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Efficient two-electron ansatz for benchmarking quantum chemistry on a quantum computer
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Quantum chemistry provides key applications for near-term quantum computing, but these are greatly
complicated by the presence of noise. In this work we present an efficient ansatz for the computation of two-
electron atoms and molecules within a hybrid quantum-classical algorithm. The ansatz exploits the fundamental
structure of the two-electron system, treating the nonlocal and local degrees of freedom on the quantum and
classical computers, respectively. Here the nonlocal degrees of freedom scale linearly with respect to basis-set
size, giving a linear ansatz with only O(1) circuit preparations required for reduced state tomography. We
implement this benchmark with error mitigation on two publicly available quantum computers, calculating
accurate dissociation curves for four- and six-qubit calculations of H2 and H3

+.
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I. INTRODUCTION

Quantum computers possess a natural affinity for quantum
simulation and can transform exponentially scaling problems
into polynomial ones [1–3]. Quantum supremacy, the ability
of a quantum computer to surpass its classical counterpart
on a designated task with lower asymptotic scaling, is poten-
tially realizable for the simulation of quantum many-electron
systems [4,5]. Work over the previous decade has been to-
wards this goal with a focus on calculating the energy of
small molecules and exploring strategies to leverage emerging
quantum technologies, especially those designed to correct
or mitigate quantum errors [6–8]. In this paper we introduce
an efficient ansatz for a two-electron quantum-mechanical
system that can be employed as a benchmark for assessing
the capabilities and accuracy of quantum computers. The twin
goals of the work are (i) to present a quantum-computing
benchmark based on the correlated but polynomial scaling
two-electron problem, solvable on classical computers, that
can be used to assess the accuracy of quantum computers
and (ii) to develop an efficient ansatz for solving the two-
electron problem on quantum computers, based on an effec-
tive partitioning of the computational work between classical
and quantum computers that is applicable to more general
N-electron molecular systems.

The two-electron density matrix (2DM) of any two-
electron system can be expressed as a functional of its one-
electron reduced density matrix (1RDM) and a set of phase
factors. This representation of the 2DM has important con-
nections to natural-orbital functional theories and geminal-
based theories in quantum chemistry [9–16]. It offers a natural
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separation between the nonlocal and local fermionic degrees
of freedom in the system [17], scaling linearly and polynomi-
ally, respectively, and can be leveraged in a variational hybrid
quantum-classical algorithm. The entangled nonlocal degrees
are treated on the quantum computer while the local degrees
are treated on the classical computer, leading to an efficient
simulation of the system.

For a quantum algorithm to exhibit quantum supremacy,
obtaining the solution classically will be impractical except
for cases that are close to the classical limits of feasibil-
ity [4,5]. For some problems such as prime factorization, the
solution can be quickly verified, but for many-body quantum
systems this is not the case [18–22]. Possessing “easy” classi-
cally solvable problems to implement and verify will be cru-
cial to evaluate the performance of quantum devices and error
mitigation schemes [23]. Our proposed quantum-classical hy-
brid algorithm targets only the necessary entanglement needed
on the quantum computer, scales linearly with respect to basis
size, and has O(1) circuit preparations, making it an ideal
benchmark for molecular simulation. We highlight this by
evaluating this ansatz through the computation of H2 and H3

+
on two generations of publicly available quantum devices.

II. THEORY

Because the representation of the 2DM in terms of
the 1RDM and phase factors has been well studied else-
where [11,24–26], we present in Sec. II A only the aspects
of the theory that are relevant to the quantum-classical hybrid
algorithm in Sec. II B. We also discuss the preparation of the
linear-scaling ansatz in Sec. II C and practical error mitigation
techniques in Sec. II D that are employed in the benchmarks
in Sec. III.

A. Structure of the two-electron system

For a two-electron system the energy is given as the trace
of the Hamiltonian and the density matrix

E = Tr(HD), (1)
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where H and D are 2r × 2r, with 2r being the rank of the
one-electron basis set and

Di j
kl = gi jg

∗
kl (2)

in which the wave-function expansion coefficients gi j are
elements of the coefficient matrix G. From the antisymmetric
nature of fermions, G must be a skew-symmetric matrix,
and from a theorem by Zumino [26], G must have a block-
diagonal form G̃ with 2 × 2 matrices Gi:

G̃ = diag(G0,G1, . . . ,Gr ), (3)

Gi =
(

0 g̃ii′

g̃i′i 0

)
=

(
0 g̃ii′

−g̃ii′ 0

)
. (4)

The block-diagonal form of G in Zumino’s theorem defines
an orbital basis set with a natural pairing of the orbitals where
we denote the indices of an orbital and its pair by i and i′,
respectively.

The 2DM in Zumino’s basis has only nonzero elements of
the form

D̃ii′
kk′ = g̃ii′ g̃

∗
kk′ . (5)

The 1RDM, containing the one-body information, can be
obtained from the 2DM by contraction,

1D̃i
i =

∑
k

D̃ik
ik = D̃ii′

ii′ = g̃ii′ g̃
∗
ii′ = ni = ni′ , (6)

1D̃i
j = 0, (7)

where all 2DM elements in the contraction vanish except
when k = i′. Because the 1RDM is diagonal in Zumino’s
basis set, we find that Zumino’s basis set is identically the
natural-orbital basis set and that the occupations ni are the
natural-orbital occupations. The paired orbitals i and i′, we
observe, have equal occupations ni and ni′ . For a system of
two electrons with Sz = 0, these paired orbitals share the same
spatial component with different spin components, denoted by
convention by α and β. This decomposition can be viewed
as a particular case (N = 2) of a more general result derived
by Schmidt [27] and later by Carlson and Keller [28]. The
importance of this decomposition as a quantum-computing
ansatz for two electrons will be manifest below.

B. Variational hybrid algorithm

Hybrid quantum-classical algorithms with a variational
eigenvalue solver are among the most promising algorithms
for near-term applications [6,29–31]. For our approach we
utilize a variational eigensolver on the quantum device but
apply it only to the optimization of the 2DM in the natural-
orbital basis set. Optimization of the natural orbitals by or-
bital rotations is performed with polynomial scaling on the
classical computer. In this manner we are able to partition the
nonlocal and local degrees of freedom between the quantum
and classical calculations respectively.

Using the structure given in Eqs. (3)–(7), we see that
to evaluate the D̃ matrix, we need only (a) the natural-
orbital occupations, measured as the orbital populations on
the quantum computer, and (b) the phase corresponding to
the natural-orbital coefficients, which for a real wave function

is simply the parity of the term that can easily be measured
on a quantum computer. That is, we need the phase ξii′

where

g̃ii′ = √
niξii′ . (8)

In general, the phases can be measured through tomography
on the quantum computer of certain terms of D̃ requiring
only O(1) additional circuit preparations. The details of the
specific ansatz for the tomography are discussed in the next
section.

After convergence criteria in the optimization of D̃ on the
quantum computer are satisfied through gradient-free opti-
mization (see Appendix A), we optimize the energy on the
classical computer through one-body unitary transformations
of the Hamiltonian. Specifically, we optimize the orbitals
through a series of Givens rotations. These complementary
quantum and classical optimizations are sequentially repeated
until the energy and 2DM converge.

C. Preparation of the efficient quantum ansatz

To create a state of the form in Eq. (3) on the quantum
computer, we need to implement double excitations from
orbitals ii′ to kk′. If we consider an initial wave function
G̃0 from a standard Hartree-Fock calculation, the ansatz to
generate a generic G̃ is

G̃ =
r−1∏
i=1

(
exp t īī′

ii′
)
G̃0, (9)

where ī = i + 1 and t īī′
ii′ is an anti-Hermitian, antisymmetric

two-body matrix with nonzero elements corresponding to an
excitation between i, i′ and (i + 1), (i + 1)′. The operators
acting on G̃0 can be easily expressed in second quantiza-
tion as shown in the Appendixes. The ansatz is a subset of
the unitary coupled cluster [32] or anti-Hermitian contracted
Schrödinger equation ansatz [33]. From there we perform a
Jordan-Wigner transformation (though others may be utilized)
which yields an exponential of Pauli strings that are imple-
mentable on a quantum device as strings of controlled-NOT

(CNOT) gates [34]. Additionally, the implementation naturally
requires only a nearest-neighbor connectivity among qubits.

Finally, the tomography of the state involves only the
measurement of the orbital occupations for a given qubit in
the computational basis as well as the sign. Because there
are only r − 1 phase terms since the last phase is equivalent
to a global phase, we only require the tomography of a
linear number of sequential terms in D̃ of the form D̃ j j′

ii′ ,

with j = i + 1. Because terms like D̃ j j′
ii′ and D̃( j+2)( j+2)′

(i+2)(i+2)′ are
qubitwise commuting, we can measure r/2 terms simultane-
ously, leading to a constant number of circuit preparations. In
this work we evaluated H2 and H3

+ using the Jordan-Wigner
transformation in four- and six-qubit cases. There is only one
phase term in the four-qubit calculations of H2, which we
measured by direct tomography on the quantum computer,
whereas the two phases of the six-qubit calculation of H3

+
were computed by optimization on the classical computer to
avoid degradation from noise on the quantum computer.
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D. Error mitigation strategies

Even if we model a two-electron system on a quantum
computer and construct the state through the above tomog-
raphy, we may find that the occupations ni and ni′ do not
match for a given i, which implies a violation of the fermion
statistics. Because the two-electron ansatz in Sec. II B for-
mally guarantees a two-electron wave function, any deviation
in pure-state N representability (up to sampling errors) is due
to errors on the quantum computer [11,35,36].

The effect of errors on current quantum computers can
easily influence the N representability of a system [11,37]
with the extent somewhat depending on the fermionic map-
ping. For a compact mapping, Sz and N will typically remain
constant, but for more general mappings, this is not the case.
Other errors can also accumulate, making it difficult to reach
certain extrema of the set of density matrices. To address this,
we use a projective technique where we map the set of accessi-
ble points onto the ideal set of points (see the Appendixes). We
achieve this by finding an affine transformation A that maps
from the accessible but error-prone set S′ to the ideal set S.

For a general mapping, it is easy for the quantum system
to violate N and Sz. By utilizing a symmetry verification
technique [20,21], along with the structure of our tomography
requiring only measurements of diagonal terms, we can filter
out results which do not obey the correct N and Sz values,
which effectively projects the resulting state into an eigenstate
of the chosen operator. This can be extended to other operators
S which commute with the Hamiltonian:

[S, H] = 0. (10)

As will be seen in the results, the symmetry verification is
useful in bringing the results back to the set of all two-electron
states, and then the projection restores the equality of the two
pairing-related sets of occupations ni and ni′ .

III. RESULTS

Using the two-electron ansatz, we first treat the molecular
dissociation of H2 in a minimal Slater-type-orbital–expanded-
in-three-Gaussians basis set of two electrons in four orbitals.
The quantum algorithm is implemented on both the 5- and
14-qubit devices, denoted by ibm-5 and ibm-14, representing
two generations of superconducting quantum devices by IBM.
With the Jordan-Wigner transformation [38] the system can be
represented with four qubits, though more compact mappings
are certainly possible. Note that in this basis only a single
excitation is possible. Figure 1 shows the potential energy
curve of the H2 molecule, computed with full error mitigation.

With the help of error mitigation techniques, both quantum
devices are able to capture the dissociation of the molecule,
achieving millihartree accuracy across the spectrum of states,
leaving differences in the devices somewhat unclear. Inspec-
tion of the device calibration (Appendix A, Table II) indicates
that large measurement errors likely occur on ibm-5 with
superior performance expected from ibm-14. Scans of the
1RDMs with respect to the t22′

11′ parameter controlling the
single double excitation are shown in Fig. 2. The ibm-5 device
is shown in the top row and the ibm-14 in the bottom row,
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FIG. 1. Dissociation curves for the ground state of H2 from the
variational quantum algorithm on the quantum computer and the full
configuration interaction (FCI) method are shown. Both results were
run with 4 qubits, but on 5- and 14-qubit frameworks. The inset
shows the difference in energy from the FCI results in millihartrees.
The increased error for the shortest distance relates to the difficulty in
reaching the Hartree-Fock state on a quantum computer when using
entangling gates. For more experimental details, see the Appendixes.

and we also show the effect of the symmetry verification in
correcting the occupations.

While the ibm-5 device maintains continuity with respect
to t22′

11′ , it has distinct problems. First, we observe (see the top
left panel) a correlated measurement error in the set of qubit
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FIG. 2. Measured (unordered) occupation numbers with respect
to the coefficient t22′

11′ of the single double-excitation operator within
the entangling circuit. Blue triangles represent the first qubit and
green circles represent the second qubit, unordered. Open sym-
bols show the raw occupations and closed symbols the symmetry-
corrected occupations. Uncertainties for the values are similar in size
to the markers.
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TABLE I. Area between the two occupations (V ) obtained for the
entangling circuit described in the text for the two different quantum
devices with different post-measurement symmetries. The Vi and Vi′

values were calculated separately. Here we have the 5- and 14-qubit
devices, given in a 95% confidence interval due to sampling. The left
column denotes the symmetry or symmetries applied.

5-qubit device 14-qubit device

Symmetry Vi Vi′ Vi Vi′

none 0.096 ± 0.005 0.861 ± 0.007 1.405 ± 0.007 1.476 ± 0.007
N 0.18 ± 0.01 0.75 ± 0.01 1.89 ± 0.01 1.907 ± 0.009
Sz 0.25 ± 0.01 1.06 ± 0.02 1.723 ± 0.009 1.736 ± 0.009
N, Sz 0.33 ± 0.02 1.43 ± 0.02 1.93 ± 0.01 1.94 ± 0.01

occupations {ni} which causes an inversion in the expected
relationship between n1 and n2 among the i (α) occupations.
Second, we find that symmetry verification is effective in
increasing the differentiability of the two states (note, for a
decohered system, that n1 and n2 would be identically 0.5),
yet it is not able to correct for the reversal in ordering seen on
the qubits and somewhat reinforces this error for n2.

On ibm-14, while there is still a contraction of the occu-
pation numbers across the range of t22′

11′ , the obtained curve
is continuous and the two sets of occupations correspond to
expected values. With symmetry verification, we obtain nearly
the ideal occupations, which otherwise are far from spanning
the full spectrum of occupations. The effect of our further
correction is to stretch the sinusoidal curves in Fig. 2 so that
their maxima and minima are 1.0 and 0.0, respectively; hence
it is not shown here.

To quantify the effects of symmetry verification, we calcu-
late the area between the two changing orbital occupations for
both {ni} and {ni′ } (denoted by Vi and Vi′ , where Vi = n2 − n1

and Vi′ = n2′ − n1′ ), subject to different symmetries, as well
as the uncertainty in measurement after each symmetry is ap-
plied, and show these in Table I. The maximum and minimum
values for this metric would be 2 and 0, representing fully
error-free and fully decohered states, respectively. In each
case, application of multiple symmetries serves to increase the
resulting “reach” of the state, without increasing variance with
respect to decreased measurement counts.

Computations with six orbitals are performed only on
the ibm-14 device since more than five qubits are required.
Using simplifications used by Nam et al. [39], we are able
to construct a gate with eight CNOT gates which still requires
only neighboring connections (see Appendix C). Due to the
longer depth of the circuit, the effects of noise are more
pronounced and we find it difficult to reliably measure the
phase of the 2DM terms required in Eq. (8) and note that
these are not always continuous. To show the overall effect
of errors on the six-qubit system on the local occupations,
we present a scan of possible symmetry verified 1RDMs
over a range of the parametrized entangling gates in Fig. 3.
Additional details regarding the computation are provided in
the Appendixes. While we do not show the occupations in
terms of the parameters, the effect of the aggregate errors
for this case is again to shrink the portion of the hyperplane
accessible to the quantum device.

Expectedly, the obtained results differ greatly depending
on the qubits and available connectivity of the quantum de-
vice, though in general we still observe a degree of continuity
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FIG. 3. Shown on the left are the measured occupations of the six-qubit system following symmetry application of N and Sz, as well as the
boundaries of the ideal polytope. Note that σ refers to the use of i or i′. Because these occupations correspond with an N-representable system,
the equality n1σ + n2σ + n3σ = 1 holds and so we show the orthographic projection along the n3σ axis. The device was sampled over the range
t22′
11′ , t33′

22′ ∈ [−π, 0] in π

10 intervals for the entangling parameters. The ratios of areas of the experimental and theoretical convex hulls of these
obtained points are 0.48 and 0.68 for {ni} and {ni′ }, respectively. Shown on the right are unordered n1σ , n2σ , and n3σ occupations with respect
to parameters t22′

11′ at different slices of t33′
22′ (given in each plot). Dashed lines indicate the ideal occupations for the unordered qubits (equivalent

for ni, ni′). The set of occupations closer to (n1, n2, n3) = ( 1
3 , 1

3 , 1
3 ) is well covered, though there is clear difficulty in reaching uncorrelated

regions, where only one occupation is 1.
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FIG. 4. Dissociation curves for the ground state of H3
+ from the

variational quantum algorithm on the quantum computer and the FCI
method. The experiment was run on a 14-qubit framework. The inset
shows the difference in energy from the FCI results in millihartrees.
The increased error for the shortest distance relates to the difficulty in
reaching the Hartree-Fock state on a quantum computer when using
entangling gates. For more experimental details, see the Appendixes.

in the local 1RDM properties. By dealing with the phases
classically, we are able to calculate the dissociation curve for
triangular H3

+ in Fig. 4. Again, we are able to obtain chemi-
cally accurate energies across the dissociation curve, although
there is difficulty in sampling the uncorrelated Hartree-Fock
state which is a vertex of the polytope. The error mitigation
techniques we use also extend the capabilities of noise-limited
quantum computers, which otherwise do not span the ideal N
representability of the state [40].

IV. DISCUSSION AND CONCLUSION

In this work we present an ansatz for two-electron quantum
systems which can be implemented on near-term and fu-
ture quantum computers. Applying this on two public-access
quantum computers highlights the successes and differences
of two generations of quantum computers, as well as the
difficulties which must be overcome in approaching more
complicated systems. We also show that, using error mitiga-
tion strategies, we are able to simulate both H2 and H3

+ to
high accuracy. The proposed ansatz can be readily applied
to two-electron atoms and molecules in larger basis sets with
similar types of error mitigation. The gate sequence proposed
here can be applied as a generic ansatz, removing the need for
long expansions of the required exponential operators.

The ansatz is efficient mainly in regard to its scalability
with respect to other methods of state preparation. A unitary
coupled cluster ansatz, which for a two-electron system only
needs to be expressed with single and double excitations and
which additionally has only one occupied orbital for the α and
β excitations, still would have O(r2) terms in the ansatz. Fur-
thermore, quantum tomography would additionally require
the measurement of the αβ block of the 2DM, which naively
has O(r4) terms, and hence the method would scale as O(r6)
where the depth d and the number of measurements contribute

factors of r2 and r4, respectively. Other methods based on the
propagation of the Hamiltonian could be implemented, but
they also would have large costs and would not necessarily
lead to the same advantages that result from the structure of
the 2DM.

From the results above it is clear one cannot rely solely on
the energy or other external molecular properties to investigate
the integrity of the quantum device, particularly in comparing
the performance of the two-qubit devices on the four-qubit
calculation. While averaged or localized metrics related to
qubit depolarization, dephasing, or bit-flip errors are often
used as indicators of performance of the quantum device,
they may not translate directly to the fidelity of a simulated
fermionic system, particularly with multiqubit or environmen-
tal effects. Looking at these metrics in conjunction with the
physical properties of benchmark problems like the ground-
state energy or 2DM of two-electron atoms and molecules will
yield greater insights into the fidelity of a quantum device and
its needs for error mitigation or correction.

The method of symmetry verification for error mitigation
is useful in that its different forms are low cost and can easily
correct flagrant faults in the output, such as particle count (or
more generally, parity) and the projected spin symmetries.
Other forms of error mitigation related to the RDMs can
be implemented as constraints on the tomography from N
representability, or in a form of postcorrection of the two-
electron RDM, where the measured 2RDM is purified through
semidefinite programming, which can be applied to arbitrary
N-electron systems [40]. Additionally, the mapping we use
can have difficulties when errors begin to change the ordering
of occupations for larger and larger systems.

The electron pair itself plays a key role in such phenomena
as superconductivity and bonding and yet the exact energy
of a two-electron system itself cannot be solved exactly with
known methods. Such a problem shows the essence of the
electron-electron interaction as well as some of the com-
plexities of electron correlation and quantum mechanics. The
theory in this work can also be seen as a subset of more com-
plex geminal-based wave-function methods, which appear in
classical electronic structure theory where the electron pair
is treated as the fundamental unit to improve the accuracy
beyond the mean-field approximation [9–16,41–43]. The ex-
ploitation of the structure of the 2DM in the natural-orbital
basis set can be extended to more general pairing 2RDMs
for efficient implementations of pairing (geminal) theories or
natural-orbital functional theories on quantum computers.

Here we show that the properties of the two-electron
system lead to an ansatz which is well suited for use in a
hybrid quantum-classical approach, where degrees of free-
dom that would increase exponentially with N are treated
on the quantum computer, while nonexponentially increasing
degrees of freedom are treated on the classical computer. The
treatment of the orbital rotations on the classical computer
can be generalized to N-electron molecular systems in which
the orbital rotations can be used to implement active-space
methods where orbital rotations are used to optimize the
correlation in a modest subset of total orbitals known as
the active orbitals. Generally, such orbital-rotation algorithms
including active-space self-consistent-field algorithms [44,45]
could assist in achieving quantum supremacy by further
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lowering resource requirements on the quantum computer as
well as tomography and measurement costs. The two-electron
system also is useful in its own right as a benchmark for
molecular simulation on a quantum computer, where it serves
as a simple yet effective way to assess the performance of
an arbitrary quantum device. The present work is clearly
applicable for the current state of noisy quantum computers,
but will continue to be relevant as improving generations of
quantum computers are developed. The two-electron ansatz,
albeit polynomially scaling even on a classical computer, can
serve as a powerful benchmark for quantum computers due
to the availability of accurate results from classical computers
and the requirements shared by its solution and the solution of
exponentially scaling many-electron problems.

Data are available from the corresponding author upon
reasonable request.
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APPENDIX A: COMPUTATIONAL DETAILS

The electronic structure package PYSCF [46] was used to
obtain the one- and two-electron integrals and to perform re-
stricted Hartree-Fock and full configuration-interaction (FCI)
calculations. For the quantum computation we used the IBM
Quantum Experience devices Yorktown (Sparrow, 5 qubits)
and Melbourne (Albatross, 14 qubits), available online. The
former has triangular-type coupling between qubits and the
latter has square-type coupling between qubits. These cloud
accessible quantum devices are fixed-frequency transmon
qubits with coplaner waveguide resonators [47,48]. The quan-
tum information software development kit QISKIT was used to
interface with the device [49]. We include the calibration data
in Table II.

For the six-qubit case, 211 measurements were obtained
and we used a simple Nelder-Mead simplex method with the
Han initial simplex [50] for the six-qubit case on the quantum
computer. Classically orbital rotations were performed with
Givens rotations, with the Broyden-Fletcher-Goldfarb-Shanno
algorithm being utilized. Convergence criteria were more
strict for the four-qubit case, with convergence between the
2D and 2K steps being 1 mH. In the four- and six-qubit cases,
we chose the best of two runs as the optimal results. While this
did not make a difference for most points, in the cases that it
did, the difference in energies for the two runs was usually
significant, indicating that noise had led the optimization into
some local minima.

TABLE II. Calibration data for the ibm-5 and ibm-14 devices
during benchmarking. Here U2 and U3 represent the errors for single-
qubit unitaries containing one and two Xπ/2 pulses and two and
three frame changes, respectively; RO represents the readout error;
we have the standard T1 depolarization and T2 dephasing times; [ j]
specifies the target qubit with control qubit i and we report the error.

Qubit U2 U3 RO T1 T2 [ j] CX j
i

i (10−3) (10−3) (10−2) (μs) (μs) (10−2)

ibm-5
0 2.7 5.5 5 46 53 [1] 5.1 [2] 4.2
1 2.9 5.8 25 62 53 [2] 6.8
2 6.4 12.9 1 85 74
3 3.8 7.6 17 61 28 [2] 7.9 [4] 4.0
4 2.8 5.7 36 68 62 [2] 4.2

ibm-14
0 2.3 4.7 3 62 22
1 5.1 10.1 10 54 101 [0] 3.7 [2] 6.4
2 3.9 7.8 5 75 168 [3] 6.7
3 1.5 3.0 27 63 51
4 2.4 4.8 6 56 34 [3] 5.6 [10] 5.4
5 2.3 4.6 4 24 46 [4] 6.1 [6] 7.5 [9] 5.9
6 2.3 4.6 4 77 53 [8] 2.9
7 1.3 2.7 16 50 82 [8] 2.3
8 1.5 3.0 4 125 183
9 2.8 5.6 4 44 65 [8] 7.0 [10] 4.0
10 2.5 5.0 4 51 55
11 181 362 34 63 102 [3] 14 [10] 10 [12] 11
12 3.7 7.3 9 89 177 [2] 7.3
13 5.1 10.3 4 26 59 [1] 13 [12] 3.9

APPENDIX B: ERROR MITIGATION WITH N
REPRESENTABILITY OF ∧2Hn

The error correction is similar to previous work where
we look for a transformation A to map the experimental
polytope S′ to the correct polytope S [40]. The structure of
the N-representability conditions is such that the ordering
inequalities applied to each of the half sets ({ni} and {ni′ })
describe a hyperplane. The vertices V r can be described as
a set with elements vr

j (r spatial orbitals),

vr
j =

[
H ( j − 1)

j
,

H ( j − 2)

j
, . . . ,

H ( j − r)

j

]
, (B1)

where 1 � j � r and H (x) is the Heaviside step function. The
vertices for ∧2H4 are given as v2

1 = (1, 0) and v2
2 = ( 1

2 , 1
2 ).

The vertices for ∧2H6 are then v3
1 = (1, 0, 0), v3

2 = ( 1
2 , 1

2 , 0),
and v3

3 = ( 1
3 , 1

3 , 1
3 ). These form an (r − 1)-dimensional hy-

perplane in the r-dimensional subspace for the two half sets,
respectively. The practical effect of symmetry verification
here (mostly from the Sz application) is to project noisy points
onto the plane. The effect of the N-representability application
then is to map the measured points to the extreme points of
V n′

. This can be visualized in Fig. 3 by mapping the accessible
triangular plane to the black outlined plane.

For points close to the edges, one can imagine that with
significant noncoherent error the projected points might lie
outside of the space. We account for this by reprojecting
these points into the polytope according to the closest edge.
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|q0 Y † • • Y H • • H

|q1 H ⊕ • • ⊕ H H ⊕ • • ⊕ H

|q2 Y † ⊕ • • ⊕ Y H ⊕ • • ⊕ H

|q3 Y † ⊕ Rz(θ) ⊕ Y Y † ⊕ Rz(θ) ⊕ Y

FIG. 5. Exponential operator including two Pauli terms, here
representing the exponent of Y0X1Y2Y3 followed by X0X1X2Y3. For
optimal connectivity (i.e., no intermediate CNOT gates for intermedi-
ate orbitals), there are 12 CNOT operations, generally the most error
prone step.

A simple semidefinite program would also suffice, though we
take a more geometric approach. For mild errors we find that
this method is satisfactory.

APPENDIX C: SECOND-QUANTIZATION TREATMENT
OF ENTANGLING GATES AND PHASE

The exponential operator in (9) has a readily recognizable
form in second quantization. Utilizing creation and annihila-
tion operators in the natural-orbital basis, the operator

T̂ i
j = t ii′

j j′ â
†
i â†

i′ â j′ â j, (C1)

where t ii′
j j′ is a scalar, antisymmetric with respect to swapping

lower or upper indices, can be used to construct a two-body
unitary operator U :

U = exp(T̂ i
j − T̂ i†

j ). (C2)

Only one exponential Pauli term is needed to excite the initial
double excitation. After that, a simplification was performed
akin to that of Nam et al. [39]. For a system of two electrons,
because do not consider number or spin changing operations,
using the inverse Jordan-Wigner mapping, we can simplify the
total number of Pauli terms needed in the exponential to 2 (see
Figs. 5 and 6).

To measure the phase of the terms in Eq. (8), we are
interested in tomography of the 2DM elements. Using the
Jordan-Wigner transformation, we can approximate the total
operator as

〈Mi j〉 = 〈â†
i â†

i′ â j′ â j + â†
j â

†
j′ âi′ âi〉 (C3)

≈ 1
4 〈XiXjXi′Xj′ 〉 + 1

4 〈XiXjYi′Yj′ 〉 (C4)

≈ 1
4 〈XiXjXi′Xj′ 〉 + 1

4 〈YiYjXi′Xj′ 〉, (C5)

where we utilize the fact that any non-number conserving
elements will contribute 0. Due to the limited amount of sign

|q0 Y † • H ⊕ • H

|q1 H ⊕⊕ Rz(θ) H • Z • H Rz(θ) ⊕⊕ H

|q2 Y † ⊕ • ⊕ H • ⊕ Y

|q3 Y † • • H

FIG. 6. Exponential operator as shown in Fig. 5, but in a simpli-
fied form. Note that the target qubit for the rotation here is not q3 but
q1. Importantly, the circuit require only eight CNOT operations and
still has the same connectivity requirements. The gate H ′ is defined
as S†HS (applied left to right).

terms we need to measure and the fact that every other excita-
tion in the linear sequence will be completely commuting, we
can prepare one circuit with only Xi terms and another with
alternating X and Y pairs which give sign terms of either (C3)
or (C5), yielding only two circuit preparations and an O(1)
complexity. Note that obtaining all of the proper terms also
scales as O(1), taking no more than eight additional circuits.
This method, however, did not yield significant increases in
the accuracy in our computations, and so for our optimizations
we used the approximate circuit.

One issue with a direct measurement of the sign is that
while the diagonal elements we measure can be symmetry
verified, the N and Sz operators do not necessarily commute
with the Pauli terms (despite commuting with the operator as
a whole). In addition, [N̂, X1X2Y3Y4] 
= 0. To partially address
this, we attempted to use in-line symmetry measurements
[20], where we cast the Pauli measurement onto an ancilla
qubit, allowed by propagating through the circuit to the corre-
sponding entangling gate. This requires explicit connectivity
requirements and attention to the layout, as a change in Pauli
basis between the applied entangler and the required Pauli
term. One issue we found was that while the sign infor-
mation obtained in this manner was coherent and exhibited
the proper behavior and change in sign with respect to t22′

11′ ,
there was a phase difference on the ancilla which resulted
in the sign information being shifted from the magnitude of
the occupations. A direct measurement of the Pauli terms,
while not allowing for symmetry verification, still contained
the correct qualitative information and so was utilized for
the four-qubit case. For the six-qubit case, obtaining reliable
information throughout the longer optimization requirements
was more difficult, and so to ease the demands on the quantum
computer, we mapped the sign of the elements to the sign
of the ideal function generated by our entanglers (a simple
product of sine and cosine functions).
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