization of the Drude weight by interaction (dif-
ferent colors and symbols). Continuous lines represent the thermo-
dynamic limit of the perturbative calculation given in Eqs. (16),
(18), (19) and symbols represent results obtained by MPS simula-
tions. Numerical values are converged up to the third decimal digit.
The system size is N/L = 20/32. Each set of data is obtained by
the interplay of the kinetic term with individual interactions H =
Hkin + Hi with weak interaction amplitudes V‖ = 0.1t , V⊥ = 0.1t ,
V‖ = V⊥ = 0.1t , and U = 0.125t . The two figures demonstrate the
robustness of the strong Drude weight renormalization, namely its
increase for V‖ > 0 and decrease for V⊥ > 0 around the fine-tuned
point of a single Dirac cone m/t = g/t = χ/π = 1. Hereby, we
devote our focus to the influence of the individual interactions by
subtracting the corresponding noninteracting value D0 from the total
susceptibility, i.e., Di = D − D0. In (a) we display the interaction-
induced Drude weight shift Di versus transverse flux χ , in which
the curvature of the two SU (2) symmetric interactions denoted
by red (down-triangle) and green (right triangle) is not visible in
the chosen scaling. To quantify, the plotted values of DU /U are
all inside the interval [0, 5] × 10−3 and D⊥/V⊥ + D‖/V‖ resides in
[−4.2, 0] × 10−3. (b) shows Di as a function of the nearest neighbor
interspecies hopping amplitude g/t .
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is not suddenly changed through this breakdown as long as
the interactions do not induce band gaps (e.g., Mott gaps at
commensurate fillings [80]). As a consequence of the Drude
weight being directly related to the ground-state energy, a
perturbative expansion thereof does not suffer from the afore-
mentioned divergent contributions away from interaction-
induced band gap formations.

Equation (2) requires to derive first the corresponding
corrections to the ground-state energy. We focus on the sit-
uation of interest, in which only the lowest band ε− is occu-
pied (n+,k = 0 ∀k). To leading order, the interaction-induced
corrections to the Drude weight are obtained by averaging
the interaction terms onto the ground state. A magnetic flux
threading the ring is equivalent to twisting the boundary by
a phase � and a matter of substituting k → k − �/L, upon
which we expand to second order in � and then approach the
thermodynamic limit 1

L

∑
k → 1

2π

∫
dk. Exploiting the fact

that hx/z is an even/odd function and the integral boundaries
are all symmetric around k = 0 (after the Taylor expansion in
the flux �), one finds

〈H‖〉 = V‖L

2

⎛
⎝n2 −

(
H1,0

z,0

2π

)2
⎞
⎠ + �2

2πL
D‖,

D‖ = V‖
4π

(
H0,0

z,1
2 − H0,1

z,1
2 − H1,0

z,2 H1,0
z,0

)
(16)

with n = N/L being the total density and we defined integral
functions of the Bloch vector components h̃i, which depend
upon the Fermi sea (FS)

Hα,β
i,n =

∫
FS

(
sinα (k) cosβ (k)

∂n

∂kn
h̃i(k)

)
dk. (17)

The above and also all following expansions in the flux
are actually correct up to O(�4) since all odd orders are
proportional to symmetric integrals of odd functions and thus
vanish. The interspecies interaction returns

〈H⊥〉 = V⊥L

2

⎛
⎝n2 −

(
H0,1

x,0

2π

)2
⎞
⎠ + �2

2πL
D⊥,

D⊥ = −V⊥
4π

(
H0,0

z,1
2 + H1,0

x,1
2 + H0,1

x,2 H0,1
x,0

)
(18)

and the on-site interaction results in

〈HU 〉 = UL

4

⎛
⎝n2 −

(
H0,0

x,0

2π

)2
⎞
⎠ + �2

2πL
DU ,

DU = − U

8π

(
H0,0

z,1
2 + H0,0

x,2 H0,0
x,0

)
. (19)

The Drude renormalization by interaction, according to
leading-order perturbation theory, depends on the precise
form of the microscopic model and does not follow any
universal law. Strikingly, if we restrict to a single pair of Fermi
points, the Drude weight increases for V‖ > 0 and decreases
for V⊥ > 0 throughout the entire phase space m, g, t , which
can be readily checked by evaluating Eq. (16) and (18) (see
Appendix A, Fig. 5). As a trivial consequence, but in con-
trast to the common intuition, attractive interactions (V‖ < 0)

FIG. 4. Change of the Drude weight obtained by MPS simu-
lations for different interaction amplitudes signalled by different
colors and markers. The displayed values are converged up to the
third decimal digit. The density of the system is n = N

L = 20
32 , m/t =

χ/π = 1, and g is relaxed to values around the topological transition
at g/t = 1. (a) Drude increase induced by H‖ and (b) Drude decrease
by H⊥. (c) Drude renormalization by HU and (d) by H‖ + H⊥ for
the case V‖ = V⊥. The effect is observed for any simulated amplitude
of the interactions and irrespective of the underlying topology. Notice
that the renormalization of the Drude weight due to H⊥ is stronger
and very asymmetrical compared to H‖.

decrease the orbital response function D. In case of absent
transverse magnetic flux χ = 0, there is no renormalization
of the Drude weight. The reason for such absence of strong
(linear in the interactions) renormalization is the absence
of any symmetry breaking mechanism between g4 and g2

processes induced by interactions, which are triggered by a
finite χ as exemplified in Fig. 1 based on the Luttinger liquid
analysis we carry out in Sec. V. Moreover, we also notice
that the remarkable strong absence of renormalization DU = 0
and D‖/V‖ + D⊥/V⊥ = 0 in leading-order perturbation theory
initially derived in Ref. [61] does not hold in general, but
applies only for very special points in the phase space such as
the single Dirac cone setting at m/t = g/t = χ/π = 1 [more
generally, the particle-hole symmetric Dirac cone setting at
m/t = g/t = sin(χ/2)]. Finally, we emphasize the perfect
agreement between perturbative results and MPS simulations
for a weakly interacting system of size N/L = 20/32 as
presented in Fig. 3.

We also stress the fact that such corrections to the Drude
weight are actually strong and can be comparable to the
noninteracting value itself, as clearly shown by the MPS
simulations reported in Fig. 4, in which we considered values
of the interactions comparable with the parameters of the
noninteracting model (7). The presented predictions from
perturbation theory are qualitatively captured by the effective
bosonized low-energy model, which we derive in the next
section.
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V. BOSONIZATION AND CONNECTION TO QUANTUM
HALL SYSTEMS

The physical reason behind the linear increase and suppres-
sion of the Drude weight by the V‖ and V⊥ interaction, in the
presence of a finite transverse flux χ , becomes apparent in the
bosonization formalism. The bosonization of the interacting
Creutz model requires a linearization of the spectrum close to
the Fermi energy.

We consider the case of central charge c = 1 (i.e., two
Fermi points) with the chemical potential crossing the lower
band ε−(k). Even though we keep the discussion general
here, the reader can think of the situations depicted in Fig. 2.
Proceeding in analogy to Refs. [80–82], we approximate the
two species of ↑ / ↓ fermions as a superposition of a single
pair of left (L) and right (R) movers. Thus, the kinetic part of
the Hamiltonian takes the form (3) with vF = ∂kε−(k)|k=kF . To
bosonize the interactions, we switch to the continuum and ap-
ply the aforementioned transformation onto the spin-density
operators to be inserted in Hint. We consider situations out of
quarter-filling, in which umklapp terms ∝ e4ixkF R†R†LL stop
oscillating and may cause relevant gap-leading perturbations
[81]. The total density operator thus becomes

ni ∼ nR(x) + nL(x)

−2u(kF)v(−kF)[e−2ikFxR†(x)L(x) + H.c]. (20)

This density representation differs from that of a truly 1D
spinless Luttinger liquid by the presence of the coherence
factors u and v. At this stage it is possible to understand the
reason why the relation (5), valid for strictly 1D systems,
does not hold in our context: the projection via Eq. (15) on
the low-energy sector captured by this bosonization approach
is not a Bogoliubov transformation, as it does not preserve
the fermionic anticommutation relations of the operators c↑/↓.
Moreover, it is responsible for the modification of the com-
mutator with the interacting Hamiltonian, which becomes
nonzero, [n(x),Hint] �= 0. As we have already seen in Sec. II,
such a condition is necessary not to modify the current opera-
tor and derive Eq. (5). Here, we explicitly lack this condition
and expect thus a strong renormalization of the product uK for
the effective Hamiltonian.

The mapping to the standard Luttinger liquid Hamil-
tonian (3) occurs via the usual bosonization identi-
ties R(x) ∼ e−i(φ(x)−θ (x)) and L(x) ∼ ei(φ(x)+θ (x)) [64]. The
densities are given by nR(x) = [∂xθ (x) − ∂xφ(x)]/2π and
nL(x) = −[∂xθ (x) + ∂xφ(x)]/2π , which allows us to identify
the bosonized Hamiltonian (3) with renormalized Luttinger
parameters

uK

vF
= 1 + 1

2π

∑
i∈{‖,⊥,U }

Vi(g4,i − g2,i ), (21)

u

vFK
= 1 + 1

2π

∑
i∈{‖,⊥,U }

Vi(g4,i + g2,i ), (22)

for which the detailed derivation of the g factors is given in
Appendix B and presented in Table I. The key result of this
paper is resumed by the fact that

g4,‖ − g2,‖ = +2(u2 − v2)2 = 2h̃z(kF)2 > 0. (23)

TABLE I. Renormalization of the Luttinger parameters in
Eq. (21). The first column lists the different nearest-neighbor inter-
actions and corresponding g2 and g4 factors.

Vi g4,i g2,i

V‖ 2(u4 + v4) − 4u2v2 cos(2kF ) g4,⊥
V⊥ 4u2v2[1 − cos(2kF )] g4,‖

As a consequence, in the presence of repulsive intrachain
nearest-neighbor interactions, bosonization predicts the in-
crease of the Drude weight by repulsive interactions.

Given the remarkable fact that such correction is linear
in the interaction constant V‖, attractive interactions reduce
the mobility of such systems (D < D0). Notice also that this
result holds irrespective of the topological nature of the bands
in the Creutz model (m ≶ g). The particular interest in the
bosonization approach is that it allows us to readily identify
the breaking of symmetry between the relevant forward- and
backscattering processes (g4 and g2, respectively) responsi-
ble for such mobility increase in the presence of intrachain
interactions. Notice further that, also within bosonization, no
renormalization of the Drude weight occurs in the absence of
transverse magnetic flux χ = 0. As sketched in Fig. 1, the
possibility to induce, via magnetic fluxes, orbital effects in
such ladder system, allows us to suppress interaction-induced
backscattering between left and right movers as these modes
are separated in space (spin polarized).

Such a phenomenon can be put in connection to the ex-
ponential suppression of backscattering by topological bulk
protection in quantum Hall systems [63]. As we discuss in
detail by extending to the multileg case in Appendix C,
following the spirit of the coupled-wire construction of topo-
logical insulators [83,84]. As modes in the bulk are gapped,
local interactions cannot efficiently couple any degree of
freedom to the chiral modes, which are localized at the sample
edge, thus backscattering is exponentially suppressed with the
number of legs. Nevertheless a residual effect of interactions
remains, which is forward scattering, that, as made explicit by
the bosonization formula (6), increases the Drude weight. In
quantum Hall systems, which feature ballistic edges states at
their border, the Drude weight is also expected to be renormal-
ized by interactions [85,86]. Nevertheless, such corrections
were never calculated explicitly in lattice models, especially
not the increase induced by repulsive interactions discussed
in this work. Our work predicts that, surprisingly, such renor-
malization is actually strong (linear) in the interaction strength
and generally leads to an increase of the Drude weight for
short-range repulsive interactions, in striking contrast to the
one-dimensional limit.

Additionally, we notice that, in the bosonization formal-
ism, introducing interchain interactions V⊥ has exactly the
opposite effect on the Drude weight, namely its suppression.
In the quantum Hall picture discussed in the previous para-
graph, the H⊥ interaction can be seen as a long-range interac-
tion coupling left- and right-chiral edges. As a consequence,
backscattering is induced and thus the Drude weight is re-
duced. However, this kind of long-range interaction is unlikely
to occur in a typical condensed matter system. Nevertheless
they (i.e., HU interactions) are actually the ones mainly at
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work in synthetic systems involving artificial gauge fields
[56,57] and induce nontrivial effects [87], which deserve
further investigation in the presence of orbital effects.

We conclude this section mentioning that the bosonization
results are quantitatively different from the perturbation calcu-
lations reported in Sec. IV, on which we can fully rely given
their perfect comparison with MPS calculations. Nevertheless
the qualitative picture remains the same, apart from the perfect
cancellation of the contributions resulting from H‖ + H⊥.
Such quantitative discrepancies are expected in bosonization
given the strong approximation regarding the linearization of
the dispersion and the presence of an underlying lattice in
the microscopic model. In Appendix B, we explicitly address
these discrepancies between bosonization and perturbation
theory in detail.

Moreover, we mention that the renormalization of the
Drude weight of the SU (2) symmetric interaction HU remains
intriguing. In particular, Fig. 3(b) and Fig. 4(c) show an
interesting change of sign as a function of g. Even though
the perturbative prediction perfectly overlaps with all MPS
simulations, we could not provide a more intuitive explanation
of this feature relying on bosonization. The main difficulty
here is related to the loss of information about the fact that
operators are originally at the same point after rotating Eq. (7)
to the diagonal basis. We leave the investigation of this issue
for future work.

VI. DISCUSSION AND CONCLUSION

As mentioned in Sec. I, there is a strong experimental
and fundamental interest in the coherent transport properties
of correlated systems confined to ring geometries [47–55].
Knowledge about the behavior of the Drude weight in this
context is crucial, as this quantity controls the magnitude of
persistent currents in such systems, and also in their con-
densed matter analogs [6–14].

In particular, our results shed new light on an intriguing
effect visible in such strongly correlated quantum systems:
We demonstrated how repulsive (attractive) interactions coun-
terintuitively increase (decrease) the mobility of interacting
fermions in the presence of orbital effects. This phenomenon
is strong in the sense that it depends linearly on the interaction
strength, opposed to strictly one-dimensional systems. Addi-
tionally, our predictions are very general: we demonstrated
that the counterintuitive renormalization is linked to the topo-
logical protection of edge states in the quantum Hall effect,
in which the only possible effect for interactions is limited to
forward-scattering.

We derived the effective continuum Luttinger liquid low-
energy theory of the interacting Creutz model and focused

on the situation with only two Fermi points, that is, central
charge c = 1. We have shown that the Drude weight changes
linearly in the coupling parameters V‖,V⊥ of the two orbital-
selective nearest-neighbor interactions. Our study clarifies
and generalizes the possibility of tuning the Drude weight
observed in a previous study using MPS and second-order
perturbation theory [61], predicting a linear dependence of
the Drude weight with respect to V‖, V⊥, and U . In this
work, we limited the bosonization approach to the simplest
situation with only two Fermi points, but a generalization to
higher central charges is straightforward. A direct comparison
with leading-order perturbation theory and MPS simulations
reveals quantitative shortcomings of the standard bosonization
procedure regarding the prediction of transport properties.
Future work in this direction should definitively address these
issues.

Interesting perspectives concern the geometrical interpre-
tation of the effects discussed in this work [88] and the study
of the interplay of quantum impurities and bulk interactions
in such systems [54,89]. Moreover, it is completely open
for investigation how the interactions studied in this paper
affect a setup in which energy and mass transport are in-
duced by biased reservoirs [90–95]. In this case, interactions
are not expected to affect the mass conductance [96], but
only the thermal conductance, leading to the violation of the
Wiedemann-Franz law [94]. In this setting, transport is con-
trolled by conductances, rather than Drude weights and trans-
verse magnetic fields in the connecting region are expected
to lead novel quantized effects [97,98]. Another direction of
interest concerns the renormalization of the transverse flux χ

susceptibility, in order to stabilize end enhance pretopological
fractional excitations [67,76,77,99].
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APPENDIX A: PERTURBATION THEORY: SUPPLEMENTARY

We start by giving the first-order correction of a generic density-density interaction of the form Hα,β,i = Vα,β,i
∑

j nα, jnβ, j+i.
According to the Wick-theorem, we expand its two-point correlator following the usual contraction rules

Hα,β,i/Vα,β,i =
∑

j

〈nα, jnβ, j+i〉 =
∑

j

〈c†α, jcα, jc
†
β, j+icβ, j+i〉

= 1

L

∑
k,l

(〈nα,k〉〈nβ,l〉 + 〈c†
α,kc

β,l〉〈cα,l c
†
β,k〉 cos((k − l )i)) (A1)
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in which we assumed nα, jnβ, j+i = 1/2nα, jnβ, j+i + H.c., i.e., any density-density correlator is a real function. The expressions
for the interactions of interest are now obtained by using the following single-particle expectation values

〈c†↑,kc↑,k〉 = u(k)2〈n+,k〉 + v(k)2〈n−,k〉, (A2)

〈c†↓,kc↓,k〉 = v(k)2〈n+,k〉 + u(k)2〈n−,k〉, (A3)

〈c†↑,kc↓,k〉 = +u(k)v(k)〈n+,k〉 − u(k)v(k)〈n−,k〉. (A4)

The interactions considered in the main text are simply given by HU = H↑,↓,0, H‖ = ∑
α Hα,α,1, and H‖ = H↑,↓,1 + H↓,↑,1. By

projection onto the lower band, i.e., n+,k = 0, and substituting the expressions in Eqs. (A2)–(A4) for the spinful densities, we
find

H‖/2 = V‖
L

∑
k,l

(
u2

kv
2
l − u2

k

(
1 − v2

l

)
cos(k − l )

)〈n−,k〉〈n−,l〉, (A5)

H⊥/2 = V⊥
L

∑
k,l

(
u2

kv
2
l − ukvkulvl cos(k − l ))

)〈n−,k〉〈n−,l〉 (A6)

HU = U

L

∑
k,l

(
u2

kv
2
l − ukvkulvl

)〈n−,k〉〈n−,l〉. (A7)

We use the more convenient form of the coherence factors, which relates their squares to the components of the underlying
Hamiltonian’s Bloch vector components by the following relations:

u2
k = 1

2 (1 + h̃z ) v2
k = 1

2 (1 − h̃z ) 2ukvk = h̃x. (A8)

to arrive at

H‖ = V‖
2L

∑
k,l

(1 + h̃z(k)h̃z(l ) − h̃z(k)h̃z(l ) cos[k − l])〈n−,k〉〈n−,l〉, (A9)

H⊥ = V⊥
2L

∑
k,l

(1 − h̃z(k)h̃z(l ) − h̃x(k)h̃x(l ) cos[k − l])〈n−,k〉〈n−,l〉, (A10)

HU = U

4L

∑
k,l

(1 − h̃z(k)h̃z(l ) − h̃x(k)h̃x(l ))〈n−,k〉〈n−,l〉. (A11)

Coupling with a magnetic field penetrating the ring of atoms is done by introducing a twist ei� in the boundary conditions and,
ultimately, results in substituting the arguments in the sums by k → k − �/L as written in the main text. The final expansion in
�/L can be done easily by using the following set of equations:

h̃i(k − �/L) ≈ h̃i(k) − �

L
h̃′

i(k) + �2

2L2
h̃′′

i (k), (A12)(∑
k

h̃i(k − �/L)

)2

≈
(∑

k

h̃i(k)

)2

+ �2

L2

([∑
k

h̃′
i(k)

]
+

∑
k

h̃′′
i (k)

∑
l

hi(l )

)
, (A13)

∑
k,l

h̃i(k − �/L)h̃i(l − �/L) cos(k − l ) ≈
∑
k,l

cos(k − l )

(
h̃i(k)h̃i(l ) + �2

L2
[h̃′′

i (k)h̃i(l ) + h̃′
i(k)h̃′

i(l )]

)
, (A14)

∑
k,l

h̃x(k − �/L)h̃x(l − �/L) cos(k − l ) ≈
(∑

k

cos(k)h̃x

)2

+ �2

L2

⎛
⎝

[∑
k

sin(k)h̃′
x(k)

]2

+
∑
k,l

cos(k) cos(l )h̃′′
x (k)h̃x(l )

⎞
⎠,

(A15)

∑
k,l

h̃z(k − �/L)h̃z(l − �/L) cos(k − l ) ≈
(∑

k

sin(k)h̃z

)2

+ �2

L2

⎛
⎝

[∑
k

cos(k)h̃′
z(k)

]2

+
∑
k,l

sin(k) sin(l )h̃′′
z (k)h̃z(l )

⎞
⎠,

(A16)

in which we used the fact that odd orders in � vanish. Therefore, all the above equations are exact up to O(�4). Note that in the
above, the sums in momentum space are considering all occupied momenta of the bottom band. Finally, the notion of integrals
of the Bloch vector components Hα,β

i,n yields the equations discussed in the main text. To visualize the results, we plot the Drude
weight shift of each interaction D‖/V‖, D⊥/V⊥, and DU /U in Fig. 5.
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FIG. 5. Change of the Drude weight by interaction according to first-order perturbation theory in the thermodynamic limit for a system at
incommensurate total density n = 20/32 and m/t = 1. (a) D‖/V‖, (b) D⊥/V⊥, (c) D‖/V‖ + D⊥/V⊥, (d) DU /U . Solid lines mark the Lifshitz
phase transitions between central charge c = 1 and c = 2. Figure 3 displays cuts of the density plots at c = 1 close to g/t = χ/π = 1 with
markers representing MPS results at V⊥/t = 0.1t , V‖/t = 0.1t , and U/t = 0.125t .

APPENDIX B: BOSONIZATION: SUPPLEMENTARY

Here we present the detailed derivation of the bosonized Hamiltonian in Eq. (3) of the Creutz model. We begin by projecting
the spinors onto left- and right-moving fermions of the bottom band.

c↑, j = −eikF jv(kF)Rj − e−ikF jv(−kF)Lj, c↓, j = +eikF ju(kF)Rj + e−ikF ju(−kF)Lj . (B1)

Next, we insert the projection into the spatial spin densities in the continuum

n↑(x) = v2(kF)nR(x) + v2(−kF)nL(x) + v(−kF)v(kF)[e−2ikFxR†(x)L(x) + H.c], (B2)

n↓(x) = u2(kF)nR(x) + u2(−kF)nL(x) + u(kF)u(−kF)[e−2ikFxR†(x)L(x) + H.c.], (B3)

with x = ja and a a dimensional lattice spacing. Next, we plug the densities readily into the expressions of the interactions
of interest. One thus finds the effective low-energy expressions according to

H‖ + H⊥ =
∑

x

[γ1(nR(x)nR(x + a) + nL(x)nL(x + a)) + γ2(nR(x)nL(x + a) + nL(x)nR(x + a))

+ γ3(e2ikFaR†(x)L(x)L†(x + a)R(x + a) + H.c.)]. (B4)

γ1 = (u4 + v4)V‖ + 2u2v2V⊥, γ2 = 2u2v2V‖ + (u4 + v4)V⊥, γ3 = 2u2v2(V‖ + V⊥), (B5)

in which we used the shorthand notation u/v = u(kF)/v(kF). Finally, we find the bosonized Hamiltonian by applying the standard
bosonization identities

R(x) ∼ 1√
2πa

e−i(φ(x)−θ (x)), L(x) ∼ 1√
2πa

ei(φ(x)+θ (x)), (B6)

leading to the bosonization of the point-split operator

R†(x)L(x)L†(x + a)R(x + a) + H.c. = −2∂xφ
2

(2π )2
, (B7)

in which we neglect some infinite, but constant, terms. We notice this expression only involves the density field φ. Thus, it does
not affect the current operator and has no effect on the Drude weight, even though it affects g4 and g2. Finally, we remind that
the mover densities relate to the bosonic fields according to

nR(x) = [∂xθ (x) − ∂xφ(x)]/2π, nL(x) = −[∂xθ (x) + ∂xφ(x)]/2π. (B8)

Following this recipe and plugging Eqs. (B8) into Eq. (B4) yields the coupling constants given in Table I, which concludes this
Appendix.

APPENDIX C: CROSSOVER TO TWO-DIMENSIONAL
SYSTEMS

We generalize the model defined in Sec. III to the case of N
legs of the quasi-one-dimensional wire. In momentum space,
we choose the transverse flux χ such that the generalized

Hamiltonian takes the simple form

HN
0 (k) =

∑
jy

(m − gcos k)(c†jy,kc jy+1,k + H.c.)

− t cos
(
k − χ (2 jy − (N + 1))

)
n jy,k . (C1)
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FIG. 6. Coupled-wire approach with (a) N = 2 and (b) N = 20. We place the Fermi energy in the center of the gap, marked as a red line.
In (c), we plot the amplitude |uN/u1(kF )|2 for the case m = 0.1t , g = 0, and χ = 0.025π versus number of chains N , evidently following an
exponential decay. Following Eq. (21) this implies a strong suppression of g2 processes compared to g4 in the c = 1 gap.

This Hamiltonian may be diagonalized by a rotation onto
the bands UN (k) such that UN (k)HN

0 (k)U †
N (k) = EN (k), with

a diagonal matrix EN (k) = diag[ε1(k), ε2(k), . . . , εN (k)] con-
taining the ordered bands εi(k) � εi+1(k) (see Fig. 6). Al-
though more general scenarios may be considered, we focus
here on the coupled wire formalism, which is obtained by
setting g = 0. In particular, this addresses the one-dimensional
limit of the Harper-Hofstadter model [100,101], understood
as a coupled-wire system [83] and studied recently also in
the context of superconductivity [102]. We require a central
charge c = 1 such that one has a single pair of left- and
right-moving species defined on the lowest band ε1(±kF).
This justifies the approximation similar to Eq. (B1),(

c1,x

cN,x

)
∼

(
u1(kF) u1(−kF)
uN (kF) uN (−kF)

)(
R(x)e+ikFx

L(x)e−ikFx

)
(C2)

with some prefactors u1 and uN which depend on the precise
form of UN . A more general form of the imposed interactions
in the N-legged setup is

H‖ =
∑
jx, jy

V‖( jy)n jx, jy n jx+1, jy , (C3)

where the local leg density is defined as n jx, jy = c†jx, jy
c jx, jy

.
Due to the nature of the applied projection, other interactions
similar to H⊥ coupling adjacent wires along the y direction
will not contribute to the effective model. A hypothetical
interaction similar to the two-wire case, which contributes to
the projected Hamiltonian is

H⊥ = V⊥(N )
∑

jx

n jx,1n jx+1,N . (C4)

The remaining calculation to arrive at the Luttinger liquid
Hamiltonian is similar to the one presented in main text, and,
for V‖(1) = V‖(N ) identical g factors are recovered [substitut-
ing u → u1, v → uN , V‖ → V‖(1), and V⊥ → V⊥(N )]. As a
consequence, the result here is analog to the one presented in
the main text

g4,‖ − g2,‖ = 2
(
u2

1 − u2
N

)2
> 0. (C5)

In Fig. 6 we explicitly target the 2D limit N → ∞, showing
that u1 is the leading contribution, thus strongly suppressing
g2,‖ processes in the effective model. It has to be stressed
that Eq. (C2) is not a unitary transformation and projects
onto the relevant low-energy sector of the model. In the case
of N > 2, the bulk is fully projected out in the effective

model and only effects on the edges of the system can be
recovered. This makes it impossible to deduce bulk properties
such as the Hall conductivity σH that is instead universally
quantized at a given filling. Instead, what we claim here
is a strong modification of the edge Drude weight due to
interactions for which a universal scaling law dependent on
the interactions has been reported using chiral Luttinger liquid
approaches [85]. Building up on this statement, we provide
here a generic example that enhancement effects of the Drude
weight become universally applicable for systems hosting
polarized conduction bands dressed with repulsive density-
density interactions.

APPENDIX D: COMPARISON BETWEEN
LEADING-ORDER PERTURBATION THEORY

AND BOSONIZATION

Major deviations between perturbation theory and
bosonization arise from Eq. (B1), which requires a flat
rotation matrix U . In particular, according to first-order
perturbation theory, the canonical operators can be expressed
using the bottom band modes only, i.e.,

c↑, j = eikFxv(kF)
∑

q

eiqx

(
1 +

∞∑
n=1

qn

n!

v(n)

v
(kF)

)
d−,q+kF

+ e−ikFxv(−kF)
∑

q

eiqx

(
1+

∞∑
n=1

qn

n!

v(n)

v
(−kF)

)
d−,q−kF

(D1)

and a similar expression (v ↔ u) holds for the down species.
To arrive at Eq. (B1), we assume flat coherence factors

∞∑
n=1

qn

n!

f (n)

f
(±kF) ≈ 0, f ∈ {u, v}. (D2)

The momentum transfer in forward-scattering processes g4

is small compared to the Fermi momentum and the above
equation is automatically satisfied. However, back-scattering
processes g2 always transfer momentum comparable to kF and
the above equation requires the rotation matrix being almost
constant in q, i.e., U (n)/U (q) ≈ 0. We show a few example
contours of the first three derivatives of | f (n)/ f (kF)| along g
and χ in Fig. 7, which indeed explains major deviations at
regions in which u(n)/u and v(n)/v are large.
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FIG. 7. (a)–(b) First two derivatives of |u(n)/u(kF )|, (c)–(d) first two derivatives of |v(n)/v(kF )| versus g and flux χ at density n = 2/3 and
m = 1. Discrepancies between bosonization and perturbation theory arise due to a strong violation of Eq. (D2).

On the contrary, at the single Dirac cone point g = χ/π =
1 the rotation matrix has entries u/v(k) = cos / sin(k/4), as a
consequence the n’th derivatives are exponentially suppressed
in n and Eq. (D2) becomes a reasonable approximation.
Clearly, in regions outside of Eq. (D2), g2 processes are not
correctly considered in the effective model and thus strong
deviations in D⊥ are expected. Remarkably, the qualitative
predictions of the effective model extend to the full c = 1
region, i.e., we find a positive shift of the Drude weight
induced by H‖, and a negative effect of comparable amplitude
due to H⊥.

In conclusion, the above equation fully disregards band and
coherence factor curvature, yielding a consistent result with
leading-order perturbation theory up to zeroth order in the
coherence factor derivatives only [H0,0

z,1 = 2h̃z(kF) terms in the
Drude weights are recovered]. For a future investigation, it is
interesting to relax Eq. (D2), in particular keeping more and
more higher-order terms in q. This not only accounts for a sum
of right and left movers on different lattice sites in Eq. (B1),
it naturally reintroduces nontrivial curvature of the coherence
factors u(k) and v(k), ultimately giving subleading corrections
to γi in Eq. (B4).

APPENDIX E: DETAILS ON THE MPS SIMULATIONS

The matrix product states (MPS) results presented in the
main text were performed by our own implementation of a
U(1) symmetric code preserving the total number of parti-
cles, based on the anthology of tensor networks build on a

symmetry-preserving library in collaboration with the group
of S. Montangero at the University of Ulm [103]. Periodic
boundary conditions (PBC) in general are hard to tackle using
tensor network schemes due to the absence of a canonical
form, which is a necessity to simplify the computational com-
plexity in variational optimizations [104]. A naive solution
used heavily in exact diagonalization is the introduction of
long-range terms mimicking periodic boundary conditions by
coupling the edges of the system. However, such a strategy
is deemed to fail for MPS ansätze because, by construction,
long-range correlations are not captured sufficiently. An al-
ternative scheme is obtained by deforming the ring into a
1D open boundary system with short-range next-to-nearest-
neighbor couplings, depicted in Fig. 8(a). This deformation
amends the strong asymmetry between short-range hoppings
and long-range boundary terms by reshuffling the lattice sites.
The two depicted ring geometries are numerically equiva-
lent and yield an efficient simulation of periodic boundary
conditions with open boundary MPS algorithms at the cost
of slightly increasing the matrix product operator (MPO)
dimension.

The extraction of the particle mobility D is
straightforward; we simulated the ground-state energy
dependence E (�) on the magnetic flux � penetrating the ring.
Numerically, coupling to a magnetic flux is readily done by
applying the local transformations t → tei�/L and g → gei�/L

in the real-space kinetic Hamiltonian Hkin. The susceptibility
function can then be extracted by two equivalent procedures:
(i) by approximating the second derivative according to
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FIG. 8. (a) Deformation of a generic ring system to simulate periodic boundary conditions with open boundary MPS algorithms.
(b) Generic representative of numerical simulations with different bond dimension M of the ground-state energy dependence E (�) for a system
at fixed density n = N/L = 20/32 at parameters m/t = χ/π = 1, g/t = 1.2, U/t = 4, and V‖ = V⊥ = 0. Crosses represent MPS results and
continuous lines represent a quadratic fit. At the presented decimal precision, data and fits for M = 128 and M = 256 reside exactly on top of
each other. (c) Dependence of the Drude weight on the truncated probability �ρ of the MPS. In case of �ρ < 10−7, the data is sufficiently
converged up to the necessary precision presented in the main text and the convergence error may be disregarded.

023058-11



HALLER, RIZZI, AND FILIPPONE PHYSICAL REVIEW RESEARCH 2, 023058 (2020)

∂2
�E (�) = [E (� + ε) + E (� − ε) − 2E (�)]/ε2 + O(ε4),

sending ε → 0 and then � → �m, or by (ii) fitting the
energy dependence. Hereby, �m is the energy extremum,
which depends on the parity of the underlying system. In
most cases, �m = 0/π for an odd/even number of fermions,
respectively [105]. According to leading-order perturbation
theory, it is possible to extract the mobility D by a quadratic
fit function f to approximate the energy dependence E (�)
according to f (�) = a + b(� − �m)2 with �m being the
energy extremum, and the Drude weight being D = 2πLb,

which is correct up to O[(� − �m)4] in the flux �. Due to
an astonishing agreement between prediction and numerics,
even for strong interaction amplitudes, we present a generic
representative of the fitting procedure in Fig. 8(b). A basic
estimation of the numerical accuracy is governed by Fig. 8(c),
in which we display the convergence of the presented
observables versus �ρ, the figure of merit in MPS simulations
representing the truncated probability of the reduced
density matrix for the canonical bipartition at the center of
the chain.
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