
PHYSICAL REVIEW RESEARCH 2, 023043 (2020)

Dynamic winding number for exploring band topology
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Topological invariants play a key role in the characterization of topological states. Because of the existence
of exceptional points, it is a great challenge to detect topological invariants in non-Hermitian systems. We put
forward a dynamic winding number, the winding of realistic observables in long-time average, for exploring
band topology in both Hermitian and non-Hermitian two-band models via a unified approach. We build a
concrete relation between dynamic winding numbers and conventional topological invariants. In one dimension,
the dynamic winding number directly gives the conventional winding number. In two dimensions, the Chern
number is related to the weighted sum of all the dynamic winding numbers of phase singularity points. This
work opens a new avenue to measure topological invariants via time-averaged spin textures without requesting
any prior knowledge of the system topology.
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I. INTRODUCTION

Topological invariant, a global quantity defined with static
Bloch functions, has been widely used for classifying and
characterizing topological states in various systems, includ-
ing insulators, superconductors, semimetals, and waveguides
[1–6]. Nontrivial topological invariants lead to novel topolog-
ical effects, such as winding number for quantized geometric
phase [7,8], and Chern number for both integer quantum
Hall effect [9,10] and the Thouless pumping [11–13]. Mea-
suring topological invariants provides unambiguous evidence
for topological states, which apply to precision measurement
[14,15], error-resistant spintronics [16,17], and quantum com-
puting [18,19].

Most of the existing methods for measuring topologi-
cal invariants are mainly based on adiabatic band sweeping
[20–24]. However, these methods may fail for imperfect initial
states and small energy gaps and become invalid for non-
Hermitian systems. Recently, it has been demonstrated that
topological invariants can be measured via linking numbers
and band-inversion surfaces in quench dynamics [25–30].
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However, these quench schemes request prior knowledge of
topology before and after quench.

In non-Hermitian systems, due to the emergence of com-
plex spectrum and exceptional points (EPs) [31–33], novel
topological states have been theoretically predicted [34–50]
and experimentally observed [51–54]. Conventional topolog-
ical invariants such as winding number and Chern number
have been generalized to those in non-Hermitian systems
[8,37,55–57], and new topological invariants such as vorticity
have also been introduced [58]. Because of the EPs, the wind-
ing number may be half of integer in non-Hermitian systems
[8,37,59,60]. Besides, non-Bloch definition of Chern number
strictly gives the numbers of chiral edge modes [61–64]. The
way to measure these topological invariants in non-Hermitian
systems is more challenging than that in Hermitian systems.
For example, the Hall conductivity is no longer quantized
despite being classified as a Chern insulator based on non-
Hermitian topological band theory [44,65]. In one dimension,
the winding number in a non-Hermitian system has been
determined via the mean displacement in long-time quantum
walk [66,67], which does not work for measuring Chern
numbers and half-integer winding numbers. Is there a unified
dynamic approach for measuring topological invariants in
both Hermitian and non-Hermitian systems?

In this work, we study a generic two-band model which
supports nontrivial topological invariants in both Hermitian
and non-Hermitian regions. We define a dynamic winding
number (DWN) based on the time-averaged spin textures,
which is robust against various initial states. In one di-
mension, we prove that the DWNs directly give the con-
ventional winding numbers in both chiral-symmetric and
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non-chiral-symmetric systems. In two dimensions, the Chern
number is related to the weighted sum of the DWNs around
all singularity points (SPs), where the weight is +1 for the
north pole and −1 for the south pole. When the system is
changed from Hermiticity to non-Hermiticity, each singularity
point will be split into two EPs (which are also SPs); yet, the
Chern number can still be extracted via the DWNs of all EPs.
Without requesting any prior knowledge of their topology, our
approach provides general guidance for measuring topologi-
cal invariants in both Hermitian and non-Hermitian systems.

The paper is organized as follows. In Sec. II, we intro-
duce our physical model and give the definition of DWN.
In Sec. III, we consider one-dimensional systems and give
the relationship between conventional winding number and
DWN. In Sec. IV, we consider two-dimensional systems and
give the relationship between Chern number and DWN. In
Sec. V, we give a brief conclusion and discussion.

II. DYNAMIC WINDING NUMBER

We consider a general two-band model in d dimension. The
Hamiltonian in the momentum space is composed of the three
Pauli matrices,

H (k) = hx(k)σx + hy(k)σy + hz(k)σz. (1)

Here, k is the quasimomentum, and hx(y,z)(k) are peri-
odic functions of k. The Hamiltonian could be Hermitian
H†(k) = H (k) or non-Hermitian H†(k) �= H (k). Then, the
right and left eigenvectors are given by H (k)|ϕμ(k)〉 =
εμ(k)|ϕμ(k)〉 and H†(k)|χμ(k)〉 = ε∗

μ(k)|χμ(k)〉, respec-

tively, where εμ(k) = μ
√

[hx(k)]2 + [hy(k)]2 + [hz(k)]2 with
μ = ± are the eigenvalues. For Hermitian systems, the right
and left eigenvectors become the same and hence their cor-
responding energies, that is, |ϕμ(k)〉 = |χμ(k)〉 and εμ(k) =
ε∗
μ(k). For non-Hermitian systems, neither the eigenvec-

tors {|ϕμ(k)〉} nor {〈χμ(k)|} are orthogonal. To account
for the nonunitary dynamics of the non-Hermitian systems,
we invoke the notion of biorthogonal quantum mechanics
[68], and adopt the biorthogonal eigenvectors which fulfill
〈χν (k)|ϕμ(k)〉 = δν,μ and

∑
μ |ϕμ(k)〉〈χμ(k)| = 1 by normal-

izing |ϕμ(k)〉 = |ϕμ(k)〉/Nμ(k) and 〈χμ(k)| = 〈χμ(k)|/Nμ(k)
with Nμ(k) = √〈χμ(k)|ϕμ(k)〉.

Considering an arbitrary initial state |ψ (k, 0)〉 =∑
μ cμ(k)|ϕμ(k)〉 and its associated state 〈ψ̃ (k, 0)| =∑
μ c∗

μ(k)〈χμ(k)|, the time evolution of |ψ (k, t )〉 and
〈ψ̃ (k, t )| respectively satisfy

|ψ (k, t )〉 =
∑

μ

cμ(k)e−iεμ(k)t |ϕμ(k)〉,

〈ψ̃ (k, t )| =
∑

μ

c∗
μ(k)eiε∗

μ(k)t 〈χμ(k)|, (2)

where cμ(k) = 〈χμ(k)|ψ (k, 0)〉. According to the
biorthogonal quantum mechanics, the spin textures are
given by the expectation values of the Pauli matrices,
〈ψ̃ (k, t )|σ j |ψ (k, t )〉, where j ∈ x, y, z. Here, we are

interested in their long-time averages, 〈ψ̃ (k, t )|σ j |ψ (k, t )〉 =
limT →∞ 1

T

∫ T
0

〈ψ̃ (k,t )|σ j |ψ (k,t )〉
〈ψ̃ (k,t )|ψ (k,t )〉 dt . As the quasimomentum

continuously varies, the spin textures of Pauli matrices σi and

σ j will form a trajectory in the polarization plane. The DWN

of the spin vectors (〈ψ̃ (k, t )|σi|ψ (k, t )〉, 〈ψ̃ (k, t )|σ j |ψ (k, t )〉)
is defined as

wd = 1

2π

∮
S
∂kη ji(k) · dk, (3)

where S is a closed loop in the parameter space k, and η ji(k)
is the dynamical azimuthal angle,

η ji(k) = arctan

(
〈ψ̃ (k, t )|σ j |ψ (k, t )〉
〈ψ̃ (k, t )|σi|ψ (k, t )〉

)
. (4)

On the other hand, we also define the equilibrium azimuthal
angle φ ji(k) in the parameter plane (hi(k), h j (k)),

φ ji(k) = arctan[h j (k)/hi(k)]. (5)

In the conditions |c+(k)|2 �= |c−(k)|2 for Hermitian systems
and |c+(k)|2 �= 0 ∧ |c−(k)|2 �= 0 for non-Hermitian systems,
one can easily prove that η ji(k) converges to φ ji(k); see
Appendix A. Therefore, in the conditions mentioned above,
the DWN can be rewritten as

wd = 1

2π

∮
S
∂kφ ji(k) · dk. (6)

For Hermitian systems, |ψ̃ (k, t )〉 = |ψ (k, t )〉, and the dy-
namical azimuthal angle η ji(k) is a real angle, so that the
DWN can be directly probed via the long-time average of
spin textures 〈ψ (k, t )|σ j |ψ (k, t )〉 in experiment. For non-
Hermitian systems, |ψ̃ (k, t )〉 �= |ψ (k, t )〉 and η ji(k) is a com-
plex angle which cannot be directly observed in experiment.
Interestingly, this problem can be fixed by decomposing the
azimuthal angle into real and imaginary parts. We find that
only the real part of η ji(k) contributes to the DWN and it
satisfies

Re[η ji(k)] = 1

2

[
φRR

ji (k) + φLL
ji (k)

] + n
π

2
,

φRR
ji (k) = arctan

(
〈ψ (k, t )|σ j |ψ (k, t )〉
〈ψ (k, t )|σi|ψ (k, t )〉

)
,

φLL
ji (k) = arctan

(
〈ψ̃ (k, t )|σ j |ψ̃ (k, t )〉
〈ψ̃ (k, t )|σi|ψ̃ (k, t )〉

)
. (7)

Here, Re[η ji(k)] represents the real part of η ji(k), φRR
ji (k) and

φLL
ji (k) are both real, and n is an integer; see Appendix B.

The superscript RR (LL) indicates that the azimuthal angle
is calculated in the basis of the right (left) biorthogonal
eigenvectors. Thus, we can decompose the DWN as

wd = 1

2

(
wRR

d + wLL
d

)
,

wτ
d = 1

2π

∮
S
∂kφ

τ
jl (k) · dk, τ ∈ RR, LL. (8)

The above results mean that the DWN can also be observed in
non-Hermitian systems via the time evolution of the left-left
and right-right spin textures whose dynamics are respectively
governed by H (k) and H†(k). In the following sections, we
show how to utilize the DWN to uncover the topology in both
Hermitian and non-Hermitian systems. For simplicity, we will
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use σ j and σ̃ j to denote the long-time average of spin textures

〈ψ (k, t )|σ j |ψ (k, t )〉 and 〈ψ̃ (k, t )|σ j |ψ̃ (k, t )〉, respectively.

III. CONNECTION BETWEEN CONVENTIONAL
WINDING NUMBER AND DYNAMIC WINDING NUMBER

In one dimension, if hz = 0, the Hamiltonian (1) has chiral
symmetry �H� = −H with � = iσxσy and k → k.

The conventional winding number w± for the Hamiltonian
(1) reads

w± = 1

2π

∮
S

dk
hx∂khy − hy∂khx

(ε±)2

= 1

2π

∮
S
∂kφyxdk, (9)

which is known as the Zak phase. According to Eqs. (6)
and (9), if the initial states satisfy |c+(k)|2 �= |c−(k)|2 for
Hermitian systems and |c+(k)|2 �= 0 ∧ |c−(k)|2 �= 0 for non-
Hermitian systems, one can find that w± = wd .

If hz �= 0, the Hamiltonian (1) breaks the chiral symmetry.
The winding numbers w± are given by

w± = 1

2π

∮
S

dk
hx∂khy − hy∂khx

ε±(ε± − hz )
. (10)

Unlike the systems with chiral symmetry, the conventional
winding number for each band is not a quantized number,
which indicates that w± are no longer topological invariants.
However, the sum of two conventional winding numbers,

wt = w+ + w− = 1

π

∮
S

dk
hx∂khy − hy∂khx

h2
x + h2

y

= 1

π

∮
S
∂kφyxdk, (11)

has been demonstrated to be a topological invariant, which
takes an integer [35,59]. Similarly, if the initial states satisfy
|c+(k)|2 �= |c−(k)|2 for Hermitian systems and |c+(k)|2 �=
0 ∧ |c−(k)|2 �= 0 for non-Hermitian systems, The topological
invariant wt is related to the dynamic winding number via
wt = 2wd .

As an example, we consider a system with hx = J0 +
J1 cos(k), hy = J1 sin(k) − iδ, and hz = 0. In the Hermitian
case, the parameters are chosen as δ = 0 and J1 = 1. The
conventional winding number w± = 1 for |J0| < J1, and
w± = 0 for |J0| > J1. We first calculate the time evolution of
spin textures 〈ψ (k, t )|σx(y)|ψ (k, t )〉 and their long-time aver-
ages with J0 = 0.5J1; see Figs. 1(a)–1(c). The spin textures
〈ψ (k, t )|σx(y)|ψ (k, t )〉 oscillate with a momentum-dependent
period t̃k = π/|εμ(k)|, and their long-time averages σx(y) de-
pend on quasimomentum k; see the black and red lines in
Fig. 1(c). With σx and σy, we calculate ηyx(k) as a function of k
in Fig. 1(d), where two discontinuous points k1 and k2 appear.
The DWN can be obtained via the integral of a piecewise
function,

wd = 1

2π

(∫ k1

−π

∂kηyxdk +
∫ k2

k1

∂kηyxdk +
∫ π

k2

∂kηyxdk

)
.

We find that the DWN is equal to 1, the same as the conven-
tional winding number w±.

FIG. 1. Extracting conventional winding number via dy-
namic winding number. Hermitian case (δ = 0): Panels (a) and
(b) respectively show the time evolution of the spin textures
〈ψ (k, t )|σx|ψ (k, t )〉 and 〈ψ (k, t )|σy|ψ (k, t )〉. (c) Long-time average
of spin textures σx (black line) and σy (red line) as a function of k, and
(d) the dynamical azimuthal angle ηyx (k) as a function of k, where
k1 and k2 are discontinuity points. Non-Hermitian case (δ = 0.3):
φRR

yx (k) and φLL
yx (k) as a function of k for (e) the chiral-symmetric

system with hz = 0 and (f) the non-chiral-symmetric system with
hz = 0.5. The other parameters are chosen as J1 = 1 and T = 80.

When δ �= 0, the system becomes non-Hermitian and one
always needs to measure both φRR

ji (k) and φLL
ji (k) to extract

the DWN. For a chiral-symmetric system, the two dynamical
azimuthal angles satisfy a universal relation φRR

ji (k) = φLL
ji (k),

which can be easily proven. For the chosen parameters (J0 =
J1 = 1, δ = 0.3, hz = 0, and w± = 1/2), we have wRR

d =
wLL

d = 1
2 ; see Fig. 1(e). It means that we only need to measure

φRR
ji (k) or φLL

ji (k) in experiments. For a non-chiral-symmetric
system (whose parameters are chosen as J0 = J1 = 1, δ =
0.3, hz = 0.5, and wt = 1), we find φRR

ji (k) �= φLL
ji (k), wRR

d =
1, and wLL

d = 0; see Fig. 1(f). Nevertheless, the conventional
winding number can be obtained by measuring wd = (wRR

d +
wLL

d )/2 in both chiral and nonchiral symmetric systems.
In Appendix C, we provide more examples about the

measurement of conventional winding number in the presence
or absence of chiral symmetry. For non-Hermitian systems
with chiral symmetry, the winding number for non-Hermitian
chiral systems may take value of a half-integer. This is because
the winding number is equal to half of the summation of two
winding numbers (v1 and v2) associated with two EPs, where
v1 and v2 can only take integers [8].

IV. CONNECTION BETWEEN CHERN NUMBER AND
DYNAMIC WINDING NUMBER

By generalizing the concept of gapped band structures
from Hermitian to non-Hermitian systems, the Chern num-
ber for an energy-separable band can be constructed in
a similar way [57]. In contrast to Hermitian systems,
there are left-right, right-right, left-left, and right-left Chern
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numbers in non-Hermitian systems, depending on the def-
initions of Berry connection, ALR

k = i〈χμ|∂k|ϕμ〉, ARR
k =

i〈ϕμ|∂k|ϕμ〉, ALL
k = i〈χμ|∂k|χμ〉, and ARL

k = i〈ϕμ|∂k|χμ〉. Al-
though the corresponding Berry curvatures are locally differ-
ent quantities, the four kinds of Chern numbers are the same
[57]. Here, we only focus on analyzing the Chern number
defined with left-right Berry connection ALR

k = i〈χμ|∂k|ϕμ〉,
which naturally reduces to i〈χμ|∂k|χμ〉 in Hermitian systems.

We map the Hamiltonian to a normalized vector, 
n(k) =
[sin(θi ) cos(φ jl ), sin(θi ) sin(φ jl ), cos(θi )], which reduces to a
Bloch vector in Hermitian systems. Here, θi(k) denotes the
angle between the vector and the axis i, and φ jl (k) denotes
the equilibrium azimuthal angle in the j − l plane. We can
freely choose the reference axis without affecting the validity
of the dynamic approach. Then, the left and right eigenvectors
for the lower energy band are given by

〈χ−(k)| = (−eiφ jl /2 cos
(

θi
2

)
, e−iφ jl /2 sin

(
θi
2

))
,

|ϕ−(k)〉 =
(−e−iφ jl /2 cos( θi

2 )
eiφ jl /2 sin( θi

2 )

)
. (12)

The right and left eigenstates have phase singularities at

n(k0) = (0, 0,±1), in which + and − respectively correspond
to north and south poles. In the parameter space k → (kx, ky),
the locations k0 of the poles satisfy h j (k0)2 + hl (k0)2 = 0.
The left-right Berry connections ALR

kx(y)
of the lower energy

band are given by

ALR
kx(y)

= i〈χ−|∂kx(y) |ϕ−〉 = cos(θi )

2

∂φ jl

∂kx(y)

.

We discretize the parameter space (kx, ky) as N × M mesh
grids in the first Briliouin zone [69,70]. For each grid, a direct
application of the two-dimensional Stokes theorem implies
that the Chern number reads

C = 1

2π

N∑
lx=1

M∑
ly=1

∮
Slx ,ly

(
ALR

kx
dkx + ALR

ky
dky

)
, (13)

where Slx,ly represents the clockwise path integration for
the (lx, ly) grid. Then, we find that the Chern number is
determined by the winding numbers for all SPs, where
cos[θi(k0)] = hi(k0)/|
h(k0)| = sgn(Re[hi(k0)]) = 1 for the
north SPs and cos[θi(k0)] = −1 for the south SPs,
Re[hi(k0)] represents the real part of hi(k0), and 
h(k0) =
[hx(k0), hy(k0), hz(k0)]. At last, we can deduce the Chern
number as

C = 1

2

∑
k0∈SPs

sgn(Re[hi(k0)])w(k0), (14)

where w(k0) = 1
2π

∮
Slx ,ly

∂kφ jl dk is the winding number for

the SP at k0.
Accordingly, if the initial states satisfy |c+(k)|2 �= |c−(k)|2

for Hermitian systems and |c+(k)|2 �= 0 ∧ |c−(k)|2 �= 0 for
non-Hermitian systems, one can also find that the DWN
wd (k0) = w(k0). In the Hermitian case, wd is related to the
dynamical azimuthal angle η jl (k), which can be extracted
via the right-right spin textures 〈ψ (k, t )|σ j(l )|ψ (k, t )〉 due
to |ψ (k, t )〉 = |ψ̃ (k, t )〉. In the non-Hermitian case, wd is
related to the two real dynamical azimuthal angles φRR

jl (k)

FIG. 2. Topologically nontrivial phase with Chern number C =
1. Panels (a) and (b) respectively show dynamical azimuthal angle
ηxz(k) obtained in the evolved time T = 10 and T = 80, and panel
(c) displays equilibrium azimuthal angle φxz(k). Panels (d) and (e)
show how ηxz(k) (black dots) and φxz(k) (red line) change along the
trajectory around the north and south poles in panels (b) and (c),
respectively. The other parameters are chosen as Jx(y,z) = 1, mz = 1,
and δ = 0.

and φLL
jl (k), which can be respectively extracted via right-

right spin textures 〈ψ (k, t )|σ j(l )|ψ (k, t )〉 and the left-left spin
textures 〈ψ̃ (k, t )|σ j(l )|ψ̃ (k, t )〉.

As an example, we consider hx = Jx sin(kx ), hy =
Jy sin(ky), and hz = mz − Jz cos(kx ) − Jz cos(ky) − iδ. Here,
Jx(y,z) denote spin-orbit coupling parameters, mz is the effec-
tive magnetization, and δ is the gain or loss strength. When
δ = 0, the system supports quantum anomalous Hall effect
[71], which has been realized in recent experiments [27,72]. In
the Hermitian case (Jx(y,z) = 1, mz = 1, δ = 0), the north and
south poles in the parameter space (kx, ky) can be determined
as follows. Since the poles are related to the chosen axis,
we select θy(k) = arccos(hy/|
h|) and φxz(k) = arctan(hx/hz ).
However, the validity of our dynamic approach is independent
of the choice of reference axis; see Appendix D. In the
parameter space (kx, ky), by solving h2

x + h2
z = 0, we find

that the north and south poles are located at k0 = (kx, ky) =
(0,±π/2). Then, we need to extract the DWNs around the
two poles. We calculate the time evolution of spin textures
〈ψ (k, t )|σx|ψ (k, t )〉 and 〈ψ (k, t )|σz|ψ (k, t )〉, and the dynam-
ical azimuthal angle ηxz(k) can be extracted via long-time
average values σx(z); see Figs. 2(a) and 2(b). We also calculate
the equilibrium azimuthal angle φxz(k) via the eigenstates;
see Fig. 2(c). Even in the relatively short time [Fig. 2(a)], the
profiles of dynamical azimuthal angle are close to those of the
equilibrium azimuthal angle. The difference between ηxz(k)
and φxz(k) gradually disappears with the increase of total time
T . Thus, we can obtain the DWNs for the north and south
poles via integrating the gradient of ηxz(k) in Figs. 2(d) and
2(e), respectively. The DWNs for the north and south poles
are respectively given by wd = ±1. Applying Eq. (14), one
can obtain the Chern number as 1, which is consistent with
the one calculated via integrating the static Berry curvature
over the whole Brillouin zone.
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FIG. 3. (a) Topological phase diagram. [(b)–(d)] The bulk bands
(red and blue regions) and edge modes (black line) in the com-
plex energy plane, corresponding to the parameter points b–d in
panel (a). (e) North EPs (blue dots) and south EPs (red dots)
with Jx(y,z) = 1, mz = 1, and δ = 0.5. [(f)–(h)] Dynamical azimuthal
angles Re[ηxz(k)], φRR

xz (k), and φLL
xz (k), which are defined with left-

right, right-right, and left-left spin textures at T = 80.

For more general cases, we first show the topological phase
diagram in the parameter plane (mz, δ) by setting Jx(y,z) = 1;
see Fig. 3(a). When the energy bands are separable (i.e., the
real parts of energy bands are gapped), the Chern number
can be constructed via a method similar to that used in
Hermitian systems [57]. In this case, the Chern numbers
of the first band are C = 0 and 1 in the green and gray
regions, respectively. However, the Chern number is not well
defined in the white region, because the energy bands are
not separable. The boundaries satisfy (mz − 1)2 + δ2 < 1 for
the gray region and mz > 2 for the green region. Varying δ

along the dashed red arrow, we explore the correspondence
between the Chern number and the edge modes under open
boundary condition in Figs. 3(b)–3(d), corresponding to the
parameter points b–d. For the topologically nontrivial phase,
one can see that the complex bulk bands are still gapped and
the edge-state modes are still preserved in the real energy axis;
see Fig. 3(b). Now we consider δ = 0.5 and keep the other
parameters the same as those in Fig. 2(b). We find that the
two poles in Hermitian case are split into four EPs if the non-
Hermiticity is present; see Fig. 3(e). The blue and red points
represent north and south EPs, respectively. In Fig. 3(f), we
give Re[ηxz(k)] in the parameter space (kx, ky), and the DWNs
can be obtained by integrating the gradient of the dynamical
azimuthal angle along the trajectory enclosing the north and
south EPs. Here, DWNs for the north and south EPs are wd =
1/2 and −1/2, respectively. Although the SPs are doubled,
as each DWN is reduced by half, the Chern number remains
unchanged. For completeness, we also show the dynamical
azimuthal angles defined with the right-right and left-left spin
textures; see Figs. 3(g) and 3(h). The dynamical azimuthal
angles are quite different from each other, corresponding to
φRR

xz (k) and φLL
xz (k), respectively. Nevertheless, the north and

south EPs are the same as those in Fig. 3(e). Around an
EP, one can extract the right-right and left-left DWNs wRR

d

and wLL
d , which satisfy wd = 1

2 (wRR
d + wLL

d ). One important
thing is that φRR

xz (k) and φLL
xz (k) defined with the real left-left

and right-right spin textures are accessible in experimental
measurements.

In addition, our approach can also apply to extract larger
Chern number without extra efforts, but it is very hard to
access by adiabatic band sweeping; see Appendix D.

V. CONCLUSION AND DISCUSSION

We put forward a new concept of dynamic winding number
(DWN) and uncover its connections to conventional topolog-
ical invariants in both Hermitian and non-Hermitian models.
Given a time-averaged spin texture in the parameter space, a
DWN is given by a loop integral of the dynamical azimuthal
angle gradient enclosing a single singularity point. We find
that (i) the conventional winding numbers in one-dimensional
systems can be directly given by the corresponding DWNs and
(ii) the Chern numbers in two-dimensional systems is related
to the weighted sum of all corresponding DWNs. Our scheme
has two main advantages. First, in contrast to the quench
schemes via measuring linking numbers [25,29] and band-
inversion surfaces [27,28], which request prior knowledge of
topology before and after a quench, our scheme does not
request any prior knowledge. Second, our scheme can be used
to measure half-integer winding numbers in one-dimensional
non-Hermitian systems, which cannot be measured via previ-
ous methods.

Our scheme is readily realized in various systems, rang-
ing from cold atoms in optical lattices, optical waveguide
arrays, to optomechanical devices. In Appendix E, we provide
more details about the experimental realization of our scheme
via cold atoms and optical waveguide arrays. In the future,
it would be interesting to extend our scheme to measure
topological invariants in high-dimensional systems, multiband
systems, periodically driven systems, and disordered systems.
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APPENDIX A: CONVERGENCE OF DYNAMIC WINDING
NUMBER

According to Eq. (2) in the main text, it seems that the
definition of DWN depends on the initial state, and it is un-
clear whether such number converges in the long time. Here,
we prove that the initial state can be rather general and the
DWN is convergent. The time average of 〈ψ̃ (k, t )|σ j |ψ (k, t )〉
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is given by

〈ψ̃ (k, t )|σ j |ψ (k, t )〉

= lim
T →∞

1

T

∫ T

0

〈ψ̃ (k, t )|σ j |ψ (k, t )〉
〈ψ̃ (k, t )|ψ (k, t )〉 dt

= lim
T →∞

1

T

∫ T

0

∑
μ,μ′ cμc∗

μ′e
−i(εμ−ε∗

μ′ )t 〈χμ′ |σ j |ϕμ〉∑
μ |cμ|2e−i(εμ−ε∗

μ )t dt .

(A1)

We assume that the eigenenergy εμ(k) = μ(A + iB), μ = ±,
where A and B are k-dependent real numbers. Then Eq. (A1)
can be written as

〈ψ̃ (k, t )|σ j |ψ (k, t )〉

= lim
T →∞

1

T

∫ T

0

c−c∗
−e−2Bt 〈χ−|σ j |ϕ−〉∑
μ |cμ|2e−i(εμ−ε∗

μ )t dt

+ lim
T →∞

1

T

∫ T

0

c+c∗
+e2Bt 〈χ+|σ j |ϕ+〉∑
μ |cμ|2e−i(εμ−ε∗

μ )t dt

+ lim
T →∞

1

T

∫ T

0

c+c∗
−e−i2At 〈χ−|σ j |ϕ+〉∑
μ |cμ|2e−i(εμ−ε∗

μ )t dt

+ lim
T →∞

1

T

∫ T

0

c−c∗
+ei2At 〈χ+|σ j |ϕ−〉∑
μ |cμ|2e−i(εμ−ε∗

μ )t dt . (A2)

Here, we note that the integrals of the third and fourth terms
in Eq. (A2) are periodically oscillating functions of time t .
Hence, these terms vanish in the long-time average, leaving
only the diagonal terms as

〈ψ̃ (k, t )|σ j |ψ (k, t )〉 ∼= lim
T →∞

1

T

∫ T

0

[ |c−|2e−2Bt 〈χ−|σ j |ϕ−〉
|c−|2e−2Bt + |c+|2e2Bt

+ |c+|2e2Bt 〈χ+|σ j |ϕ+〉
|c−|2e−2Bt + |c+|2e2Bt

]
dt . (A3)

For Hermitian systems, the energies are purely real, i.e.,
εμ = ε∗

μ and B = 0. The above equation can be simplified as

〈ψ̃ (k, t )|σ j |ψ (k, t )〉 ∼=
∑

μ

|cμ|2〈χμ|σ j |ϕμ〉

= (|c+|2 − |c−|2)
h j

ε+
. (A4)

Here, |c+|2 �= |c−|2; otherwise 〈ψ̃ (k, t )|σ j |ψ (k, t )〉 = 0 and
its relation to the static Hamiltonian is lost.

For non-Hermitian systems, when B > 0, Eq. (A3) is ap-
proximately given by

〈ψ̃ (k, t )|σ j |ψ (k, t )〉 ∼= |c+|2
|c+|2 〈χ+|σ j |ϕ+〉 = h j

ε+
. (A5)

Here, |c+|2 �= 0, because the state will completely decay if
the initial state is prepared as |ϕ−〉. Similarly, when B < 0,
Eq. (A3) is approximately given by

〈ψ̃ (k, t )|σ j |ψ (k, t )〉 ∼= |c−|2
|c−|2 〈χ−|σ j |ϕ−〉 = h j

ε−
, (A6)

with |c−|2 �= 0. Combining Eqs. (A4), (A5), and (A6), we
have

〈ψ̃ (k, t )|σ j |ψ (k, t )〉
〈ψ̃ (k, t )|σi|ψ (k, t )〉

= hj

hi
, (A7)

On the other hand, the denominator in the left-hand side
of Eq. (A7) should be nonzero; that is, the initial states
should satisfy |c+(k)|2 �= |c−(k)|2 for Hermitian systems and
|c+(k)|2 �= 0 ∧ |c−(k)|2 �= 0 for non-Hermitian systems. Ac-
cording to Eq. (A7), one can obtain

η ji(k) = arctan

( 〈χμ|σ j |ϕμ〉
〈χμ|σi|ϕμ〉

)
= φ ji(k),

η ji(k) = arctan

(
〈ψ̃ (k, t )|σ j |ψ (k, t )〉
〈ψ̃ (k, t )|σi|ψ (k, t )〉

)
,

φ ji(k) = arctan(h j/hi ), (A8)

where η ji(k) and φ ji(k) correspond to the dynamical az-
imuthal angle and equilibrium azimuthal angle, respectively.
It means that the DWN also converges in the long-time limit
when the initial state satisfies a few constraints.

APPENDIX B: RELATION BETWEEN DYNAMIC WINDING
NUMBER AND TIME-AVERAGED SPIN TEXTURES

For the non-Hermitian case, the azimuthal angles η ji(k)
and φ ji(k) are generally complex angles, so that they do not
represent physical observables in the biorthogonal system.

This problem can be fixed by decomposing the azimuthal
angle into two parts, φ ji(k) = Re[φ ji(k)] + Im[φ ji(k)], where
Re[φ ji(k)] and Im[φ ji(k)] represent the real part and the
imaginary part of φ ji(k). The azimuthal angle satisfies

ei2φ ji = ei2Re(φ ji )e−2Im(φ ji ) = 1 + i tan(φ ji )

1 − i tan(φ ji )
= hi + ih j

hi − ih j
,

e−2Im(φ ji ) =
∣∣∣∣hi + ih j

hi − ih j

∣∣∣∣. (B1)

Re[φ ji(k)] and Im[φ ji(k)] contribute to the argument and
amplitude of ei2φ ji (k), respectively. Im[φ ji(k)] is a real, con-
tinuous, and periodic function of k, so that

∮
S ∂kIm(φ ji)dk =∮

S ∂kIm(η ji )dk = 0. It means that only the real part of the
azimuthal angle contributes to the DWN,

wd = 1

2π

∮
S
∂kRe(η ji )dk = 1

2π

∮
S
∂kRe(φ ji )dk. (B2)

Next, we will show that the real part of azimuthal angle is a
physical observable. According to Eq. (B1), the real part of
azimuthal angle satisfies

tan[2Re(φ ji )] =
Im

( £hi+i£h j

£hi−i£h j

)
Re

( £hi+i£h j

£hi−i£h j

) , (B3)

where £ is a nonzero arbitrary constant. After some algebras,
one can rewrite the above relation as

tan[2Re(φ ji )] = tan
(
φRR

ji

) + tan
(
φLL

ji

)
1 − tan

(
φRR

ji

)
tan

(
φLL

ji

)
= tan

(
φRR

ji + φLL
ji

)
, (B4)
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where

tan
(
φRR

ji

) = Re(£h j ) + Im(£hi )

Re(£hi ) − Im(£h j )
,

tan
(
φLL

ji

) = Re(£h j ) − Im(£hi )

Re(£hi ) + Im(£h j )
, (B5)

which define two real angles φRR
ji (k) and φLL

ji (k), respec-
tively. It is worth noting that the two real angles φRR

ji (k)
and φLL

ji (k) will be changed by different parameters £, but
Re[φ ji(k)] remains the same. The relation between Re[φ ji(k)]
and φRR

ji (k), φLL
ji (k) is given by

Re(φ ji ) = Re(η ji) = 1

2

(
φRR

ji + φLL
ji

) + n
π

2
, (B6)

where n is an integer. It indicates the DWN wd = 1
2 (wRR

d +
wLL

d ). Here, wτ
d = 1

2π

∮
S ∂kφ

τ
jl · dk, τ ∈ RR, LL.

Interestingly, the two real angles φRR
ji (k) and φLL

ji (k) can
be respectively replaced by time-averaged spin textures corre-
sponding to |ψ (k, t )〉 and |ψ̃ (k, t )〉,

φRR
ji (k) = arctan

(
〈ψ (k, t )|σ j |ψ (k, t )〉
〈ψ (k, t )|σi|ψ (k, t )〉

)
,

φLL
ji (k) = arctan

(
〈ψ̃ (k, t )|σ j |ψ̃ (k, t )〉
〈ψ̃ (k, t )|σi|ψ̃ (k, t )〉

)
, (B7)

where 〈•〉 = limT →∞ 1
T

∫ T
0 〈•〉dt . Equation (B7) indicates that

the two real angles φRR
ji (k) and φLL

ji (k) are physical observ-
ables. For simplicity, we prove the relation with two real
angles, φRR

yx (k) and φLL
yx (k) in the case of B > 0. The right-

right spin textures defined with |ψ (k, t )〉 satisfy

〈ψ (k, t )|σy|ψ (k, t )〉
〈ψ (k, t )|σx|ψ (k, t )〉 = 〈ϕ+|σy|ϕ+〉

〈ϕ+|σx|ϕ+〉 , (B8)

and the left-left spin textures defined with |ψ̃ (k, t )〉 satisfy

〈ψ̃ (k, t )|σy|ψ̃ (k, t )〉
〈ψ̃ (k, t )|σx|ψ̃ (k, t )〉

= 〈χ+|σy|χ+〉
〈χ+|σx|χ+〉 . (B9)

According to the Hamiltonian (1) in the main text, the right
and left biorthogonal eigenvectors are given by

|ϕμ(k)〉 = 1√
2εμ(εμ − hz )

(hx − ihy, εμ − hz )T̂ ,

〈χμ(k)| = 1√
2εμ(εμ − hz )

(hx + ihy, εμ − hz ), (B10)

where the superscript T̂ is the transposition operation. Com-
bining Eqs. (B8), (B9), and (B10), we can immediately obtain

〈ϕ+|σy|ϕ+〉
〈ϕ+|σx|ϕ+〉 = Re(hy£1) + Im(hx£1)

Re(hx£1) − Im(hy£1)
,

〈χ+|σy|χ+〉
〈χ+|σx|χ+〉 = Re(hy£1) − Im(hx£1)

Re(hx£1) + Im(hy£1)
, (B11)

where £1 = h∗
z + ε∗

+. Similarly, one can obtain £1 = h∗
z − ε∗

+
for the case of B < 0. Combining Eqs. (B5) and (B11), one
can easily obtain the relation in Eq. (B7).

APPENDIX C: MEASUREMENT OF CONVENTIONAL
WINDING NUMBER IN THE PRESENCE OR ABSENCE OF

CHIRAL SYMMETRY

The winding number has been widely used for characteriz-
ing the topology of Hermitian systems with chiral symmetry.
In one dimension, the winding number can apply to both
Hermitian and non-Hermitian systems with or without chiral
symmetry. Here, we consider a 1D two-band topological
system governed by the Hamiltonian,

H (k) = hxσx + hyσy + hzσz. (C1)

The conventional winding number for each band is defined as
[8,59]

wμ = 1

π

∮
S

dk〈χμ|i∂k|ϕμ〉

= 1

2π

∮
S

dk
hx∂khy − hy∂khx

εμ(εμ − hz )
, (C2)

where S is a closed loop with k varying from 0 to 2π , μ =
±. Next, we will build a relation between the conventional
winding number and the DWN in different situations.

When hz = 0, the Hamiltonian (C1) has chiral symmetry
�H (k)� = −H (k) with � = iσxσy. The conventional winding
numbers for different bands are the same, which we denote as

w± = 1

2π

∮
S

dk
hx∂khy − hy∂khx

h2
x + h2

y

. (C3)

The expression reduces to that in the Hermitian cases
when |χμ(k)〉 = |ϕμ(k)〉. If we define an azimuthal angle as
φyx(k) = arctan(hy/hx ), the above equation is given by

w± = 1

2π

∮
S
∂kφyxdk, (C4)

According to Eq. (B2), we can immediately conclude that the
conventional winding number is equal to the DWN,

w± = wd , (C5)

under a few constraints on the initial state: |c+(k)|2 �= |c−(k)|2
for Hermitian systems and |c+(k)|2 �= 0 ∧ |c−(k)|2 �= 0 for
non-Hermitian systems. To numerically verify our theory, we
consider the systems with hx = J0 + J1 cos(k) + J2 cos(2k)
and hy = J1 sin(k) + J2 sin(2k) − iδ. In the non-Hermitian
case with δ �= 0, the conventional winding number w± can
appear half of integer in some parameter regions, different
from integer value in the Hermitian systems. For simplicity,
we take J1 = 1, and J0, J2, and δ are real. The dispersion of
this Hamiltonian is

ε±(k) = ±
√

(J0 − δ + e−ik + J2e−2ik )(J0 + δ + eik + J2e2ik ).
(C6)

The energy is symmetric about zero energy, which is en-
sured by the chiral symmetry. Since the energy gap must
close at phase transition points, we can determine the phase
boundaries by the band-crossing condition ε±(k) = 0, which
yields J0 = ±δ + 1 − J2 and J0 = ±δ − 1 − J2 for arbitrary
J2. Particularly, J0 = J2 ± δ if |J2| > 0.5. Fixing J1 = 1, J2 =
1, and hz = 0 and changing both δ and J0, we calculate
topological phase diagram distinguished by the conventional
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FIG. 4. (a) The phase diagram of the 1D chiral-symmetric
topological systems. The white, blue, green, dark-yellow, and
bright-yellow regions respectively share winding numbers as w± =
0, 1/2, 1, 3/2, and 2. [(b)–(f)] Re[ηyx (k)] as a function of k in differ-
ent parameters (J0, δ), which are (1.5,0.2), (1.5,1), (0.5,1), (0.2,0.5),
and (0.5,0.2), corresponding to points b, c, d, e, and f in panel (a),
respectively. The other parameters are chosen as J1 = 1, J2 = 1, and
hz = 0.

winding number; see Fig. 4(a). Here, the white, blue, green,
dark-yellow, and bright-yellow regions possess conventional
winding numbers w± = 0, 1/2, 1, 3/2, and 2, respectively. In
Figs. 4(b)–4(f), we also give the angle Re[ηyx(k)] as a function
of the quasimomentum k with different parameters (J0, δ)
marked as b, c, d, e, f in Fig. 4(a).

The DWNs are 0, 1, 1/2, 3/2, and 2, respectively. The
DWNs extracted from Figs. 4(b)–4(f) are in good agreement
with the conventional winding numbers in Fig. 4(a), demon-
strating the validity for our dynamic approach once again.

When hz �= 0, the Hamiltonian (C1) breaks the chiral sym-
metry. Unlike the systems with chiral symmetry, the con-
ventional winding number for each band is not a quantized
number, which indicates that w± is no longer a topological
invariant. However, the sum of the winding numbers for
different bands,

wt = w+ + w− = 1

π

∮
S

dk
hx∂khy − hy∂khx

h2
x + h2

y

, (C7)

has been demonstrated to be a topological invariant [35,59].
The topological invariant wt is independent of hz, though
its definition is related to the eigenvector of H (k). The pa-
rameters hx and hy become very important for the definition
of topological invariant. Except for the EPs h2

x + h2
y = 0, we

introduce a complex angle φyx(k) satisfying tan[φyx(k)] =
hy/hx. In term of φyx(k), wt can be represented as

wt = 1

π

∮
S
∂kφyxdk, (C8)

FIG. 5. (a) The phase diagram of the 1D non-chiral-symmetric
topological systems. The white, green, and yellow regions share
winding number as wt = 0, 1, and 2, respectively. [(b)–(f)]
Re[ηyx (k)] as a function of k in different parameters (J0, δ), which are
(1.7,0.3), (1,0.3), (0.3,0.3), (0.3,1), and (0.3,1.7), corresponding to
points b, c, d, e, and f in panel (a), respectively. The other parameters
are chosen as J1 = 1, J2 = 0, and hz = 0.5.

where the integral is also taken along a loop with k varying
from 0 to 2π . According to Eq. (B2), we can relate the
topological invariant wt to the DWN

wt = w+ + w− = 2wd , (C9)

under a few constraints on the initial state: |c+(k)|2 �= |c−(k)|2
for Hermitian systems and |c+(k)|2 �= 0 ∧ |c−(k)|2 �= 0 for
non-Hermitian systems. Fixing J1 = 1, J2 = 0, and hz = 0.5,
we calculate the topological invariant wt as functions of δ and
J0; see Fig. 5(a). Here, the white, green, and bright-yellow
regions possess topological invariant wt = 0, 1, and 2, respec-
tively. In Figs. 5(b)–5(f), we also give the angle Re[ηyx(k)]
versus the quasimomentum k with different parameters (J0, δ)
marked as b, c, d, e, and f in Fig. 5(a).

The DWNs are 0, 1/2, 1, 1/2, and 0, respectively. The
double of DWNs based on Figs. 5(b)–5(f) are consistent with
the equilibrium winding numbers of the phase diagrams in
Fig. 5(a), demonstrating the validity of our dynamic approach.

APPENDIX D: ALTERNATE CHOICE OF REFERENCE
AXIS AND MEASUREMENT OF LARGER CHERN

NUMBER

In the main text, we only consider θy(k) = arccos(hy/|
h|)
and φxz(k) = arctan(hx/hz ). Alternatively, we can also
take θz(k) = arccos(hz/|
h|) and φyx(k) = arctan(hy/hx ), or
θx(k) = arccos(hx/|
h(k)|) and φzy(k) = arctan(hz/hy). These
two choices lead to distinct observations, but give the same
Chern number. In Figs. 6(a) and 6(b), based on the different
choices of reference axis, we give the azimuthal angle φyx(k)
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FIG. 6. Topologically nontrivial phase with Chern number C =
1. Hermitian case (δ = 0): (a) Azimuthal angle φyx (k) and φzy(k)
in the parameter space k → (kx, ky ), where blue and red points
represent north and south poles of the Bloch spherical surface.
Non-Hermitian case (δ = 0.5): (b) Azimuthal angle Re[φyx (k)] and
Re[φzy(k)] in the parameter space (kx, ky). Here, blue and red points
represent north and south EPs of the virtual Bloch spherical surface.
The other parameters are chosen as Jx(y,z) = 1, mz = 1.

and φzy(k) in Hermitian(δ = 0) and non-Hermitian(δ = 0.5)
cases, where the other parameters are the same as those in
Fig. 2(c) of the main text. Around the singularity points, one
can also easily obtain the DWN, and the Chern number C = 1
in both the Hermitian and non-Hermitian cases, consistent
with the ideal Chern number. This is because these references
only differ from a gauge transformation and the Chern number
does not depend on the choice of reference.

The dynamic approach is clearly applicable to topological
phases with larger Chern numbers. To show this, we consider
another two-band model which supports band structure with
larger Chern numbers, this is,

hx = Jx sin(2kx ); hy = Jy sin(2ky);

hz = mz − Jz cos(kx ) − Jz cos(ky) − iδ. (D1)

For the Hermitian case δ = 0, the trivial phase is lying in
|mz| > 2Jz, while the topological phases are distinguished
as (i) Jz < mz < 2Jz with the Chern number C = −1; (ii)
0 < mz < Jz with C = 3; (iii) −Jz < mz < 0 with C = −3;
and (iv) −2Jz < mz < −Jz with C = 1. Here we only verify
topological phase with Chern number C = 3, where the other
parameters are chosen as Jx = Jy = 0.2, Jz = 1, and mz =
0.5. In Figs. 7(a) and 7(b), we give the azimuthal angle φxz(k)
and ηxz(k) in the parameter space (kx, ky), respectively. One
can find that more north and south poles appear in Fig. 7(c),
compared with Fig. 2. From Eq. (14), one can also easily
obtain the Chern number C = 3 via DWN. For the non-
Hermitian case, we consider δ = 0.1 and the other parameters
are the same as those in the Hermitian case. In Figs. 7(d)
and 7(e), we also give the azimuthal angles Re[φxz(k)] and
Re[ηxz(k)] in the parameter space (kx, ky), respectively. The
DWNs around EPs become half, while the EPs become double
as the Hermitian counterpart; see Fig. 7(f). Eventually, the
Chern number remains the same as that in the Hermitian case.

FIG. 7. Topologically nontrivial phase with Chern number C =
3. Hermitian case at top (δ = 0): panels (a) and (b) correspond to
the azimuthal angle φxz(k) and ηxz(k) in the parameter space k →
(kx, ky ). (c) Blue and red points represent north and south poles of
the Bloch spherical surface. Non-Hermitian case at bottom (δ = 0.1):
panels (d) and (e) respectively correspond to the azimuthal angle
Re[φxz(k)] and Re[ηxz(k)] in the parameter space (kx, ky). (f) Blue
and red points represent north and south EPs of the virtual Bloch
spherical surface. The other parameters are chosen as Jx = Jy =
0.2, Jz = 1, and mz = 0.5.

APPENDIX E: EXPERIMENTAL CONSIDERATION

One can immediately apply the dynamical approach in
topological Hermitian systems. A cold-atom system is an
excellent platform to realize topological band models and
detect topological invariants. One- and two-dimensional
spin-orbit couplings have been realized in a highly
controllable Raman lattice [27,73–75]. Initial states are
quite easily prepared by loading the atoms into the lattices.
Here, the initial constraint |c+(k)|2 �= |c−(k)|2 may be
not satisfied for some specific momentum k, but the
occurrence probability is so small that the global dynamical
azimuthal angle is not affected due to the topological
nature. The spin population N↑(↓)(k, t ) with different
momenta can be measured by spin-resolved time-of-flight
(TOF) absorption imaging [27]. Thus, one can obtain
the spin population difference 〈ψ (k, t )|σz|ψ (k, t )〉 =
[N↑(k, t ) − N↑(k, t )]/[N↑(k, t ) + N↑(k, t )]. The spin
textures 〈ψ (k, t )σx(y)|ψ (k, t )〉 can be transferred to the
spin population difference by applying π/2 pulse, that is,
〈ψ (k, t )|σx(y)|ψ (k, t )〉 = 〈ψ (k, t )|e−i π

2

σy(x)
2 σzei π

2

σy(x)
2 |ψ (k, t )〉.

Because the cold-atom systems have long coherent time,
there is no obstacle to extract the DWN via long-time average
of the spin textures.

To apply the dynamical approach in topological non-
Hermitian systems, we should first consider how to realize
the topological non-Hermitian models in experiments. Since
two-level non-Hermitian models have been widely realized in
optical systems, such as two coupled optical cavities [76,77],
optical waveguides [67,78,79], and optomechanical cavity
[52,80,81], we mainly discuss how to extract DWN with two
optical waveguides with tunable parameters. A two-level non-
Hermitian system can be realized by introducing gain and loss
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in the two waveguides. The coupling strength can be tuned
by the waveguide separation. We regard the two different
waveguides as two spin components. The initial states can
be prepared by randomly splitting the light injecting into
the two waveguides. One can obtain 〈ψ (k, l )|σz|ψ (k, l )〉 by
measuring the intensity difference between two waveguides
at propagating distance l . Here, the distance l plays the role
of time. Actually, the final states will collapse onto one of

the eigenstates in the long distance. Thus, the output intensity
difference of the waveguides is sufficient, and long-distance
average of the intensity difference is not necessary. One can
also obtain 〈ψ (k, l )|σx(y)|ψ (k, l )〉 by insetting a beam splitter
before intensity measurement. By designing the waveguide
separation and the gain (loss) rates, one can simulate the
two-band model. Repeating the above operations, one can
finally construct the DWN.
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